Heterogeneous Catalysts for Clean Technology
Spectroscopy, Design, and Monitoring
Edited by
Karen Wilson and Adam F. Lee

Heterogeneous Catalysts for
Clean Technology
Related Titles

Serp, P., Philippot, K. (eds.)
Nanomaterials in Catalysis
2013
ISBN: 978-3-527-33124-6

Rodriguez, Jose A., Hanson, Jonathan C., Chupas, Peter J. (eds.)
In-situ Characterization of Heterogeneous Catalysts
2013
ISBN: 978-1-118-00016-8

Zecchina, A., Bordiga, S., Groppo, E. (eds.)
Selective Nanocatalysts and Nanoscience
Concepts for Heterogeneous and Homogeneous Catalysis
2011
ISBN: 978-3-527-32271-8

Crabtree, R.H. (ed.)
Handbook of Green Chemistry - Green Catalysis
3 Volume Set
2009
ISBN: 978-3-527-31577-2

Mizuno, N. (ed.)
Modern Heterogeneous Oxidation Catalysis
Design, Reactions and Characterization
2009
ISBN: 978-3-527-31859-9
We dedicate this book to the memory of Rodney Stewart Lee.
Contents

Preface XVII
List of Contributors XIX

1 Introduction to Clean Technology and Catalysis 1
James H. Clark
1.1 Green Chemistry and Clean Technology 1
1.1.1 Ideals of Green Chemistry 2
1.2 Green Chemistry Metrics 3
1.3 Alternative Solvents 5
1.4 Heterogeneous or Homogeneous 6
1.5 Alternative Energy Reactors for Green Chemistry 7
1.5.1 Microchannel Reactors 7
1.5.2 Microwave Reactors 7
1.6 Concluding Remarks 9
References 9

2 Mechanistic Studies of Alcohol Selective Oxidation 11
Adam F. Lee
2.1 Introduction 11
2.1.1 Applications of Selective Oxidation 11
2.1.2 Oxidant Considerations 12
2.2 Metal-Catalyzed Alcohol Selox 13
2.2.1 Monometallic Catalysts 13
2.2.2 Bimetallic Selox Catalysts 15
2.2.3 Support Effects 17
2.3 Oxide, Sulfide, and Vanadate Catalysts 22
2.4 Solvent Selection 22
2.4.1 Supercritical Fluids 22
2.4.2 Ionic Liquids and Water 23
2.5 In Situ and Operando X-Ray Studies of Selox Catalysts 24
2.5.1 X-Ray Absorption Spectroscopy 24
2.5.2 X-Ray Photoelectron Spectroscopy 28
2.6 Conclusions 32
References 33

3 Reaction Monitoring in Multiphase Systems: Application of Coupled In Situ Spectroscopic Techniques in Organic Synthesis 39
Leif R. Knöpke and Ursula Bentrup

3.1 Introduction 39
3.2 Method Coupling 41
3.3 Spectroscopic Reactors and Practical Aspects 45
3.4 Selected Examples of Use 50
3.4.1 Heterogeneously Catalyzed Hydrogenation of Imines 50
3.4.2 Three-Phase Hydrogenation of Nitrobenzene over Nanosized Au on TiO2 56
3.4.3 Elucidating the Mechanism of Cu(II)-Catalyzed Arylation of Imidazole and Phenylboronic Acid by a Multitechnique Approach 59
3.5 Conclusion and Outlook 60
References 61

4 In Situ Studies on Photocatalytic Materials, Surface Intermediates, and Reaction Mechanisms 65
Hendrik Kosslick, Vu A. Tuan, and Detlef W. Bahnemann

4.1 Introduction 65
4.2 In Situ Investigations 66
4.2.1 FTIR 66
4.2.1.1 NOx Depollution 66
4.2.1.2 Hydrocarbon Oxidation 69
4.2.1.3 Oxidation of Oxygen-Containing Compounds 75
4.2.2 EPR 79
4.2.2.1 Semiconductor Charge Separation and Transfer 79
4.2.2.2 Reactive Oxygen Species 86
4.2.2.3 Local Structure of Active Sites 89
4.2.3 XPS 90
4.2.4 XAFS and UV Vis 92
4.2.5 NMR 94
4.2.6 Other Methods 96
4.3 Concluding Remarks 98
References 99

5 Enantioselective Heterogeneous Catalysis 103
Christopher J. Baddeley

5.1 Introduction 103
5.2 Strategies for the Creation of Enantioselective Heterogeneous Catalysts 105
5.2.1 Immobilization of Homogeneous or Enzyme Catalysts 105
5.2.1.1 Covalent Tethering 105
5.2.1.1.1	Covalent Immobilization on Inorganic Supports	105
5.2.1.1.2	Covalent Immobilization on Polymeric Resins	106
5.2.1.1.3	Covalent Immobilization by Copolymerization	107
5.2.1.2	Immobilization by Encapsulation	107
5.2.1.2.1	Construction of Catalyst within the Pores of a Support	107
5.2.1.2.2	Construction of Support around the Catalyst	108
5.2.1.3	Immobilization by Electrostatic Interactions	108
5.2.1.4	Industrial Application of Immobilized Catalysts	109
5.2.2	Use of Chiral Solids	109
5.2.2.1	Metal or Metal Oxide on a Chiral Support	109
5.2.2.2	Chiral Zeolites	110
5.2.2.3	Chiral Metal–Organic Catalysts	110
5.2.3	Chirally Modified Metal Surfaces	112
5.2.3.1	Achiral Molecules on Achiral Surfaces – The Racemic Reaction	113
5.2.3.2	Methods for Controlling Enantioselectivity	114
5.2.3.2.1	Rate Enhancement at Modified Sites	116
5.2.3.2.2	Quenching of Racemic Reaction Rate	116
5.2.3.2.3	Formation of Supramolecular Assemblies	116
5.2.3.2.4	Chiral Recognition and Chiral Amplification	118
5.3	Concluding Remarks–A Comparison of the Various Approaches to Heterogeneous Enantioselective Catalysts	120
References	121	

