DESIGN OF ROTATING ELECTRICAL MACHINES
DESIGN OF ROTATING ELECTRICAL MACHINES

Second Edition

Juha Pyrhönen
Lappeenranta University of Technology, Finland

Tapani Jokinen
Aalto University, School of Electrical Engineering, Finland

Valéria Hrabovcová
Faculty of Electrical Engineering, University of Žilina, Slovakia

WILEY
Contents

Preface xi

About the Authors xiii

Abbreviations and Symbols xv

1 Principal Laws and Methods in Electrical Machine Design 1
1.1 Electromagnetic Principles 1
1.2 Numerical Solution 8
1.3 The Most Common Principles Applied to Analytic Calculation 12
 1.3.1 Flux Line Diagrams 16
 1.3.2 Flux Diagrams for Current-Carrying Areas 22
1.4 Application of the Principle of Virtual Work in the Determination of 25
 Force and Torque
1.5 Maxwell’s Stress Tensor; Radial and Tangential Stress 32
1.6 Self-Inductance and Mutual Inductance 36
1.7 Per Unit Values 42
1.8 Phasor Diagrams 45
 Bibliography 47

2 Windings of Electrical Machines 48
2.1 Basic Principles 49
 2.1.1 Salient-Pole Windings 49
 2.1.2 Slot Windings 53
 2.1.3 End Windings 54
2.2 Phase Windings 54
2.3 Three-Phase Integral Slot Stator Winding 57
2.4 Voltage Phasor Diagram and Winding Factor 64
2.5 Winding Analysis 72
2.6 Short Pitching 74
2.7 Current Linkage of a Slot Winding 81
2.8 Poly-Phase Fractional Slot Windings 94
2.9 Phase Systems and Zones of Windings 97
 2.9.1 Phase Systems 97
 2.9.2 Zones of Windings 99
2.10 Symmetry Conditions 101
 2.10.1 Symmetrical Fractional Slot Windings 101
2.11 Base Windings 104
 2.11.1 First-Grade Fractional Slot Base Windings 104
 2.11.2 Second-Grade Fractional Slot Base Windings 105
 2.11.3 Integral Slot Base Windings 106
2.12 Fractional Slot Windings 108
 2.12.1 Single-Layer Fractional Slot Windings 108
 2.12.2 Double-Layer Fractional Slot Windings 117
2.13 Single- and Double-Phase Windings 124
2.14 Windings Permitting a Varying Number of Poles 127
2.15 Commutator Windings 129
 2.15.1 Lap Winding Principles 133
 2.15.2 Wave Winding Principles 136
 2.15.3 Commutator Winding Examples, Balancing Connectors 139
 2.15.4 AC Commutator Windings 143
 2.15.5 Current Linkage of the Commutator Winding and Armature Reaction 144
2.16 Compensating Windings and Commutating Poles 146
2.17 Rotor Windings of Asynchronous Machines 149
2.18 Damper Windings 152
Bibliography 153

3 Design of Magnetic Circuits 155
3.1 Air Gap and its Magnetic Voltage 161
 3.1.1 Air Gap and Carter Factor 161
 3.1.2 Air Gaps of a Salient-Pole Machine 166
 3.1.3 Air Gap of Nonsalient-Pole Machine 172
3.2 Equivalent Core Length 173
3.3 Magnetic Voltage of a Tooth and a Salient Pole 176
 3.3.1 Magnetic Voltage of a Tooth 176
 3.3.2 Magnetic Voltage of a Salient Pole 180
3.4 Magnetic Voltage of Stator and Rotor Yokes 180
3.5 No-Load Curve, Equivalent Air Gap and Magnetizing Current of the Machine 183
3.6 Magnetic Materials of a Rotating Machine 186
 3.6.1 Characteristics of Ferromagnetic Materials 189
 3.6.2 Losses in Iron Circuits 194
3.7 Permanent Magnets in Rotating Machines 203
 3.7.1 History and Development of Permanent Magnets 203
 3.7.2 Characteristics of Permanent Magnet Materials 205
 3.7.3 Operating Point of a Permanent Magnet Circuit 210
 3.7.4 Demagnetization of Permanent Magnets 217
 3.7.5 Application of Permanent Magnets in Electrical Machines 219
3.8 Assembly of Iron Stacks 226
Bibliography 227
4 Inductances 229
4.1 Magnetizing Inductance 230
4.2 Leakage Inductances 233
4.2.1 Division of Leakage Flux Components 235
4.3 Calculation of Flux Leakage 238
4.3.1 Skewing Factor and Skew Leakage Inductance 239
4.3.2 Air-Gap Leakage Inductance 243
4.3.3 Slot Leakage Inductance 248
4.3.4 Tooth Tip Leakage Inductance 259
4.3.5 End Winding Leakage Inductance 260
Bibliography 264

5 Resistances 265
5.1 DC Resistance 265
5.2 Influence of Skin Effect on Resistance 266
5.2.1 Analytical Calculation of Resistance Factor 266
5.2.2 Critical Conductor Height in Slot 276
5.2.3 Methods to Limit the Skin Effect 277
5.2.4 Inductance Factor 278
5.2.5 Calculation of Skin Effect in Slots Using Circuit Analysis 279
5.2.6 Double-Sided Skin Effect 287
Bibliography 292

6 Design Process of Rotating Electrical Machines 293
6.1 Eco-Design Principles of Rotating Electrical Machines 293
6.2 Design Process of a Rotating Electrical Machine 294
6.2.1 Starting Values 294
6.2.2 Main Dimensions 297
6.2.3 Air Gap 305
6.2.4 Winding Selection 309
6.2.5 Air-Gap Flux Density 310
6.2.6 The No-Load Flux of an Electrical Machine and the Number of
 Winding Turns 311
6.2.7 New Air-Gap Flux Density 316
6.2.8 Determination of Tooth Width 317
6.2.9 Determination of Slot Dimensions 318
6.2.10 Determination of the Magnetic Voltages of the Air Gap,
 and the Stator and Rotor Teeth 323
6.2.11 Determination of New Saturation Factor 326
6.2.12 Determination of Stator and Rotor Yoke Heights and
 Magnetic Voltages 326
6.2.13 Magnetizing Winding 327
6.2.14 Determination of Stator Outer and Rotor Inner Diameter 329
6.2.15 Calculation of Machine Characteristics 329
Bibliography 330
7 Properties of Rotating Electrical Machines

