Questions and Answers
in Small Animal Anesthesia
Questions and Answers in Small Animal Anesthesia

EDITED BY

Lesley J. Smith DVM, DACVAA

Clinical Professor of Anesthesiology, Department of Surgical Sciences
School of Veterinary Medicine, University of Wisconsin
Madison, Wisconsin, USA

WILEY Blackwell
This book is dedicated to the many veterinary patients and students that have taught me so much over the years about anesthesia and about how to teach it. It is also dedicated to my husband and companion animals, who remind me on a daily basis why I do what I do, and how important these creatures are in our lives.
Contents

List of contributors, xi
Preface, xv

1 Patient Evaluation, 1
 Lesley J. Smith

2 Owner Concerns, 9
 Lesley J. Smith

3 Patient Preparation, 13
 Carrie Schroeder

4 Anesthetic Machine and Equipment Check, 19
 Richard M. Bednarski

5 Pre-anesthetic Sedative Drugs, 33
 Lesley J. Smith and Jo Murrell

6 Opioids and Nonsteroidal Anti-Inflammatory Drugs, 43
 Lydia Love

7 Anticholinergic Drugs, 53
 Lesley J. Smith

8 Time to Premedicate, 57
 Lesley J. Smith

9 Intravenous Access and Fluid Administration, 65
 Erin Wendt-Hornickle

10 Intravenous Anesthetic Induction Drugs, 73
 Tanya Duke-Novakovski

11 Inhalant Inductions, 83
 Lesley J. Smith

12 Induction Techniques for the Really Sick Patient, 87
 Berit L. Fischer

13 Inhalant Anesthetics, 93
 Tamara Grubb

14 Total Intravenous Anesthesia (TIVA), 101
 Martin J. Kennedy
15 Anesthetic Monitoring Basics, 107
 Martin J. Kennedy

16 Normal Values for Anesthetized Patients, 119
 Lesley J. Smith

17 Troubleshooting Hypotension, 123
 Lesley J. Smith

18 Troubleshooting Hypoxemia, 133
 Rebecca A. Johnson

19 Troubleshooting Hypercapnia and Hypocapnia, 139
 Rebecca A. Johnson

20 Troubleshooting Hypothermia and Hyperthermia, 147
 Lysa Pam Posner

21 Common Arrhythmias in Anesthetized Patients, 155
 Benjamin M. Brainard and Gregg S. Rapoport

22 Constant Rate Infusions, 163
 Carolyn Kerr

23 Loco-Regional Anesthesia, 173
 Carrie Schroeder

24 Troubleshooting Anesthetic Recovery, 185
 Andrew Claude

25 Recognition and Assessment of Pain in Dogs, 193
 Jo Murrell

26 Recognition and Assessment of Pain in Cats, 201
 Beatriz Monteiro and Paulo Steagall

27 Post-Operative Analgesia – Approaches and Options, 211
 Erin Wendt-Hornickle

28 Anesthetic Considerations for Dental Prophylaxis and Oral Surgery, 221
 Jason W. Soukup and Lesley J. Smith

29 Anesthetic Considerations for Neurologic Disease, 229
 Stephen A. Greene

30 Anesthetic Considerations for Ocular Disease, 237
 Lesley J. Smith

31 Anesthetic Considerations for Upper and Lower Respiratory Disease, 243
 Rebecca A. Johnson

32 Anesthetic Considerations for Cardiovascular Disease, 253
 Andre C. Shih
33 Anesthetic Considerations for Gastrointestinal Disease, 261
Carrie Schroeder

34 Anesthetic Considerations for Hepatic Disease, 269
Jane Quandt

35 Anesthetic Considerations for Renal Disease, 275
Jane Quandt

36 Anesthetic Considerations for Post-Renal Urinary Tract Disease, 283
Ann B. Weil

37 Anesthetic Considerations for Endocrine Disease, 289
Berit L. Fischer

38 Anesthetic Considerations for Orthopedic Surgery, 305
Odette O

39 Anesthetic Management of Common Emergencies in Small Animals, 313
Jane Quandt

40 Anesthetic Management of Brachycephalic Breeds, 323
Lesley J. Smith

41 Anesthetic Considerations for Other Canine Breeds, 327
Lesley J. Smith

42 Anesthetic Considerations for Cats, 331
Paulo Steagall and Javier Benito

43 Anesthetic Management of Rabbits and Ferrets, 343
Katrina Lafferty

44 Anesthetic Management of Birds, 355
Katrina Lafferty

Index, 367
List of Contributors

Richard M. Bednarski, DVM, MSc, DACVAA
Professor, Veterinary Anesthesiology, Department of Veterinary Clinical Sciences,
College of Veterinary Medicine, The Ohio State University, USA