6 Mechanistic Studies of Solid Acids and Base-Catalyzed Clean Technologies

Atsushi Takagaki, Shun Nishimura, and Kohki Ebitani

6.1 Introduction 125
6.2 New Catalytic Systems 126
6.2.1 New Catalytic Materials 126
6.2.1.1 Nanostructured Metal Oxide Solid Acids 127
6.2.1.2 Carbon-Based Materials 130
6.2.1.3 Ion-Exchanged Resins 131
6.2.2 New Carbon–Carbon Bond Formations 133
6.2.2.1 Solid Acid Catalysts 133
6.2.2.2 Solid Base Catalysts 139
6.2.2.3 Solid Acid–Base Bifunctional Catalysts 140
6.2.3 One-Pot Sequential Reactions 141
6.2.3.1 One-Pot Sequential Reactions Using Acid and Base Sites on the Same Solid 142
6.2.3.2 One-Pot Sequential Synthesis System Using Different Particles of Solid Acid and Base Catalysts 143
6.3 Biomass Conversions 144
6.3.1 Hydrolysis of Cellulose 145
6.3.2 Transformation of Sugars into Furfurals 147
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2.1</td>
<td>Synthesis of 5-Hydroxymethylfurfural from Fructose and Glucose Using Heterogeneous Catalysts</td>
<td>148</td>
</tr>
<tr>
<td>6.3.2.2</td>
<td>Synthesis of Furfural from Xylose Using Heterogeneous Catalysts</td>
<td>149</td>
</tr>
<tr>
<td>6.3.2.3</td>
<td>One-Pot Synthesis of Furfurals from Monosaccharides and Disaccharides Using Solid Acid and Base Catalysts</td>
<td>149</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Synthesis of Lactic Acid</td>
<td>153</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Biodiesel Production</td>
<td>155</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Synthesis of Glycerol Carbonate</td>
<td>159</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary</td>
<td>163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Site-Isolated Heterogeneous Catalysts</td>
<td>173</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>7.2</td>
<td>Assembled Monolayers of Metal Complexes on Single-Crystal Surfaces</td>
<td>174</td>
</tr>
<tr>
<td>7.3</td>
<td>Reaction-Induced and Photoinduced Formation of Unsaturated Ru Complexes Supported on SiO2 Surfaces</td>
<td>177</td>
</tr>
<tr>
<td>7.4</td>
<td>Manganese Triazacyclononane Catalysts Grafted under Reaction Conditions</td>
<td>181</td>
</tr>
<tr>
<td>7.5</td>
<td>Well-Defined Silica-Supported Mo–Imido Alkylidene Complexes for Metathesis</td>
<td>184</td>
</tr>
<tr>
<td>7.6</td>
<td>Double Catalytic Activation Using a Bifunctional Catalyst with Both Acid and Base on Solid Surfaces</td>
<td>186</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Designing Porous Inorganic Architectures</td>
<td>193</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>193</td>
</tr>
<tr>
<td>8.2</td>
<td>Templated Methods for the Preparation of Ordered Porous Materials</td>
<td>194</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Ordered Microporous Materials: Zeolites and Zeotypes</td>
<td>195</td>
</tr>
<tr>
<td>8.2.1.1</td>
<td>Zeolite Synthesis and Crystallization Mechanism</td>
<td>196</td>
</tr>
<tr>
<td>8.2.1.2</td>
<td>New Trends in Zeolite Synthesis</td>
<td>199</td>
</tr>
<tr>
<td>8.2.1.2.1</td>
<td>Ultralarge Pore Zeolites</td>
<td>199</td>
</tr>
<tr>
<td>8.2.1.2.2</td>
<td>Nanocrystalline Zeolites</td>
<td>200</td>
</tr>
<tr>
<td>8.2.1.2.3</td>
<td>Two-Dimensional (2D) Zeolites</td>
<td>201</td>
</tr>
<tr>
<td>8.2.1.2.4</td>
<td>Hierarchical Zeolites</td>
<td>201</td>
</tr>
<tr>
<td>8.2.1.2.5</td>
<td>Organic–Inorganic Hybrid Zeolites</td>
<td>202</td>
</tr>
<tr>
<td>8.2.1.2.6</td>
<td>Multifunctional Zeolites</td>
<td>202</td>
</tr>
<tr>
<td>8.2.1.3</td>
<td>Zeolites for Cleaner Technologies</td>
<td>202</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Ordered Mesoporous Materials</td>
<td>203</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Synthesis of Mesoporous Materials: Formation Mechanism</td>
<td>207</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>Modification of Mesoporous Materials: Expanding Their Applications</td>
<td>207</td>
</tr>
<tr>
<td>8.2.2.2.1</td>
<td>Metal-Containing Silica Mesostructured Materials</td>
<td>209</td>
</tr>
<tr>
<td>8.2.2.2.2</td>
<td>Organic Functionalization of Mesoporous Silica Materials</td>
<td>211</td>
</tr>
<tr>
<td>8.2.2.2.3</td>
<td>Periodic Mesoporous Organosilicas (PMOs)</td>
<td>213</td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>New Trends in the Synthesis of Mesoporous Materials</td>
<td>214</td>
</tr>
<tr>
<td>8.2.2.3.1</td>
<td>Mesoporous Nonsiliceous Metallic Oxide Materials</td>
<td>214</td>
</tr>
<tr>
<td>8.2.2.3.2</td>
<td>Mesoporous Materials with Zeolitic Crystal within the Walls</td>
<td>215</td>
</tr>
<tr>
<td>8.2.2.3.3</td>
<td>Morphology Control in Mesoporous Materials: Mesoporous Nanoparticles</td>
<td>216</td>
</tr>
<tr>
<td>8.2.2.4</td>
<td>New More Complicated Structures</td>
<td>216</td>
</tr>
<tr>
<td>8.3</td>
<td>Hierarchical Porous Materials</td>
<td>218</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Ordered Macroporous–Mesoporous Materials</td>
<td>218</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Zeolites with Hierarchical Porous Structure: Combining Microporous with Meso-/Macroporous</td>
<td>219</td>
</tr>
<tr>
<td>8.3.2.1</td>
<td>Outstanding Properties of Hierarchical Zeolites</td>
<td>220</td>
</tr>
<tr>
<td>8.3.2.1.1</td>
<td>Increase in Total Available Surface Area</td>
<td>220</td>
</tr>
<tr>
<td>8.3.2.1.2</td>
<td>Enhancement of Mass Transfer</td>
<td>221</td>
</tr>
<tr>
<td>8.3.2.1.3</td>
<td>Robustness against Deactivation by Pore Blockage</td>
<td>221</td>
</tr>
<tr>
<td>8.3.2.1.4</td>
<td>Improved Dispersion of Active Phases</td>
<td>221</td>
</tr>
<tr>
<td>8.3.2.2</td>
<td>Approaches for the Synthesis of Hierarchical Zeolites</td>
<td>222</td>
</tr>
<tr>
<td>8.3.2.2.1</td>
<td>Dealumination</td>
<td>222</td>
</tr>
<tr>
<td>8.3.2.2.2</td>
<td>Desilication</td>
<td>223</td>
</tr>
<tr>
<td>8.3.2.2.3</td>
<td>Hard Templating by Carbon Materials</td>
<td>224</td>
</tr>
<tr>
<td>8.3.2.2.4</td>
<td>Hard Templating by Polymers</td>
<td>227</td>
</tr>
<tr>
<td>8.3.2.2.5</td>
<td>Organosilane-Based Methods</td>
<td>227</td>
</tr>
<tr>
<td>8.3.2.2.6</td>
<td>Other Methods</td>
<td>229</td>
</tr>
<tr>
<td>8.3.2.3</td>
<td>Catalytic Applications of Hierarchical Zeolites for Cleaner Technologies</td>
<td>230</td>
</tr>
<tr>
<td>8.4</td>
<td>Concluding Remarks</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>234</td>
</tr>
</tbody>
</table>