7.1 Machine Size, Speed, Different Loadings and Efficiency

7.1.1 Machine Size and Speed
7.1.2 Mechanical Loadability
7.1.3 Electrical Loadability
7.1.4 Magnetic Loadability
7.1.5 Efficiency

7.2 Asynchronous Motor

7.2.1 Current Linkage and Torque Production of an Asynchronous Machine
7.2.2 Impedance and Current Linkage of a Cage Winding
7.2.3 Characteristics of an Induction Machine
7.2.4 Equivalent Circuit Taking Asynchronous Torques and Harmonics into Account
7.2.5 Synchronous Torques
7.2.6 Selection of the Slot Number of a Cage Winding
7.2.7 Construction of an Induction Motor
7.2.8 Cooling and Duty Types
7.2.9 Examples of the Parameters of Three-Phase Industrial Induction Motors
7.2.10 Asynchronous Generator
7.2.11 Wound Rotor Induction Machine
7.2.12 Asynchronous Motor Supplied with Single-Phase Current

7.3 Synchronous Machines

7.3.1 Inductances of a Synchronous Machine in Synchronous Operation and in Transients
7.3.2 Loaded Synchronous Machine and Load Angle Equation
7.3.3 RMS Value Phasor Diagrams of a Synchronous Machine
7.3.4 No-Load Curve and Short-Circuit Test
7.3.5 Asynchronous Drive
7.3.6 Asymmetric-Load-Caused Damper Currents
7.3.7 Shift of Damper Bar Slotting from the Symmetry Axis of the Pole
7.3.8 V Curve of a Synchronous Machine
7.3.9 Excitation Methods of a Synchronous Machine
7.3.10 Permanent Magnet Synchronous Machines
7.3.11 Synchronous Reluctance Machines

7.4 DC Machines

7.4.1 Configuration of DC Machines
7.4.2 Operation and Voltage of a DC Machine
7.4.3 Armature Reaction of a DC machine and Machine Design
7.4.4 Commutation

7.5 Doubly Salient Reluctance Machine

7.5.1 Operating Principle of a Doubly Salient Reluctance Machine
7.5.2 Torque of an SR Machine
7.5.3 Operation of an SR Machine
7.5.4 Basic Terminology, Phase Number and Dimensioning of an SR Machine | 485
7.5.5 Control Systems of an SR Motor | 489
7.5.6 Future Scenarios for SR Machines | 491
Bibliography | 492

8 Insulation of Electrical Machines | 495
8.1 Insulation of Rotating Electrical Machines | 497
8.2 Impregnation Varnishes and Resins | 503
8.3 Dimensioning of an Insulation | 506
8.4 Electrical Reactions Ageing Insulation | 509
8.5 Practical Insulation Constructions | 510
8.5.1 Slot Insulations of Low-Voltage Machines | 511
8.5.2 Coil End Insulations of Low-Voltage Machines | 512
8.5.3 Pole Winding Insulations | 512
8.5.4 Low-Voltage Machine Impregnation | 513
8.5.5 Insulation of High-Voltage Machines | 513
8.6 Condition Monitoring of Insulation | 515
8.7 Insulation in Frequency Converter Drives | 518
Bibliography | 521

9 Losses and Heat Transfer | 523
9.1 Losses | 524
9.1.1 Resistive Losses | 524
9.1.2 Iron Losses | 526
9.1.3 Additional Losses | 526
9.1.4 Mechanical Losses | 527
9.1.5 Decreasing Losses | 529
9.1.6 Economics of Energy Savings | 533
9.2 Heat Removal | 534
9.2.1 Conduction | 534
9.2.2 Radiation | 538
9.2.3 Convection | 541
9.3 Thermal Equivalent Circuit | 548
9.3.1 Analogy between Electrical and Thermal Quantities | 548
9.3.2 Average Thermal Conductivity of a Winding | 549
9.3.3 Thermal Equivalent Circuit of an Electrical Machine | 550
9.3.4 Modeling of Coolant Flow | 560
9.3.5 Solution of Equivalent Circuit | 565
9.3.6 Cooling Flow Rate | 568
Bibliography | 568

Appendix A | 570
Appendix B | 572
Index | 575
Preface

Electrical machines are almost entirely used in producing electricity, and there are very few electricity-producing processes where rotating machines are not used. In such processes, at least auxiliary motors are usually needed. In distributed energy systems, new machine types play a considerable role: for instance, the era of permanent magnet machines has commenced.

About half of all electricity produced globally is used in electric motors, and the share of accurately controlled motor drives applications is increasing. Electrical drives provide probably the best control properties for a wide variety of processes. The torque of an electric motor may be controlled accurately, and the efficiencies of the power electronic and electromechanical conversion processes are high. What is most important is that a controlled electric motor drive may save considerable amounts of energy. In the future, electric drives will probably play an important role also in the traction of cars and working machines. Because of the large energy flows, electric drives have a significant impact on the environment. If drives are poorly designed or used inefficiently, we burden our environment in vain. Environmental threats give electrical engineers a good reason for designing new and efficient electric drives.