Javier Benito, LV, MS
Resident in Veterinary Anesthesiology, Département de Sciences Cliniques,
Faculté de Médecine Vétérinaire, Université de Montréal, Canada

Benjamin M. Brainard VMD, DACVAA, DACVECC
Associate Professor, Critical Care, College of Veterinary Medicine, University of
Georgia, USA

Andrew Claude DVM, DACVAA
Assistant Professor and Service Chief, Anesthesiology, Mississippi State University
College of Veterinary Medicine, USA

Tanya Duke-Novakovski BVetMed, MSc, DVA, DACVAA, DECVAA
Professor of Veterinary Anesthesiology, Department of Small Animal Clinical Sciences,
Western College of Veterinary Medicine, University of Saskatchewan, Canada

Berit L. Fischer DVM, DACVAA, CCRP
Anesthesia Director, Animal Medical Center, New York City, USA

Stephen A. Greene DVM, MS, DACVAA
Professor of Anesthesia & Analgesia, Department of Veterinary Clinical Sciences, College
of Veterinary Medicine, Washington State University, USA

Tamara Grubb DVM, PhD, DACVAA
Assistant Clinical Professor of Anesthesia & Analgesia, Department of Veterinary Clinical
Sciences, College of Veterinary Medicine, Washington State University, USA

Rebecca A. Johnson DVM, PhD, DACVAA
Clinical Associate Professor of Anesthesia and Pain Management, Department of Surgical
Sciences, School of Veterinary Medicine, University of Wisconsin, USA

Martin J. Kennedy DVM
Anesthesiologist, MedVet Animal Medical and Cancer Center for Pets, Ohio, USA
List of Contributors

Carolyn Kerr DVM, DVSc, PhD, DACVAA
Professor of Anesthesiology and Department Chair Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Canada

Katrina Lafferty BFA, CVT, VTS (Anesthesia)
Senior Technician, Section of Anesthesia and Pain Management, Director, Veterinary Technician Student Internship Program, University of Wisconsin-Madison, USA

Lydia Love DVM, DACVAA
Anesthesia Director, Animal Emergency & Referral Associates, USA

Beatriz Monteiro DVM
Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Canada

Jo Murrell BVSc, PhD, DECVA
School of Veterinary Sciences, University of Bristol, UK

Odette O DVM, DACVAA
Assistant Professor of Anesthesiology, Ross University School of Veterinary Medicine, St. Kitts

Lysa Pam Posner DVM, DACVAA
North Carolina State University, USA

Jane Quandt DVM, MS, DACVAA, DACVECC
Associate Professor Comparative Anesthesiology, College of Veterinary Medicine, University of Georgia, USA

Gregg S. Rapoport DVM, DACVIM (Cardiology)
Assistant Professor, Cardiology College of Veterinary Medicine, University of Georgia, USA

Carrie Schroeder DVM, DACVAA
Clinical Instructor, Department of Surgical Science University of Wisconsin School of Veterinary Medicine, USA

Andre C. Shih DVM DACVAA
Associate Professor Anesthesia, University of Florida, College Veterinary Medicine, USA

Lesley J. Smith DVM, DACVAA
Clinical Professor of Anesthesiology, Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, USA
Jason W. Soukup, DVM, DAVDC
Clinical Associate Professor, Dentistry and Oral Surgery Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, USA

Paulo Steagall MV, Ms, PhD, DACVAA
Assistant Professor in Veterinary Anesthesiology Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Canada

Ann B. Weil MS, DVM, DACVAA
Clinical Professor of Anesthesiology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, USA

Erin Wendt-Hornickle DVM, DACVAA
Assistant Clinical Professor, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, USA
Preface