9 Tailored Nanoparticles for Clean Technology – Achieving Size and Shape Control | 241

Vladimir Golovko

9.1 Introduction | 241

9.2 Size effects—setting the scene | 242

9.2.1 Examples of size effects on catalytic CO oxidation using metal nanoparticles | 246

9.3 Size effects illustrated by way of examples of selected industrially important reactions | 262

9.4 Shape effects | 272

9.5 Conclusions | 282

References | 283
10 **Application of Metal–Organic Frameworks in Fine Chemical Synthesis** 293

Jerome Canivet and David Farrusseng

10.1 Metal–Organic Frameworks as Heterogeneous Catalysts 293
10.1.1 Diversity of Metal–Organic Framework Structures 293
10.1.2 Catalytic Features of Metal–Organic Frameworks 298
10.1.3 Engineering Metal–Organic Frameworks Catalysts by Postsynthetic Modification 299
10.1.4 Characterization of Functional Metal–Organic Frameworks 301
10.2 Applications in Carbon–Carbon Bond Formation 303
10.2.1 Knoevenagel Condensation 303
10.2.2 Cyanosilylation Reactions 306
10.2.3 Suzuki–Miyaura, Ullmann, Sonogashira, and Heck Coupling Reactions 308
10.3 Applications in Oxidation, Carbon–Oxygen, and Carbon–Nitrogen Bond Formation 310
10.3.1 Oxidation Reactions 310
10.3.1.1 Alcohol Oxidation 310
10.3.1.2 Sulfoxidation 311
10.3.1.3 Epoxidations 312
10.3.1.4 α-Oxidation of Alkenes to Give Corresponding Enol or Enone 313
10.3.1.5 Oxidation of Alkanes to Give Alcohols or Ketones 314
10.3.2 Aza-Michael Addition 315
10.3.3 Domino Coupling 316
10.4 Applications in Asymmetric Synthesis 316
10.4.1 Asymmetric Aldol Reaction 316
10.4.2 Asymmetric Olefin Epoxidation 318
10.4.3 Asymmetric Diethyl Zinc Addition to Aldehydes 319
10.4.4 Asymmetric Transesterification 320
10.5 Concluding Remarks 321
10.5.1 Strengths and Weaknesses of MOF Catalysts: More David Than Goliath 321
10.5.2 Enzymes as Source of Inspiration 322
Acknowledgments 325
List of Abbreviations 325
References 326