Finland has a strong tradition in electric motors and drives. Lappeenranta University of Technology and Aalto University have found it necessary to maintain and expand the instruction given in electric machines. The objective of this book is to provide students in electrical engineering with an adequate basic knowledge of rotating electric machines, for understanding of the operating principles of these machines as well as developing elementary skills in machine design. Although, due to the limitations of this material, it is not possible to include all the information required in electric machine design in a single book, this material will serve as a manual for a machine designer in the early stages of his or her career. The bibliographies at the end of chapters are intended as sources of references and recommended background reading. The Finnish tradition of electrical machine design is emphasized in this monograph through the important contributions of Professor Tapani Jokinen, who has spent decades in developing the Finnish machine design profession. Equally important is the view of electrical machine design provided by Professor Valéria Hrabovcová from Slovak Republic, which also has a strong industrial tradition.

In the second edition, some parts of the first edition have been rewritten to make the text proceed more logically and many printing errors have been corrected. Especially, permanent magnet machine and synchronous reluctance machine chapters are now much more comprehensive including new research results. Also the Eco-design principles and economical considerations in machine design are shortly introduced.
The authors are thankful for Dr. Hanna Niemelä for translating the original Finnish material for the first edition.

We express our gratitude to the following persons, who have kindly provided material for this book: Professor Antero Arkkio (Aalto University), Dr Jorma Haataja, Dr Tanja Hedberg (ITT Water and Wastewater AB), Mr Jari Jäppinen (ABB), Dr Hanne Jussila (LUT), Dr Panu Kurronen (The Switch Oy), Dr Janne Nerg (LUT), Dr Markku Niemelä (ABB), Dr Asko Parviainen (AXCO Motors), Dr Sami Ruoho (Teollisuuden Voima), Dr Marko Rilla (Visedo), Dr Pia Salminen (LUT), Dr Ville Sihvo (MAN Turbo), Mr Pavel Ponomarev, Mr Juho Montonen, Ms Julia Alexandrova, Dr. Henry Hämäläinen and numerous other colleagues. Dr Hanna Niemelä’s contribution to the first edition and the publication process of the original manuscript is particularly acknowledged.

Juha Pyrhönen
Tapani Jokinen
Valéria Hrabovcová
About the Authors

Juha Pyrhönen is a Professor in the Department of Electrical Engineering at Lappeenranta University of Technology, Finland. He is engaged in the research and development of electric motors and drives. He is especially active in the fields of permanent magnet synchronous machines and drives and solid-rotor high-speed induction machines and drives. He has worked on many research and industrial development projects and has produced numerous publications and patents in the field of electrical engineering.

Tapani Jokinen is a Professor Emeritus in the School of Electrical Engineering at Aalto University, Finland. His principal research interests are in AC machines, creative problem solving and product development processes. He has worked as an electrical machine design engineer with Oy Strömberg Ab Works. He has been a consultant for several companies, a member of the Board of High Speed Tech Ltd and Neorem Magnets Oy, and a member of the Supreme Administrative Court in cases on patents. His research projects include, among others, the development of superconducting and large permanent magnet motors for ship propulsion, the development of high-speed electric motors and active magnetic bearings, and the development of finite element analysis tools for solving electrical machine problems.
Valéria Hrabovcová is a Professor of Electrical Machines in the Department of Power Electrical Systems, Faculty of Electrical Engineering, at the University of Žilina, Slovak Republic. Her professional and research interests cover all kinds of electrical machines, electronically commutated electrical machines included. She has worked on many research and development projects and has written numerous scientific publications in the field of electrical engineering. Her work also includes various pedagogical activities, and she has participated in many international educational projects.
Abbreviations and Symbols

- A: linear current density, [A/m]
- A: magnetic vector potential, [Vs/m]
- A: magnetic vector potential scalar value, [Vs/m]
- A: temperature class 105 °C
- AC: alternating current
- AM: asynchronous machine
- $A1-A2$: armature winding of a DC machine
- A_{1n}, A_{2n}, A_{3n}: factors for defining permanent magnet flux density
- a: number of parallel paths in windings without commutator: per phase, in windings with a commutator: per half armature, diffusivity
- B: magnetic flux density, vector [Vs/m²], [T]
- B: magnetic flux density scalar value, [Vs/m²]
- B_r: remanent flux density, [T]
- B_{sat}: saturation flux density, [T]
- B: temperature class 130 °C
- $B1-B2$: commutating pole winding of a DC machine
- b: width, [m]
- b_{0c}: conductor width [m]
- b_c: conductor width [m]
- b_d: tooth width, [m]
- b_{dr}: rotor tooth width, [m]
- b_{ds}: stator tooth width, [m]
- b_r: rotor slot width, [m]
- b_s: stator slot width, [m]
- b_0: slot opening, [m]
- b_v: width of ventilation duct, [m]
- C: capacitance, [F], machine constant, integration constant, fabrication cost, [€]
- C: temperature class >180 °C
- $C1-C2$: compensating winding of a DC machine
- C_f: friction coefficient
- C_M: torque coefficient
- C_s: saving cost per year, [€/a]
Abbreviations and Symbols