This book is intended to be a practical tool to guide veterinary practitioners, technicians, and veterinary students in the anesthetic management of small animal patients. It is constructed as a step-by-step text that starts at patient evaluation, and then takes the reader through preparation for anesthesia, premedication, induction, maintenance, monitoring and troubleshooting, recovery, and pain management. The book finishes by addressing anesthetic management for specific disease conditions in dogs and cats, breed considerations in dogs, anesthetic specifics in cats, and anesthetic management of small pocket pets and birds. My hope is that it will be a go-to source for anesthesia and analgesia questions that arise on an everyday basis.
Patient Evaluation

Prevention is the Best Medicine!

Lesley J. Smith
Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, USA

KEY POINTS:

- A thorough physical exam should be performed on all patients unless it causes undue stress to the patient or is dangerous to the anesthetist.
- An overall impression of health, temperament, and body condition score are important to assess in every patient in order to plan drug protocols and doses.
- The physical exam should focus on the cardiovascular and respiratory systems, most importantly.
- Basic blood work for every patient should include a PCV and TP.
- Many other additional tests may be indicated depending on the patient's health status and reasons for anesthesia.

Q. Why is it important to perform a complete patient evaluation?
A. Almost without exception, all anesthetic and analgesic drugs have potential toxic effects on organ systems. For example, the inhalant anesthetics significantly decrease blood pressure and organ perfusion such that an animal with pre-existing renal compromise may suffer irreversible renal damage if inhalants are used without monitoring and support of blood pressure. This damage may be even worse if nonsteroidal anti-inflammatory drugs (NSAIDs) are used prior to or during anesthesia. A complete patient evaluation allows the veterinarian to identify potential health concerns and temperament issues that will affect how that animal responds to the various anesthetic drugs that may be used. In some cases, it may be important to avoid certain anesthetic or analgesic drugs because of identified health concerns. Often many, if not most, anesthetic drugs can be used in patients with significant health problems, but the dose of those drugs may need to be adjusted to minimize known side effects that may be harmful to that particular patient. To continue with the example provided above, in a patient with renal disease inhalants can still be used to maintain anesthesia.
but the dose of those inhalants should be kept as low as possible to minimize their negative effects on blood pressure and renal perfusion. Keeping the inhalant dose very low can be achieved by adding other anesthetic or analgesic drugs to the anesthetic protocol, as will be covered in depth in later chapters.

Q. Under what circumstances may patient evaluation be less than complete?
A. Occasionally a patient may be simply too aggressive or unhandled to allow for any physical examination to be conducted safely. Some animals, for example birds, may undergo significant stress from excessive handling and will benefit from a more limited physical examination. Even under these circumstances, however, careful observation “from a distance” can provide important information such as body condition (obese, thin, or just right?), haircoat and general appearance of health, posture and gait (normal or abnormal?), respiratory pattern and effort.

Q. What important questions should I ask the owner when taking a history?
A. The owner may volunteer a lot of information in the history that is or isn’t relevant to anesthesia. Some questions that should be asked include:

✓ Has your pet had anesthesia previously and how was his/her recovery at home? – This may alert you to risks of prolonged effects of sedative or other drugs used in the anesthetic protocol.

✓ Are you aware of any problems that your pet had with anesthesia in the past? – Often owners will not know, or will be unsure of, which anesthetic drugs were used previously, but if they recall a specific event (e.g., the vet said he/she had a rough recovery) this can alert you to potential drugs to avoid or to use (e.g., perhaps the rough recovery was because the dog experienced emergence delirium, so this time a longer acting sedative may be indicated).

✓ Are you aware of any relatives of your pet that have experienced complications with anesthesia? – For example, herding breeds of dogs may experience prolonged and profound sedation from certain sedatives and opioids.

✓ Is your pet allergic to any foods or medications that you know of? – Clearly, known allergies to certain medications would indicate that those medications, or ones that are in the same class, should be avoided. Rarely, dogs will have an allergy to eggs, which would make propofol contra-indicated, as propofol contains egg lecithin.