11 **Process Intensification for Clean Catalytic Technology** 333

Albert Renken

11.1 Introduction 333
11.2 Effect of Transport Phenomena on Heterogeneous Catalysis 334
11.3 Intensification of Transport Phenomena 340
11.3.1 Packed Bed Reactors 340
11.3.2 Catalytic Microstructured Reactors 342
11.3.2.1 Catalytic Wall Microchannels 342
11.3.2.2 External Mass Transfer in Microchannels 344
11.3.2.3 Pressure Drop in Microchannel Reactors 346
11.3.2.4 Residence Time Distribution in MSR 348
11.3.3 Structured Catalyst 350
11.3.3.1 Monolithic Honeycombs 350
11.3.3.2 Solid Foams 353
11.3.3.2.1 Fiber Catalysts 355
11.3.4 Supported Ionic liquids on Microstructured Supports 358
11.4 Conclusion 360
List of Symbols 361
References 362

12 Recent Trends in Operando and In Situ Characterization: Techniques for Rational Design of Catalysts 365
Andrew M. Beale, Jan Philipp Hofmann, Meenakshisundaram Sankar, Evelien M. van Schrojenstein Lantman, and Bert M. Weckhuysen
12.1 Introduction 365
12.2 Catalyst Nascence 366
12.3 Synthesis of Silicalite-1 Molecular Sieves 367
12.3.1 Synthesis 367
12.3.2 In Situ Analysis 367
12.3.3 Physicochemical Methods 369
12.3.4 Molecular Methods 369
12.3.4.1 Nuclear Magnetic Resonance 370
12.3.4.2 Vibrational Spectroscopy 370
12.3.4.3 Diffraction and Scattering Methods 371
12.3.4.3.1 X-Ray Diffraction 371
12.3.4.3.2 Small X-Ray Scattering 371
12.3.4.3.3 Light Scattering 372
12.3.5 Combination of Techniques 372
12.4 Preparation of Supported Metal Catalysts 373
12.4.1 Impregnation 374
12.4.1.1 Magnetic Resonance Imaging 374
12.4.1.2 Diagonal Offset Raman Spectroscopy 375
12.4.2 Calcination and Activation 376
12.4.2.1 X-Ray Diffraction Imaging 377
12.4.2.2 Infrared Spectroscopy 379
12.5 Catalyst Life 380
12.6 Elucidating the Reaction Mechanism of Aerobic Oxidation of Benzyl Alcohol 381
12.7 Determination of the Active Sites in Aerobic Oxidation of Benzyl Alcohol 385
12.8 Catalyst Death 392
12.9 Methanol to Hydrocarbons 392
12.9.1 In Situ Microspectroscopy of H-ZSM-5 Molecular Sieves 394
13 Application of NMR in Online Monitoring of Catalyst Performance

Michael Neugebauer and Michael Maiwald

13.1 Online Monitoring with NMR Spectroscopy

13.1.1 Operando and In Situ Methods

13.1.2 Reaction Monitoring and Process Analytical Technology

13.1.3 Benefits of Online NMR Spectroscopy

13.1.4 Fundamentals of NMR Spectroscopy

13.1.5 Advanced Experiments

13.2 Quantitative NMR Spectroscopy in Technical Samples

13.2.1 Technical Samples

13.2.1.1 Deuterium-Free Samples and Solvent Suppression Techniques

13.2.1.2 Solvent Suppression Techniques for quantitative Experiments

13.2.2 Reacting Samples

13.2.3 Acquisition Parameters

13.2.4 Signal Integration and Peak Deconvolution

13.3 Flow and High-Pressure NMR Spectroscopy for Reaction Monitoring

13.3.1 Flowing Samples

13.3.2 Flow Scheme and Hyphenation

13.3.3 Residence Times

13.3.4 High-Pressure NMR Spectroscopy

13.4 Selected Applications of NMR in Online Monitoring of Catalyst Performance

13.4.1 Reaction Monitoring of Homogeneous and Heterogeneous Liquid Reactions

13.4.1.1 Ester Formation – Activity Study of a Heterogeneous Catalyst for a Reactive Distillation Process

13.4.1.2 Investigations of an Ester Formation Product at Low Concentration

13.4.1.3 Determination of Exchange Rates and Exchange Pathways

13.4.2 Direct Monitoring of Catalysts in Heterogeneous Reactions

13.4.2.1 MAS NMR Spectroscopy

13.4.2.2 In Situ Flow MAS NMR Spectroscopy

13.5 Conclusions

Acknowledgments

References
14 Ambient-Pressure X-Ray Photoelectron Spectroscopy 437
Andrey Shavorskiy and Hendrik Bluhm