- **c**: specific heat capacity, [J/kgK], capacitance per unit of length, factor, divider, constant
- **C_{diff}**: increase of the purchase cost, \([\text{€}]\)
- **c_e**: energy cost, \([\text{€/kWh}]\)
- **c_p**: specific heat capacity of air in constant pressure
- **C_{pw}**: cost per one kilowatt of loss over the life of motor, \([\text{€/kW}]\)
- **c_{th}**: heat capacity
- **CTI**: Comparative Tracking Index
- **c_v**: specific volumetric heat, \([\text{kJ/Km}^3]\)
- **D**: direct current
- **DOL**: direct- on-line
- **D_s**: inner diameter of the stator, \([\text{m}]\)
- **D_{sc}**: outer diameter of the stator, \([\text{m}]\)
- **D_t**: outer diameter of the rotor, \([\text{m}]\)
- **D_{ri}**: inner diameter of the rotor, \([\text{m}]\)
- **D1-D2**: series magnetizing winding of a DC machine
- **d**: thickness, \([\text{m}]\)
- **d_l**: thickness of the fringe of a pole shoe, \([\text{m}]\)
- **E**: electromotive force (emf), \([\text{V}]\), RMS, electric field strength, \([\text{V/m}]\), scalar, elastic modulus, Young’s modulus, \([\text{Pa}]\), bearing load
- **E_a**: activation energy, \([\text{J}]\)
- **E**: electric field strength, vector, \([\text{V/m}]\)
- **E**: electric field strength scalar value, \([\text{V/m}]\)
- **E**: temperature class 120 °C
- **E**: irradiation intensity \([\text{W/m}^2]\)
- **E1-E2**: shunt winding of a DC machine
- **e**: electromotive force \([\text{V}]\), instantaneous value \(e(t)\)
- **e**: Napier’s constant
- **emf**: electromotive force, \([\text{V}]\)
- **F**: force, \([\text{N}]\), scalar
- **F**: force, \([\text{N}]\), vector
- **F**: temperature class 155 °C
- **FEA**: Finite Element Analysis
- **F_g**: geometrical factor
- **F_{mm}**: magnetomotive force \(\oint \mathbf{H} \cdot d\mathbf{l}\), \([\text{A}]\), (mmf)
- **F1-F2**: separate magnetizing winding of a DC machine or a synchronous machine
- **f**: frequency, \([\text{Hz}]\), Moody friction factor
- **f_{Br}**: factor for defining permanent magnet radial flux density
- **f_{Bth}**: factor for defining permanent magnet tangential flux density
- **g**: coefficient, constant, thermal conductance per unit length
- **G**: electrical conductance
- **G_{th}**: thermal conductance
- **H**: magnetic field strength, \([\text{A/m}]\)
- **H**: magnetic field strength scalar value, \([\text{A/m}]\)
- **H_c, H_{cB}**: coercivity related to flux density, \([\text{A/m}]\)
Abbreviations and Symbols

H_{cJ} coercivity related to magnetization, [A/m]

H temperature class 180 °C

H_n number of partial discharges

h height, [m]

h_{0c} conductor height [m]

h_c conductor height [m]

h_d tooth height [m]

h_p height of a subconductor, [m]

h_{p2} height of pole body, [m]

h_{ys} height of stator yoke, [m]

h_{yr} height of rotor yoke, [m]

h_s stator slot height, [m]

I electric current, [A], RMS, brush current, second moment of inertia of an area, [m^4]

IM induction motor

I_{ns} counter-rotating current (negative sequence component), [A]

I_o current of the upper bar, [A]

I_n current of the lower bar, slot current, slot current amount, [A]

I_s conductor current

IC classes of electrical machines

IEC International Electrotechnical Commission

Im imaginary part

i current, [A], instantaneous value $i(t)$, per unit value of current, [pu], annual rate of interest

J moment of inertia, [kgm^2], current density [A/m^2], magnetic polarization

J_{0PM} current density on the PM surface, [A/m^2]

J_{PM} eddy current density, [A/m^2]

\mathbf{J} Jacobian matrix

J_{ext} moment of inertia of load, [kgm^2]

J_M moment of inertia of the motor, [kgm^2]

J_{sat} saturation of polarization, [Vs/m^2]

\mathbf{J}_s surface current, vector, [A/m]

J_s surface current vector scalar value, [A/m]

j difference of the numbers of slots per pole and phase in different layers

j imaginary unit

K transformation ratio, constant, number of commutator segments

K_{Br} factor for defining permanent magnet radial flux density

$K_{B\theta}$ factor for defining permanent magnet tangential flux density

K_L inductance ratio

k connecting factor (coupling factor), correction coefficient, safety factor, ordinal of layers, roughness coefficient

k_E machine-related constant

k_C Carter factor

k_{Cu}, k_{Fe} space factor for copper, space factor for iron

k_d distribution factor, correction factor, saliency factor in d- axis

k_q saliency factor in q- axis
k_{dsat} saliency factor taking into account saturation in d-axis

k_{qpar} saliency factor taking into account parallel magnetic lines in q-axis

k_{Fe+n} correction factor

k_k short circuit ratio

k_{L} skin effect factor for the inductance

k_p pitch factor

k_{pw} pitch factor due to coil side shift, present worth factor of an equal payment series

k_{R} skin effect factor for the resistance

k_{sat} saturation factor

k_{sq} skewing factor

k_{th} coefficient of heat transfer, [W/m²K]

k_v pitch factor of the coil side shift in a slot

k_w winding factor

k_{σ} safety factor in the yield

L self inductance [H]

L characteristic length, characteristic surface length, tube length [m]

LC inductor-capacitor

L_{d} tooth tip leakage inductance, synchronous inductance in d-axis [H]

L_{q} synchronous inductance in q-axis [H]

L_{d}/L_{q} inductance ratio

L_{k} short-circuit inductance, [H]

L_{m} magnetizing inductance, [H]

L_{md} magnetizing inductance of an m-phase synchronous machine, in d-axis,[H]

L_{mq} magnetizing inductance of an m-phase synchronous machine, in q-axis, [H]

L_{mn} mutual inductance, [H]

L_{mp} magnetizing inductance of single-phase winding, [H]

L_{pd} main inductance of a single phase, [H]

L_{sq} skew leakage inductance, [H]

L_{u} slot inductance, [H]

L_{w} end winding leakage inductance, [H]

L_{δ} air-gap leakage inductance, [H]

$L_{m\delta}$ magnetizing inductance of synchronous machines with non-salient poles, [H]

L' transient inductance, [H]

L'' subtransient inductance, [H]

L_1, L_2, L_3 network phases

l length [m], closed line, distance, inductance per unit of length, relative inductance (inductance per unit value), gap spacing between the electrodes

l unit vector collinear to the integration path

l' effective core length, [m]

l_{ew} average conductor length of winding overhang, [m]

l_p wetted perimeter of tube, [m]

l_{pu} inductance as a per unit value

l_w length of coil ends, [m]

l_{sub} length of one sub-stack, [m]
Abbreviations and Symbols

M \hspace{1cm} mutual inductance [H], magnetization [A/m]