✓ How is your pet’s general energy level? Does he/she tire easily or get out of breath quickly during exercise? – Exercise intolerance is a red flag to be on the lookout for cardiovascular or respiratory disease, anemia, or endocrine disease!

✓ Are there any recent changes in drinking or urination habits? – Increases in frequency of water intake should put you on the medical hunt for diseases that cause PU/PD, such as renal disease or diabetes.
✓ Has there been any weight loss or gain that you’ve noticed recently? – Again if these cannot be explained by a diet change or lifestyle change, then you should be on the hunt for underlying medical issues that could lead to weight gain or loss (e.g., thyroid disorders).

✓ What medications is your pet currently taking? What about nutraceuticals or herbal remedies? – Some medications can directly and significantly impact how the animal responds to anesthetics. For example, ACE inhibitors (e.g., enalapril) can lead to low blood pressure under anesthesia that is unresponsive to most normal interventions.

Q. What are important considerations to look for on initial patient evaluation?

A. The initial patient assessment, before beginning the physical exam, can give you a lot of information. Make a note of the breed, as some breeds warrant special management considerations. Make a note of the animal’s temperament: are they quiet, calm, lethargic? If so, then sedative drug doses may need to be reduced. Conversely, are they anxious? Then sedative drugs that provide anxiolysis may be indicated (e.g., acepromazine, midazolam). Are they aggressive and/or dangerous to handle? Then you may need to plan for heavy premedication with drugs that render the animal extremely sedate if not lightly anesthetized. If the dog is athletic and “works for a living” then it may have a normally low resting heart rate, which will be reflected in their heart rate under anesthesia. If that heart rate is normal for them, then you may not need to treat it, even if you consider it bradycardic by most standards.

Also make note of the animal’s general appearance of wellbeing. Is their hair coat glossy and clean, or does it have a rough, dry, unkempt, or ungroomed appearance, which may indicate underlying disease, poor nutrition, or lack of self-grooming secondary to disease, stress, or pain.

Lastly, but importantly, assess the animal’s body condition. Ideally you will obtain an accurate body weight during your physical, but prior to that, get an impression of whether the animal is close to an ideal weight or not. Obese patients will not breathe well under anesthesia because abdominal and thoracic fat increase the work of breathing and limit thoracic compliance. You should plan to assist ventilation in these patients. Also, drug dose calculations should be adjusted for ideal or lean body weight, otherwise you will be giving a relative overdose of anesthetic drugs. All anesthetic drugs circulate first to organs that receive a high percentage of cardiac output, and because adipose tissue receives very little blood flow, the relative concentration of drugs in the more vascular tissues will be too high if the drug dose is administered based on the obese body weight.

If an animal is too thin, drug doses should be calculated based on the actual body weight. A thin animal, however, may get colder sooner during anesthesia because of the lack of insulating fat.
Q. How should I estimate the patient’s ideal weight?
A. Recent studies have reported that ~40% of dogs in the USA and other countries are overweight and between 5–20% are obese [1, 2]. A commonly used body condition scoring system uses a subjective 9-point scale, where 1 is a morbidly thin animal and 9 is a morbidly obese animal, with a spectrum of body conditions ranked on the scale between these extremes [3]. This system is validated for dogs with < 45% body fat, so may not accurately identify dogs that are extremely obese, which is becoming a more common finding.
A subjective but common-sense approach to estimating ideal weight is to consider the species, breed, and age of the animal and assign a body weight that would be typical for that animal if it had a body condition score of 5–6 (ideal). For example, a typical adult yellow Labrador of average size should weigh approximately 30–33 kg.

Q. What are general considerations for very young or geriatric patients?
A. Very young patients (i.e., less than 5 months of age) have immature liver function [4]. This means that they are slower to metabolize many drugs and are not very efficient at gluconeogenesis, so glucose should be checked and monitored during anesthesia, with supplementation if needed. When glucose falls below 60 g/dl, adding enough dextrose to make a 2.5% (25 mg/ml) solution of dextrose in a balance electrolyte fluid, for example plasmalyte-R, with fluids run at normal anesthetic maintenance rates (see Chapter 9: Fluid Therapy), will maintain normal glucose levels.
Geriatric patients should be carefully screened for diseases common to older animals, such as cardiac, renal, hepatic, CNS, and neoplastic disease. As a general rule, doses of sedative drugs should be tapered down in geriatric animals because of delayed clearance. Anesthetic monitoring should also be vigilant in order to quickly address complications that may compromise organ function, such as hypoxemia, hypotension, hypercapnia, and hypothermia. Underlying arthritis should be considered when positioning the patient for procedures, with attention to padding and positioning joints carefully to minimize patient discomfort or stiffness after recovery from anesthesia.