14.1 Introduction 437
14.2 Technical Aspects 438
14.2.1 Basic Concept 438
14.2.2 Attenuation of Electrons by the Gas Phase 441
14.2.3 Interaction of X-Rays with the Gas Phase 443
14.2.4 Photoelectron Spectroscopy of the Gas Phase 443
14.2.5 Sample Contamination 443
14.2.6 Measurement of Insulating Samples 444
14.2.7 Other Aspects 444
14.3 Applications of APXPS 445
14.3.1 Interaction of Water Vapor with Metal Oxide Surfaces 446
14.3.2 Chemistry of Chiral Molecules on Metal Surfaces 450
14.3.3 Investigation of Carbon Nanotube (CNT)-Based Catalysts 453
14.3.3.1 Oxidative Dehydrogenation of Alkanes on Pristine and Phosphorous-Doped CNTs 453
14.3.3.2 Growth of CNTs on Conductive Supports 453
14.3.4 Selective CO Oxidation in Hydrogen on Pt/CeO₂ and Pd/CeO₂ 457
14.3.5 Application of APXPS to Electrochemistry 460
14.4 Outlook 464
Acknowledgments 465
References 465

Index 469
Preface

Catalytic technologies play a critical role in the economic development of both the chemicals industry and modern society, underpinning 90% of chemical manufacturing processes and contributing to over 20% of all industrial products. Sustainable chemistry is defined as the design and implementation of chemical products and processes that reduce or eliminate the use or generation of hazardous substances, while employing renewable resources in an atom and energy efficient fashion. In accordance with the 12 Principles of Green Chemistry, first advanced by Anastas and Warner, catalysis is a key tool with which to develop sustainable chemistries. New catalytic routes to the manufacture of fine, speciality and pharmaceutical chemicals offer sustainable solutions with minimal environmental impact. In a post-petroleum era, catalysis researchers will need to rise to the challenge of synthesising chemical intermediates and advanced functional materials and fuels from non-petroleum based feedstocks. Success will require an interdisciplinary approach, uniting physical, inorganic, organic and materials chemistry with biotechnology, reaction and process engineering.

To a large extent, the catalytic transformation of individual atoms and molecules into potent drug therapies, advanced fuels, and efficient fertilisers has (to date) depended upon an equal combination of brilliant science and serendipity. This reflects the complex, interdependent interactions between reactants, products, their surrounding environment, and of course the catalyst itself, which in principle should remain unchanged over thousands of reaction cycles. However, recent advances in chemical synthesis, nanotechnology and spectroscopy now offer an unprecedented opportunity to sculpt the atomic structure of solid catalysts and to peer inside their microscopic workings. Our knowledge of the mechanism by which heterogeneous catalysts operate has traditionally been obtained by comparing freshly prepared materials with their spent counterparts isolated post-reaction. While this approach has undoubtedly aided catalyst development, the importance of adsorbate-induced restructuring in modulating surface reactivity, a concept Gabor Somorjai termed the ‘flexible surface’, is now widely accepted. Step-changing discoveries require intelligent catalyst design, informed by quantitative insight into catalyst behaviour under reaction conditions via complementary operando studies of the surface, bulk and atomistic properties of catalysts in action. This book focuses on the development of heterogeneous catalysts for application in clean chemical synthesis, and explores how modern spectroscopic techniques can be employed
to aid the design of catalysts (particularly) for use in liquid phase reactions. Examples of catalytic applications to industrially important chemistries including selective oxidation and hydrogenation, solid acid and base catalysed processes, and photocatalytic depollution, while other chapters illustrate the importance of process intensification and use of renewable resources in enhancing the sustainability of chemical processes.

The development of new catalytic processes requires consideration of unconventional reactor technologies which afford improvements in product separation, overall energy efficiency and operational safety. An understanding of the physicochemical properties and behaviour of diverse solid catalysts and associated factors influencing catalyst selection for specific chemical transformations, catalyst compatibility with different reactor designs, and mechanistic insight accessible through time-resolved in-situ spectroscopic tools, will aid industrial and academic researchers in addition to undergraduate students taking courses in sustainable or green chemistry. We hope this text will serve as a central resource for catalytic scientists and engineers across the clean technology community, providing information on next-generation catalyst formulations, process operation, and online monitoring. Newcomers to the field of heterogeneous catalysis, particularly undergraduate and postgraduate students, will also be exposed to the fundamental physical principles underpinning an array of spectroscopic methods, and synthetic strategies adopted to prepare high performance nanocrystalline and nanoporous catalysts and to valorise bio-derived, multi-functional feedstocks through atom- and energy economical processes.