M_{sat} \hspace{1cm} saturation magnetization, [A/m]

m \hspace{1cm} number of phases, mass, [kg]

m_c \hspace{1cm} mutual coupling factor

m_0 \hspace{1cm} constant

mmf \hspace{1cm} magnetomotive force, [A]

N \hspace{1cm} number of turns in a winding, number of turns in series

N_{f1} \hspace{1cm} number of coil turns in series in a single pole

Nu \hspace{1cm} Nusselt number

N_{ul} \hspace{1cm} number of bars of a coil side in the slot

N_p \hspace{1cm} number of turns of one pole pair

N_k \hspace{1cm} number of turns of compensating winding

N_v \hspace{1cm} number of conductors in each side

N \hspace{1cm} Non-drive end

\mathbb{N} \hspace{1cm} set of integers

N_{even} \hspace{1cm} set of even integers

N_{odd} \hspace{1cm} set of odd integers

n \hspace{1cm} normal unit vector of the surface

n \hspace{1cm} rotation speed (rotation frequency), [1/s], ordinal of the harmonic (sub), ordinal of the critical rotation speed, integer, exponent, years of saving (motor life time)

n_v \hspace{1cm} number of ventilation ducts

n_{U} \hspace{1cm} number of section of flux tube in sequence

n_{Φ} \hspace{1cm} number of flux tube

P \hspace{1cm} power, losses [W]

P_{in} \hspace{1cm} input power, [W]

PAM \hspace{1cm} Pole-Amplitude-Modulation

PM \hspace{1cm} permanent magnet

PMSM \hspace{1cm} permanent magnet synchronous motor (or machine)

PWM \hspace{1cm} Pulse Width Modulation

$P_1, P_{\text{ad}}, P_{\text{LL}}$ \hspace{1cm} additional loss, [W]

P_{ew} \hspace{1cm} end winding losses, [W]

Pr \hspace{1cm} Prandtl number

P_{ρ} \hspace{1cm} friction loss, [W]

P_{diff} \hspace{1cm} reduction of the purchase cost, [€]

P_{PM} \hspace{1cm} eddy current loss in permanent magnet, [W]

p \hspace{1cm} number of pole pairs, ordinal, losses per core length, resistive losses per core length, [W/m], pressure, [Pa]

P_{Al} \hspace{1cm} aluminium content

p^* \hspace{1cm} number of pole pairs of a base winding

pd \hspace{1cm} partial discharge

Q \hspace{1cm} electric charge, [C], number of slots, reactive power, [VA]

Q_{av} \hspace{1cm} average number of slots of a coil group

Q_p \hspace{1cm} number of slots per pole

Q_o \hspace{1cm} number of free slots

Q' \hspace{1cm} number of radii in a voltage phasor graph
Abbreviations and Symbols

Q^* number of slots of a base winding
Q_{th} quantity of heat
q number of slots per pole and phase, instantaneous charge, $q(t)$, [C]
q_k number of slots in a single zone
q_m mass flow, [kg/s]
q_{th} density of the heat flow, [W/m2]
R resistance, [Ω], gas constant, 8.314472 [J/K·mol], thermal resistance, reactive parts
R_{bar} bar resistance, [Ω]
RM reluctance machine
RMS root mean square
R_m reluctance, [$A/Vs = 1/H$]
R_{th} thermal resistance, [K/W]
Re real part
Re Reynolds number
Re_{crit} critical Reynolds number
RR Resin Rich impregnation method
r radius, [m], thermal resistance per unit length, per unit resistance [pu], coefficient of radiation
r radius unit vector
S1-S8 duty types
S apparent power, [VA], cross-sectional area
SM synchronous motor
SR switched reluctance
SyRM synchronous reluctance machine
S_c cross-sectional area of conductor, [m2]
S_p pole surface area, [m2]
S_r rotor surface area facing the air gap, [m2]
S Poynting’s vector, [W/m2], unit vector of the surface
s slip, skewing measured as an arc length
s_b slip at maximum torque
s_{sp} skewing expressed as a number of slot pitches
T torque, [Nm], absolute temperature, [K], period, operating time of the motor per year, [h/a]
Ta Taylor number
T_{a_m} modified Taylor number
T_b pull-out torque, peak (maximum) torque [Nm]
t_c commutation period, [s]
TEFC totally enclosed fan-cooled
T_j mechanical time constant, [s]
T_{mec} mechanical torque, [Nm]
T_{pb} payback time
T_s temperature of the plane
T_u pull-up torque, [Nm]
T_v counter torque, [Nm]
T_l locked rotor torque, [Nm]
Abbreviations and Symbols

TC tooth coil

\(t \) time, [s], number of phasors of a single radius, largest common divider, lifetime of insulation

\(t \) tangential unit vector

\(t_c \) commutation period, [s]

\(t_r \) rise time, [s]

\(t^* \) number of layers in a voltage vector graph for a base winding

\(U \) voltage, [V], RMS

\(U_{\text{contact}} \) depiction of a phase

\(U_{\text{m}} \) contact voltage drop, [V]

\(U_{\text{r}} \) resistive voltage, [V]

\(U_{\text{sj}} \) peak value of the impulse voltage, [V]

\(U_v \) coil voltage, [V]

\(U_1 \) terminal of the head of the U-phase of the machine

\(U_2 \) terminal of the end of the U-phase of the machine

\(u \) voltage, instantaneous value \(u(t) \), [V], number of coil sides in a layer, per unit value of voltage, [pu]

\(u_{\text{b1}} \) blocking voltage of the oxide layer, [V]

\(u_{\text{c}} \) commutation voltage, [V]

\(u_m \) mean fluid velocity in tube, [m/s]

\(V \) volume, [m³], electric potential

\(V \) depiction of a phase

\(V_{\text{m}} \) scalar magnetic potential, [A]