Q. What are the key organ systems to focus on during my physical examination that are relevant to anesthetic planning?
A. The most important organ systems with respect to anesthesia are the cardiovascular and respiratory systems. This is because so many of the negative effects of anesthetic drugs are cardiac and respiratory. A good grasp of abnormalities in these two systems in any given patient will allow for pre-emptive planning in advance in order to minimize anesthetic risk.
The chapters on anesthetic management for cardiovascular and respiratory disease will provide guidelines for how to plan anesthesia for patients where abnormalities in these organ systems exist. With respect to physical examination, the following checklist may help:
✓ Mucous membrane color should be pink.
✓ Mucous membranes should be wet/moist with a capillary refill time of <2 s.
✓ Hydration status should appear normal.
✓ Heart rate should be “normal” for this species and breed.
✓ Are there any murmurs heard? Any arrhythmias?
✓ Are there strong peripheral pulses and are they synchronous with the heart beats?
✓ Is respiratory effort minimal? Does the animal “work to breathe”?
✓ Is there good airflow through both nostrils when the mouth is held shut?
✓ Are normal breath sounds heard in all four lung fields?

Q. Are there any other organ systems I should examine?
A. The abdomen should be gently palpated to search for organomegaly or effusion, both of which can signal neoplastic, hepatic, or cardiac disease. A basic evaluation of CNS function should check that the patient has normal mentation, normal visual reflexes, and responds to voice. Check that the mouth can be easily opened so that intubation will be easy. If not (e.g., mandibular myopathy), you may need to be prepared with an endoscope to visualize the larynx or, worst case, for a tracheostomy.

Q. What bloodwork is important for a young, healthy animal?
A. A suggested minimum data base for a healthy animal should be packed cell volume (PCV) and total protein concentration. These tests are inexpensive and easy to perform and provide a lot of information. PCV will alert you to dehydration (if high) or to anemia (if low), which compromises oxygen carrying capacity and oxygen delivery to tissues. A PCV < 25%, if an acute decrease, should be addressed prior to anesthesia with blood products (packed RBCs, whole blood). Total protein concentration also can indicate dehydration (if high) or a chronic inflammatory disease (if high, because of increases in gamma globulins). Low total protein concentration can indicate poor liver function (e.g., portosystemic shunt) and makes the animal more at risk for hypotension because of low plasma oncotic pressure (fluids will not stay in the vascular space). Coagulation factors may also be low if liver function is poor, so the animal will be at a higher risk for surgical blood loss, even in routine procedures such ovariohysterectomy. Low total protein concentration may also indicate protein loss, for example, from protein-losing nephropathy or GI losses.

In young animals, a baseline blood glucose concentration can be important for making decisions about fluid therapy and glucose support. A reagent test strip, for example Azostix, can provide a rough indication of normal or high blood urea nitrogen concentration, which can clue you in to pre-renal dehydration or renal dysfunction. If high, obtaining a urine specific gravity, also easy to perform, will help determine the animal’s concentrating ability and distinguish between pre-renal and renal azotemia.
Q. When should I consider performing more blood work? What tests are most important for anesthesia?

A. A retrospective evaluation of canine patient pre-anesthetic records was performed in order to determine the necessity of pre-anesthetic blood screening. Pre-anesthetic blood work was deemed to be unnecessary in 84% of these patients, as it did not alter the anesthetic plan. Less than 1% of patients required alterations of the anesthetic plan based upon blood work [5]. It is important to note that the majority of these patients were classified as ASA I or II. In a separate study evaluating geriatric canine patients (>7 years), pre-anesthetic blood work resulted in a new diagnosis of subclinical disease in roughly 30% of patients [6]. The results of these studies suggest that pre-anesthetic hematologic and biochemical screening is of value in detecting subclinical disease, especially among geriatric patients, but may not be necessary in all patients. Any patient with significant uncompensated or compensated systemic disease, a history of trauma, urinary obstruction, sepsis, and so on, should have a full CBC and serum biochemical profile with electrolytes. Again, this helps in stabilizing the patient prior to anesthesia and in making decisions regarding fluid therapy, as well as interpreting and managing complications that may arise under anesthesia (e.g., arrhythmias associated with K+ disorders).