This book would not have been possible without the collective work of a number of scientists and engineers spanning catalysis, materials, spectroscopy, process intensification and green chemistry. We would like to express our gratitude to all the contributors, whose time, efforts, and expertise have helped to deliver what we hope will become a valuable scientific resource for beginners and experienced practitioners of clean and sustainable chemistry. We are also grateful to Drs. Elke Maase and Lesley Belfit at Wiley-VCH for their support and useful advice in preparing this book.
List of Contributors

Christopher J. Baddeley
University of St Andrews
EaStCHEM School of Chemistry
St Andrews
Fife KY16 9ST
UK

Detlef W. Bahnemann
University of Hannover
Institute of Technical Chemistry
Department of Photocatalysis and Nanotechnology
Callinstr. 3-3A
30167 Hannover
Germany

Andrew M. Beale
Utrecht University
Inorganic Chemistry & Catalysis
Debye Institute for Nanomaterials Science
Universiteitsweg 99
3584 CG Utrecht
The Netherlands

Ursula Bentrup
Leibniz-Institut für Katalyse e.V.
an der Universität Rostock (LIKAT)
Albert-Einstein-Str. 29a
18059 Rostock
Germany

Hendrik Bluhm
Lawrence Berkeley National Laboratory
Chemical Sciences Division
Berkeley CA 94720
USA

Jerome Canivet
University of Lyon
IRCELYON-CNRS UMR 5256
2, avenue Albert Einstein
69626 Villeurbanne
France

James H. Clark
University of York
Department of Chemistry
Green Chemistry Centre of Excellence
Heslington YO10 5DD
UK

Kohki Ebitani
Japan Advanced Institute of Science and Technology
School of Materials Science
1-1 Asahidai
Nomi
Ishikawa 923-1292
Japan
List of Contributors

David Farrusseng
University of Lyon
IRCELYON-CNRS UMR 5256
2, avenue Albert Einstein
69626 Villeurbanne
France

Vladimir Golovko
University of Canterbury
The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry
20 Kirkwood Ave, Ilam
Christchurch 8140
New Zealand

Jan Philipp Hofmann
Utrecht University
Inorganic Chemistry & Catalysis
Debye Institute for Nanomaterials Science
Universiteitsweg 99
3584 CG Utrecht
The Netherlands

José Iglesias
Universidad Rey Juan Carlos
Department of Chemical and Energy Technology
ESCET C/Tulipán s/n
28933 Móstoles
Spain

Leif R. Knöpke
Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT)
Albert-Einstein-Str. 29a
18059 Rostock
Germany

and
Rosemount Analytical
Emerson Process Management GmbH & Co. OHG
Industriestr. 1
63594 Hasselroth
Germany

Hendrik Kosslick
University of Rostock
Institute of Chemistry and Leibniz Institute for Catalysis Department of Inorganic Chemistry and Department of Material Design
Albert Einstein-Str. 3a
D-18059 Rostock
Germany

Adam F. Lee
University of Warwick
Department of Chemistry
Coventry, CV4 7AL
UK

and
Monash University
School of Chemistry
Victoria 3800
Australia

Michael Maiwald
BAM Federal Institute for Materials Research and Testing
Richard-Willstaetter-Str. 11
12489 Berlin
Germany
Juan A. Melero
Universidad Rey Juan Carlos
Department of Chemical and Environmental Technology
ESCET C/Tulipán s/n
28933 Móstoles
Spain

Gabriel Morales
Universidad Rey Juan Carlos
Department of Chemical and Environmental Technology
ESCET C/Tulipán s/n
28933 Móstoles
Spain

Satoshi Muratsugu
Department of Chemistry
Graduate School of Science
Furo, Chikusa
Nagoya 464-8602, Aichi
Japan

Michael Neugebauer
BAM Federal Institute for Materials Research and Testing
Richard-Willstaetter-Str. 11
12489 Berlin
Germany

Shun Nishimura
Japan Advanced Institute of Science and Technology
School of Materials Science
1-1 Asahidai,
Nomi Ishikawa 923-1292
Japan

Albert Renken
Ecole Polytechnique Fédérale Institute of Chemical Sciences and Engineering
SB-ISIC-LGRC-Station 6
1015 Lausanne
Switzerland

Meenakshisundaram Sankar
Utrecht University
Inorganic Chemistry & Catalysis
Debye Institute for Nanomaterials Science
Universiteitsweg 99
3584 CG Utrecht
The Netherlands

Evelien M. van Schrojenstein Lantman
Utrecht University
Inorganic Chemistry & Catalysis
Debye Institute for Nanomaterials Science
Universiteitsweg 99
3584 CG Utrecht
The Netherlands

Andrey Shavorskiy
Lawrence Berkeley National Laboratory
Advanced Light Source
Berkeley CA 94720
USA

Mizuki Tada
Research Center for Materials Science
Nagoya University
Furo, Chikusa
Nagoya 464-8602, Aichi
Japan

Atsushi Takagaki
The University of Tokyo
Department of Chemical System Engineering
School of Engineering
7-3-1 Hongo
Bunkyo-ku
Tokyo 113-8656
Japan
List of Contributors

Vu A. Tuan
Vietnam Academy of Science and Technology (VAST)
Institute of Chemistry
Department of Inorganic Chemistry and Physical Chemistry
18 Hoang Quoc Viet
Cao Giay, Hanoi
Vietnam

Bert M. Weckhuysen
Utrecht University
Inorganic Chemistry & Catalysis
Debye Institute for Nanomaterials Science
Universiteitsweg 99
3584 CG Utrecht
The Netherlands
1
Introduction to Clean Technology and Catalysis

James H. Clark

1.1
Green Chemistry and Clean Technology

Traditional chemical manufacturing is resource demanding and wasteful, and often involves the use of hazardous substances. Resources are used throughout the production and including the treatment of waste streams and emissions (Figure 1.1).