VPI Vacuum Pressure Impregnation

\(V_1 \) terminal of the head of the V-phase of the machine

\(V_2 \) terminal of the end of the V-phase of the machine

\(v \) speed, velocity, [m/s]

\(v \) vector

\(W \) energy, [J], coil span (width), average coil span [m]

\(W \) depiction of a phase

\(W_{\text{fc}} \) energy stored in the magnetic field in SR machines

\(W_d \) energy returned through the diode to the voltage source in SR drives

\(W_{\text{mt}} \) energy converted into mechanical work when the transistor is conducting in SR drives

\(W_{\text{md}} \) energy converted to mechanical work while de-energizing the phase in SR drives

\(W_R \) energy returning to the voltage source in SR drives

\(W' \) co-energy, [J]

\(W_1 \) terminal of the head of the W-phase of the machine

\(W_2 \) terminal of the end of the W-phase of the machine

\(W_\Phi \) magnetic energy, [J]

\(w \) length, [m], energy per volume unit

\(w_{\text{PM}} \) permanent magnet width, [m]

X reactance, [Ω]

\(x \) coordinate, length, ordinal number, coil span decrease [m]
Abbreviations and Symbols

\nx_m\n\nrelative value of reactance

Y
\nadmittance, [S]

Y
\ntemperature class 90°C

y
\ncoordinate, length, step of winding

y_m
\nwinding step in an AC commutator winding

y_n
\ncoil span in slot pitches

y_Q
\ncoil span of full-pitch winding in slot pitches, pole pitch expressed in number
\nof slots per pole

y_v
\ncoil span decrease in slot pitches

y_1
\nstep of span in slot pitches, back end connector pitch

y_2
\nstep of connection in slot pitches, front end connector pitch

y_C
\ncommutator pitch in number of commutator segments

Z
\nimpedance, [Ω], number of bars, number of positive and negative phasors of
\nthe phase

Z_M
\ncharacteristic impedance of the motor, [Ω]

Z_s
\nsurface impedance, [Ω]

Z_0
\ncharacteristic impedance, [Ω]

z
\ncoordinate, length, integer, total number of conductors in the armature
\nwinding

z_a
\nnumber of adjacent conductors

z_b
\nnumber of brushes

z_c
\nnumber of coils

z_cs
\nnumber of conductors in half slot

z_p
\nnumber of parallel-connected conductors

z_Q
\nnumber of conductors in a slot

z_t
\nnumber of conductors on top each other

α
\angle, [rad], [°], coefficient, temperature coefficient, relative pole width
\nof the pole shoe, convection heat transfer coefficient, [W/K], skew angle,
\n[rad], [°]

\n1/α
\ndepth of penetration

α_{DC}\n\nrelative pole width coefficient for DC machines

α_i
\ratio of the arithmetical average of the flux density to its peak value

α_m\n\nmass transfer coefficient, [(mol/sm²)/(mol/m³)] = m/s

α_{PM}\n\nrelative permanent magnet width

α_{SM}\n\nrelative pole width coefficient for synchronous machines

α_r\n\nheat transfer coefficient of radiation

α_{str}\n\angle between the phase winding

α_{th}\n\nheat transfer coefficient [W/(m²K)]

α_{ph}\n\angle between the phase winding

α_u\n\slot angle, [rad], [°]

α_z\n\phasor angle, zone angle, [rad], [°]

α_ρ\n\angle of single phasor, [rad], [°]

β\n\angle [rad], [°]

β\n\nabsorptivity

Γ\n\energy ratio, integration route

Γ_c\n\interface between iron and air
Abbreviations and Symbols

γ angle, [rad], [°], coefficient

γ′c commutation angle, [rad], [°]

γD switch conducting angle, [rad], [°]

δ air gap (length), penetration depth [m], dielectric loss angle, [rad], [°], dissipation angle, [rad], [°], load angle, [rad], [°]

δc the thickness of concentration boundary layer, [m]

δg(x) air gap profile function in d- axis, [m]

δq(x) air gap profile function in q- axis, [m]

δef effective air gap (influence of iron and slotting taken into account)

δPM depth of penetration in PM, [m]

δv velocity boundary layer, [m]

δT temperature (thermal) boundary layer, [m]

δ′ load angle, [rad], [°], corrected air gap, [m]

δ0 minimum air gap, [m]

δ0e air gap in the middle of the pole corrected with Carter factor, [m]

δde equivalent d- axis air gap, [m]

δqe equivalent q- axis air gap, [m]

Δ2 damping factor

ε permittivity [F/m], position angle of the brushes, [rad], [°], stroke angle, [rad], [°], amount of short pitching

εsp amount of short pitching expressed as slot pitches

εth emissitivity

εthr relative emissitivity

ε0 permittivity of vacuum 8.854·10^{-12} [F/m]

ζ phase angle, [rad], [°], harmonic factor, saliency ratio, phase angle of the rotor impedance

ζd harmonic factor in d-axis

ζq harmonic factor in q-axis

η efficiency, empirical constant, experimental pre-exponential constant

ηr reflectivity, thermal conductivity

Θ current linkage, [A], temperature rise (difference) [K]

Θk compensating current linkage, [A]

ΘΣ total current linkage [A]

θ angle, position, [rad], [°]

θ′ angle, [rad], [°]

κ angle, [rad], [°], factor for reduction of slot opening

κr transmissivity

Λ permeance, [Vs/A], [H]

Λ′ specific permeance, [Vs/A/m^2]

Λ0′ average of specific permeance, [Vs/A/m^2]

λ thermal conductivity [W/m-K], permeance factor, proportionality factor, inductance factor, inductance ratio

μ permeability [Vs/Am, H/m], number of pole pairs operating simultaneously per phase, friction coefficient