Q. Are there other diagnostic tests that should be considered?

A. Thoracic radiographs should probably be taken in any patient in which a previously undiagnosed heart murmur is heard or in a patient with a history of heart disease that is/is not being treated with medications, in order to assess heart size and the possible presence of heart failure. Patients with a history of trauma often have abnormalities on thoracic radiographs (e.g., pulmonary contusions, pneumothorax). Any patient in which lower respiratory abnormalities are ausculted on physical exam should have thoracic radiographs. Echocardiography can be useful in identifying the significance of murmurs and assessing cardiac contractility in patients with cardiac disease. Abdominal radiographs, computed tomography, and ultrasound, while not necessarily pertinent to anesthetic planning, can help identify co-morbidities (e.g., metastases) that can change the overall patient plan.

Patients that are suspected to have clotting disorders based on breed (e.g., von Willebrand disease [vWD] in Dobermans), history of disease, or physical exam (e.g., petechiae) should have a platelet count (part of the CBC), buccal mucosal bleeding time (to check platelet function in an animal with a normal platelet count), or PT/aPTT tests, depending on the signs and signalment, to rule out/rule in a bleeding disorder that may increase surgical bleeding and risk. If vWD is suspected, a von Willebrand factor antigen assay should be obtained from a reference laboratory.

Q. What is ASA status and how do I rank a patient?
Chapter 1: Patient Evaluation

Table 1.1 ASA status categories with descriptions and clinical examples.

<table>
<thead>
<tr>
<th>Category</th>
<th>Physical status</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>normal healthy patient</td>
<td>no signs of obvious disease</td>
</tr>
<tr>
<td>II</td>
<td>patient with mild systemic disease</td>
<td>compensated cardiac disease, fracture with no shock</td>
</tr>
<tr>
<td>III</td>
<td>patient with severe systemic disease</td>
<td>anemia, moderate dehydration, renal or hepatic disease</td>
</tr>
<tr>
<td>IV</td>
<td>patient with severe disease that is life-threatening</td>
<td>uncompensated cardiac disease, renal or hepatic failure, sepsis</td>
</tr>
<tr>
<td>V</td>
<td>patient that is not expected to live with or without surgery</td>
<td>profound shock, severe multi-organ failure, severe sepsis, severe trauma</td>
</tr>
</tbody>
</table>

A. The American Society of Anesthesiologists (ASA) recommends categorizing patients into one of five possible statuses after the patient evaluation has been completed (www.asahq.org) [7]. Table 1.1 summarizes the five categories. Any patient that presents as an emergency is ranked at its appropriate status followed by an E. For example, a dachshund with thoracolumbar disc herniation that is otherwise completely healthy, but that requires an emergency hemi-laminectomy would be an ASA 2E.

References

Owner Concerns

Be prepared with answers

Lesley J. Smith
Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, USA

KEY POINTS:

• Trained personnel dedicated to anesthetic monitoring will address many owner concerns about anesthetic risk.

• Good monitoring (hands-on, temperature, pulse oximetry, blood pressure, ECG, and capnography) will address owner concerns about anesthetic risk.

• Owners should be prepared that their pet may not be “normal” for several days after anesthesia, even if everything goes exactly according to plan.

The following are questions that a pet owner may ask, with possible scenarios or answers that you may provide, depending on your practice. Some questions are taken from the American College of Veterinary Dentistry website [1].