Green chemistry focuses on resource efficiency and on the design of chemical products and processes that are more environmentally benign. If green chemistry is used in a process, it should be made simpler, the inputs and outputs should be safer and more sustainable, the energy consumption should be reduced and costs should be reduced as yields increase, and so separations become simpler and less waste is generated [1]. Green chemistry moves the trend toward new, clean technologies such as flow reactors and microwave reactors, as well as clean synthesis. For instance, lower temperature, shorter reaction time, choice of an alternative route, increased yield, or using fewer washings at workup improve the “cleanness” of a reaction by saving energy and process time and reducing waste [2].

At present, there is more emphasis on the use of renewable feedstocks [3] and on the design of safer products including an increasing trend for recovering resources or “closed-loop manufacturing.” Green chemistry research and application now encompass the use of biomass as a source of organic carbon and the design of new greener products, for example, to replace the existing products that are unacceptable in the light of new legislation (e.g., REACH) or consumer perception.

Green chemistry can be seen as a tool by which sustainable development can be achieved: the application of green chemistry is relevant to social, environmental, and economic aspects.

To achieve sustainable development will require action by the international community, national governments, commercial and noncommercial organizations, and individual action by citizens from a wide variety of disciplines. Acknowledgment of sustainable development has been taken forward into policy by many governments including most world powers notably in Europe [4], China [5], and the United States [6].
1 Introduction to Clean Technology and Catalysis

Chemical industry needs numerous raw materials such as P, Zn, Sb, and Pd, which in some cases are becoming scarce.

1.1.1 Ideals of Green Chemistry

In Figure 1.2 and Figure 1.3, the ideals of green chemical synthetic design are shown.

Figure 1.1 Resource demands of traditional chemical manufacturing.

Figure 1.2 Factors for reduction in syntheses.

Figure 1.3 The eight parts of an ideal synthesis.
1.2 Green Chemistry Metrics

It is important to note that these green chemistry goals are most effectively dealt with and are easier to apply if they are considered at the design stage rather than retrospectively – green chemistry is not an end-of-pipe solution.

Chemical plants have traditionally concentrated on mechanical safety devices, reducing the probability of accidents. However, mechanical devices are not infallible and safety measures cannot completely prevent the accidents that are happening. The concept of inherently safer design (ISD) was designed with the intention of eliminating rather than preventing the hazards and led to the phrase “What you don’t have can’t harm you” [7]. ISD means not holding significant inventories of hazardous chemicals or not using them at all.

This approach would have prevented the accident at Bhopal, India in 1984, where many thousands of people were killed or seriously injured. One of the chemicals used in the process at the Union Carbide factory was highly water sensitive, and when a watertight holding tank was breached, the accident occurred, releasing the chemicals into the air, affecting the villages surrounding the factory. The chemical is nonessential and the ISD approach would have been used an alternative, thus eliminating the risk altogether.

Green chemistry research has led to the invention of a number of clever processing technologies to save time and energy or reduce waste production, but these technologies mostly exist in academia and, with very few exceptions, industry has been slow to utilize them. Green chemical technologies include heterogeneous catalysis (well established in some sectors but much less used in fine chemicals and pharmaceuticals, see the subsequent text), use of supercritical fluids (as reaction and extraction media), photochemistry, microwave chemistry, sonochemistry, and synthetic electrochemistry. All these replacements for conventional methods and conductive heating can lead to improved yields, reduced reaction times, and reduced by-product formation. Engineered greener technologies also exist, including a number of replacements for the stirred tank batch reactor, such as continuous stirred tanks, fluidized bed reactors, microchannel reactors, and spinning disc reactors as well as microwave reactors, all of which increase the throughput, while decreasing the energy usage and waste. Unfortunately, despite these many new processes, industry is reluctant to use these hardware solutions because of the often massive financial expenditure involved in purchasing these items and the limited number of chemistries that have been demonstrated with them to date. There is also a reluctance to change well-established (and paid for) chemical plant so that newer, cleaner technologies may well have more success in the developing (e.g., the Brazil, Russia, India, and China (BRIC)) nations, where the chemical industry is growing and new plant is required to meet the increasing expectations of local and increasingly affluent markets.

1.2 Green Chemistry Metrics

It is important to be able to quantify the change when changes are made to chemical processes. This enables us to quantify the benefit from the new technology
introduced (if there are benefits). This can aid in in-house communication (to demonstrate the value to the workforce) as well as in external communication. For yield improvements and selectivity increases, simple percentages are suitable, but this simplistic approach may not always be appropriate. For example, if a toxic reagent is replaced by a less toxic one, the benefit may not be captured by conventional methods of measuring reaction efficiency. Equally, these do not capture the mass efficiency of the process – a high-yielding process may consume large amounts of auxiliaries such as solvents and reagents, as well as those used in product separation and purification. Ideally, we also need to find a way to include energy and water, both of them have been commonly used in a rather cavalier way but they are now subject to considerable interest that they can vary depending on the location of the manufacturing site.