μr relative permeability
Abbreviations and Symbols

\(\mu \)
\(\mu_0 \)
\(\nu \)
\(\nu \)
\(\xi \)
\(\rho \)
\(\rho_A \)
\(\rho_E \)
\(\rho_\nu \)
\(\sigma \)
\(\sigma_\delta \)
\(\sigma_F \)
\(\sigma_{F_n} \)
\(\sigma_{F_{tan}} \)
\(\sigma_{mec} \)
\(\sigma_{SB} \)
\(\tau \)
\(\tau_p \)
\(\tau_{q2} \)
\(\tau_r \)
\(\tau_s \)
\(\tau_u \)
\(\tau_v \)
\(\tau_d' \)
\(\tau_d'' \)
\(\tau_d'\theta \)
\(\tau_d''\theta \)
\(\tau_q' \)
\(\tau_q'' \)
\(\tau_q'\theta \)
\(\tau_q''\theta \)
\(\upsilon \)
\(\Phi \)
\(\Phi_{th} \)
\(\Phi_\delta \)
\(\phi \)
\(\varphi \)
\(\varphi' \)
\(\psi \)
\(\psi_\theta \)
\(\psi_{m} \)
\(\psi_{mp} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>dynamic viscosity, ([\text{Pa} \cdot \text{s}, \text{kg/(s} \cdot \text{m)}])</td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>permeability of vacuum, (4 \pi \cdot 10^{-7} \ [\text{Vs/Am, H/m}])</td>
</tr>
<tr>
<td>(\nu)</td>
<td>ordinal of harmonic, Poisson's ratio, reluctivity, ([\text{Am/Vs, m/H}]), pole pair</td>
</tr>
<tr>
<td>(\nu)</td>
<td>number of harmonics, kinematic viscosity of the coolant</td>
</tr>
<tr>
<td>(\xi)</td>
<td>pulse velocity</td>
</tr>
<tr>
<td>(\rho)</td>
<td>reduced conductor height</td>
</tr>
<tr>
<td>(\rho)</td>
<td>resistivity, ([\Omega \cdot \text{m}]), electric charge density, ([\text{C}/\text{m}^2]), density, ([\text{kg}/\text{m}^3]), reflection factor, ordinal number of a single phasor</td>
</tr>
<tr>
<td>(\rho_A)</td>
<td>absolute overlap ratio</td>
</tr>
<tr>
<td>(\rho_E)</td>
<td>effective overlap ratio</td>
</tr>
<tr>
<td>(\rho_\nu)</td>
<td>transformation ratio for IM impedance, resistance, inductance</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>specific conductivity, electric conductivity ([\text{S}/\text{m}]), leakage factor, ratio of the leakage flux to the main flux</td>
</tr>
<tr>
<td>(\sigma_\delta)</td>
<td>air gap harmonic leakage factor</td>
</tr>
<tr>
<td>(\sigma_F)</td>
<td>tension, ([\text{Pa}])</td>
</tr>
<tr>
<td>(\sigma_{F_n})</td>
<td>normal tension, ([\text{Pa}])</td>
</tr>
<tr>
<td>(\sigma_{F_{tan}})</td>
<td>tangential tension, ([\text{Pa}])</td>
</tr>
<tr>
<td>(\sigma_{mec})</td>
<td>mechanical stress, ([\text{Pa}])</td>
</tr>
<tr>
<td>(\sigma_{SB})</td>
<td>Stefan-Boltzmann constant, (5.670400 \times 10^{-8} \ \text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-4})</td>
</tr>
<tr>
<td>(\tau)</td>
<td>relative time, span of the lamination thickness on one pole pitch</td>
</tr>
<tr>
<td>(\tau_p)</td>
<td>pole pitch, ([\text{m}])</td>
</tr>
<tr>
<td>(\tau_{q2})</td>
<td>pole pitch on the pole surface, ([\text{m}])</td>
</tr>
<tr>
<td>(\tau_r)</td>
<td>rotor slot pitch, ([\text{m}])</td>
</tr>
<tr>
<td>(\tau_s)</td>
<td>stator slot pitch, ([\text{m}])</td>
</tr>
<tr>
<td>(\tau_u)</td>
<td>slot pitch, ([\text{m}])</td>
</tr>
<tr>
<td>(\tau_v)</td>
<td>zone distribution</td>
</tr>
<tr>
<td>(\tau_d')</td>
<td>direct transient short-circuit time constant, ([\text{s}])</td>
</tr>
<tr>
<td>(\tau_d'')</td>
<td>direct transient open-circuit time constant, ([\text{s}])</td>
</tr>
<tr>
<td>(\tau_d'\theta)</td>
<td>direct subtransient short-circuit time constant, ([\text{s}])</td>
</tr>
<tr>
<td>(\tau_d''\theta)</td>
<td>direct subtransient open-circuit time constant, ([\text{s}])</td>
</tr>
<tr>
<td>(\tau_q')</td>
<td>quadrature subtransient short-circuit time constant, ([\text{s}])</td>
</tr>
<tr>
<td>(\tau_q'')</td>
<td>quadrature subtransient open-circuit time constant, ([\text{s}])</td>
</tr>
<tr>
<td>(\upsilon)</td>
<td>factor, kinematic viscosity, (\mu/\rho), ([\text{Pa} \cdot \text{s}/(\text{kg}/\text{m}^3)])</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>magnetic flux, ([\text{Vs}], [\text{Wb}])</td>
</tr>
<tr>
<td>(\Phi_{th})</td>
<td>thermal power flow, heat flow rate ([\text{W}])</td>
</tr>
<tr>
<td>(\Phi_\delta)</td>
<td>air gap flux, ([\text{Vs}], [\text{Wb}])</td>
</tr>
<tr>
<td>(\phi)</td>
<td>magnetic flux, instantaneous value (\phi(t)), ([\text{Vs}], [\text{Wb}]), electric potential ([\text{V}])</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>phase shift angle, ([\text{rad}], [\text{°}])</td>
</tr>
<tr>
<td>(\varphi')</td>
<td>function for skin effect calculation</td>
</tr>
<tr>
<td>(\psi)</td>
<td>magnetic flux linkage, ([\text{Vs}])</td>
</tr>
<tr>
<td>(\psi_\theta)</td>
<td>electric flux, ([\text{C}])</td>
</tr>
<tr>
<td>(\psi_{m})</td>
<td>air gap flux linkage ([\text{Vs}])</td>
</tr>
<tr>
<td>(\psi_{mp})</td>
<td>magnetic flux linkage of phase winding ([\text{Vs}])</td>
</tr>
<tr>
<td>(\psi)</td>
<td>function for skin effect calculation</td>
</tr>
</tbody>
</table>
Abbreviations and Symbols