Q. Who monitors the anesthesia at your practice?

A. Responses here could vary from (i) A board certified veterinary anesthesiologist (i.e., a diplomate of the American College of Veterinary Anesthesia and Analgesia). (ii) A veterinarian with some additional training in anesthesia but who is not a diplomate of the ACVAA. (iii) A veterinarian with no additional training in anesthesia post-graduation. (iv) A dedicated veterinary technician with special training in anesthesia (i.e., a veterinary technician with a certificate of Veterinary Technician Specialist – Anesthesia). (v) A dedicated veterinary technician without special training in anesthesia. (vi) A veterinary technician who also helps with the procedure at the same time. (vii) Kennel staff, office staff, volunteer.

A veterinarian should always be involved in choosing anesthetic drug protocols and doses, even if those are standard protocols that have been established by the practice. The American Animal Hospital Association (AAHA) recommends that all animal anesthetics be monitored by a dedicated individual [2]. Clearly, owners who ask this question will be reassured if they know that their pet’s anesthesia will be monitored closely, minute to minute, by a trained individual.
Q. What things do you monitor as standard protocol for your anesthesia?
A. This again can run the gamut of possibilities based on the practice type. Minimal monitoring should be hands-on assessment of depth, membrane color, heart rate and breathing, and temperature. AAHA guidelines indicate that minimal anesthetic monitoring include heart rate and rhythm, membrane color, respiratory rate, pulse oximetry, blood pressure, and temperature [3].

Q. Do you keep an anesthetic record?
A. The anesthetic record should be considered a legal document, because if there are any complications related to that pet and the owner pursues it either legally or via the state licensing office, the absence of an anesthetic record will make defense of any actions taken during the anesthetic period very difficult.

Q. What blood work will you perform on my pet?
A. Answers will depend on what is indicated based on the pet’s medical condition, reason for anesthesia, age, overall health status, history, and physical exam findings. A minimum amount of blood work for any animal should be a PCV and TP, even if it is obtained after anesthetic induction to reduce patient stress. See Chapter 1 for other guidelines on pre-anesthetic blood work.

Q. What are the risks of anesthesia?
A. Owners should understand that anesthesia is a risk, for any animal, under any circumstances. Risk can be reduced by careful patient evaluation and anesthetic planning, dedicated anesthesia personnel who monitor the patient on a continuous basis through recovery, and good knowledge of trouble-shooting. Some potential, but hopefully rare, anesthetic risks that should be shared with owners include: anesthetic death, aspiration and pneumonia, regurgitation with subsequent esophageal ulceration or stricture, delayed/prolonged recovery, post-operative pain/discomfort, CNS abnormalities (blindness, confusion), renal failure, worsening of chronic disease such as cardiac or renal disease.

Q. How will you manage my pet’s pain?
A. Many owners do not ask this question, as they assume that their pet’s pain will be managed much like their own would be in a hospital setting. They should understand that pain medications may cause some sedation lasting into the time the pet arrives home (e.g., opioids) or may cause other abnormalities in behavior if they are prescribed for at-home administration (e.g., sedation from a fentanyl patch, tremors/agitation from tramadol). The NSAIDs are commonly prescribed for post-operative at-home administration and owners should know that some of these drugs have been associated with (rare) hepatotoxicity (e.g., carprofen) and can worsen renal function in geriatric dogs and, particularly, in cats when they are given for prolonged periods or at high doses. These drugs also can cause GI upset, nausea, melena, diarrhea, and GI ulcers, so owners should be advised of these risks as well.
Q. Why does my pet need an IV catheter? I don’t want him shaved!
A. An IV catheter is vital for safe anesthetic induction, administration of IV fluids which help to maintain water balance and blood pressure during anesthesia, and for quick delivery of any emergency or pain drugs we might have to use. Only a small square of hair needs to be shaved in order to place a clean IV catheter. The medial saphenous vein can often be used and is relatively “hidden” compared to the cephalic or lateral saphenous locations.

Q. Why does my pet need anesthesia when I don’t need it for the same sort of procedure?
A. Pets will not voluntarily hold still for many relatively non-invasive routine preventative procedures such as dental cleanings. Physical restraint for any length of time is stressful to the pet and potentially painful as well. General anesthesia allows us to complete the procedure more efficiently without the pet feeling any pain or stress during the procedure.

References

1 American College of Veterinary Dentistry. Questions to ask your veterinarian about your pet’s dental cleaning. www.acvd.org (accessed November 12, 2014)