χ length/diameter ratio, shift of a single pole pair
Ω mechanical angular speed [rad/s]
ω electric angular velocity [rad/s], angular frequency [rad/s]
Δ difference, drop
ΔT temperature rise (difference) [K], [°C]
∇T temperature gradient [K/m], [°C/m]
Δp pressure drop [Pa]

Subscripts

0 section
1 primary, fundamental component, beginning of a phase, locked rotor torque
2 secondary, end of a phase
Al aluminum
a armature, shaft
ad additional (loss)
av average
B brush
b base value, peak value of torque, blocking, damper bar
bar bar
bearing bearing (losses)
C capacitor
Cu copper
Cuw End winding conductor
conv convection
c conductor, commutation
cf centrifugal
cp commutating poles
contact brush contact
cr, crit critical
DC direct current
D direct, damper
d tooth, direct, tooth tip leakage flux
diff difference
E emf
e equivalent
ef effective
electric
em electromagnetic
ew end winding
ext external
F force
Fe iron
f field
Ft eddy current
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hy</td>
<td>hysteresis</td>
</tr>
<tr>
<td>i</td>
<td>internal, insulation, ordinal</td>
</tr>
<tr>
<td>in</td>
<td>input</td>
</tr>
<tr>
<td>k</td>
<td>compensating, short circuit, ordinal</td>
</tr>
<tr>
<td>lam</td>
<td>laminations</td>
</tr>
<tr>
<td>LL</td>
<td>additional load losses</td>
</tr>
<tr>
<td>M</td>
<td>motor</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>m</td>
<td>mutual, main, magnetizing</td>
</tr>
<tr>
<td>mag</td>
<td>magnetizing, magnetic</td>
</tr>
<tr>
<td>mec</td>
<td>mechanical</td>
</tr>
<tr>
<td>min</td>
<td>minimum</td>
</tr>
<tr>
<td>mut</td>
<td>mutual</td>
</tr>
<tr>
<td>mp</td>
<td>single-phase magnetizing</td>
</tr>
<tr>
<td>N</td>
<td>rated</td>
</tr>
<tr>
<td>n</td>
<td>nominal, normal</td>
</tr>
<tr>
<td>ns</td>
<td>negative-sequence component</td>
</tr>
<tr>
<td>o</td>
<td>starting, upper, over</td>
</tr>
<tr>
<td>opt</td>
<td>optimal</td>
</tr>
<tr>
<td>out</td>
<td>output</td>
</tr>
<tr>
<td>PM</td>
<td>permanent magnet</td>
</tr>
<tr>
<td>p</td>
<td>pole, primary, subconductor, pole leakage flux, operational harmonic</td>
</tr>
<tr>
<td>p1</td>
<td>pole shoe</td>
</tr>
<tr>
<td>p2</td>
<td>pole body</td>
</tr>
<tr>
<td>ph</td>
<td>phasor, phase</td>
</tr>
<tr>
<td>ps</td>
<td>positive-sequence component</td>
</tr>
<tr>
<td>pu</td>
<td>per unit</td>
</tr>
<tr>
<td>q</td>
<td>quadrature, zone</td>
</tr>
<tr>
<td>r</td>
<td>rotor, remanence, relative, damper ring short circuit</td>
</tr>
<tr>
<td>res</td>
<td>resultant</td>
</tr>
<tr>
<td>S</td>
<td>surface</td>
</tr>
<tr>
<td>s</td>
<td>stator</td>
</tr>
<tr>
<td>sj</td>
<td>impulse wave</td>
</tr>
<tr>
<td>sat</td>
<td>saturation</td>
</tr>
<tr>
<td>str</td>
<td>phase section</td>
</tr>
<tr>
<td>sq</td>
<td>skew</td>
</tr>
<tr>
<td>syn</td>
<td>synchronous</td>
</tr>
<tr>
<td>tan</td>
<td>tangential</td>
</tr>
<tr>
<td>test</td>
<td>test</td>
</tr>
<tr>
<td>th</td>
<td>thermal</td>
</tr>
<tr>
<td>tot</td>
<td>total</td>
</tr>
<tr>
<td>u</td>
<td>slot, lower, under, bottom, slot leakage flux, pull-up torque</td>
</tr>
<tr>
<td>v</td>
<td>zone, coil side shift in a slot, coil</td>
</tr>
<tr>
<td>x</td>
<td>x-direction</td>
</tr>
<tr>
<td>y</td>
<td>y-direction, yoke</td>
</tr>
<tr>
<td>ya</td>
<td>armature yoke</td>
</tr>
</tbody>
</table>
Abbreviations and Symbols

yr rotor yoke
ys stator yoke
w end winding
z z-direction, phasor of voltage phasor graph
ρ ordinal number of single phasor
ρ friction loss
ρw windage (loss)
δ air gap
Φ flux
ν harmonic
σ flux leakage
γ ordinal of a subconductor
μ harmonic ordinal

Superscripts

^ peak/maximum value, amplitude
' imaginary, apparent, reduced, virtual, referred to the stator
* base winding, complex conjugate

Boldface symbols are used for vectors with components parallel to the unit vectors $i, j,$ and k.

A vector potential, $A = iA_x + jA_k + kA_z$
B flux density, $B = iB_x + jB_k + kB_z$
I complex phasor of the current
\overline{I} bar above the symbol denotes average value