Numerous metrics have been formulated over time and their suitability discussed at great length [8–12]. The problem observed is that the more accurate and universally applicable the metric devised, the more complex and unemployable it becomes. A good metric must be clearly defined, simple, measurable, objective rather than subjective, and must ultimately drive the desired behavior. Some of the most popular metrics are

- E factor (which effectively measures the amount of product compared to the amount of waste – the larger the E factor is, the less product-specific is the process; the fine chemical and pharmaceutical manufacturing sectors tend to have the highest E factors) [13];
- effective mass yield (the percentage of the mass of the desired product relative to the mass of all nonbenign materials used in its synthesis – this includes an attempt to recognize that “not all chemicals are equal” – important and very real but very difficult to quantify);
- atom efficiency/economy (measures the efficiency in terms of all the atoms involved and is measured as the molecular weight of the desired product divided by the molecular weight of all of the reagents; this is especially valuable in the design “paper chemistry” stage when low atom efficiency reactions can be easily spotted and discarded);
- reaction mass efficiency (essentially the inverse of E factor).

Of course, the ultimate metric is life cycle assessment (LCA); however, this is a demanding exercise that requires a lot of input data, making it inappropriate for most decisions made in a process environment. However, some companies do include LCA impacts such as greenhouse gas production in their in-house assessment, for example, to rank solvents in terms of their greenness. It is also essential that we adopt a “life cycle thinking” approach to decision making so that we do not make matters worse when greening one stage in a manufacturing process without appreciating the effects of that change on the full process including further up and down the supply chain.
Most chemical processes involve solvents – in the reactions and in the workups as well as in the cleaning operations [14, 15]. The environmental impact of a chemical process cannot be properly evaluated without considering the solvent(s). For some time there has been a drive toward replacing or at least reducing the use of traditional volatile organic solvents such as dichloromethane, tetrahydrofuran, and \textit{N}-methylpyrrolidone – commonly used solvents in, for example, catalytic processes.

Ionic liquids, fluorous biphasic systems, and supercritical fluids have all been studied as alternatives to conventional organic solvents. However, because of their nature, some of these novel systems require additional hardware for utilization. For example, some suppliers have designed advanced mixing systems to enable polyphasic systems to be intimately mixed at the laboratory scale. There has also been considerable rethinking of the green credentials of some of these alternative solvents in recent years and many ionic liquids are no longer considered suitable because of their complex syntheses, toxicity, or other unacceptable properties, or difficulty in separation and purification. Fluorous solvents (which are based on heavily fluorinated usually aliphatic compounds) are not considered to be environmentally compatible (as they persist in the environment).

Supercritical solvents are difficult to manipulate because of the high pressures and temperatures often employed. In the case of supercritical water, equipment had to be designed, which could contain the highly corrosive liquid. Vessels for creating supercritical solvents such as supercritical \textit{CO}_2 (scCO\textsubscript{2}) are now available and are capable of fine adjustments in temperature and pressure to affect the solvents’ properties. Very high pressure and temperatures are not required to produce scCO\textsubscript{2} and it is becoming an increasingly popular reaction medium as its properties are controllable by varying the temperature and pressure or by the use of a cosolvent [16]. The main environmental benefit of scCO\textsubscript{2} lies in the workup, as the product mixture is obtained free from solvent by simply returning to atmospheric conditions. Additionally, carbon dioxide is nontoxic, nonflammable, recyclable, and a by-product of other processes. However, there are energy and safety concerns associated with the elevated temperatures and pressures employed and in particular, there are high capex costs to install a plant. These must be balanced against the benefits of its use.

scCO\textsubscript{2} can be a good medium for catalysis, although its low polarity means that either catalysts are heterogeneous or they have to be modified to enable them to dissolve (e.g., by introducing solubilizing substituents on the catalyst ligands).

Ionic liquids are molten salts and are liquid at relatively low temperatures: room-temperature ionic liquids are the most widely studied. Their lack of vapor pressure has been their biggest selling point but the enormous flexibility of choice of ions enables ionic liquids to be designed as catalysts as well as solvent. In particular, they can be powerful combined solvent–acid catalysts. The use of ionic liquids
has been reported in various synthetic transformations such as Friedel–Crafts reaction, Diels–Alder reaction, and metal-catalyzed asymmetric synthesis. The problems with their use include toxicity (in some cases), cost of manufacture, and difficulties in separation/purification (they cannot be distilled), and these have hampered their industrial uptake, although they are certainly interesting at least for niche applications [17, 18].

Biphasic systems can be an effective method by which catalyst, substrates, and products can be easily separated into different liquid phases and therefore simplifying and “greening” reaction workup. Fluorous biphasic solvent systems, where the homogeneous catalyst is soluble within the fluorous phase and reactants are soluble within an immiscible conventional solvent, have been extensively studied. Heating leads to the two solvents becoming miscible, enabling the reaction to occur. On completion of the reaction, when cooled, the phases return to being immiscible with the product partitioning into the conventional solvent phase for isolation. However, there have been serious concerns expressed over the “green” credentials of these heavily fluorinated molecules as they persist in the environment and can be hazardous to operators. Phase transfer catalysts (PTCs) have been used for many years in biphasic systems for transferring species into a phase they would not normally be soluble in. They aid the reaction by improving the availability of the substrates [19]. PTCs are commonly quaternary ammonium or phosphonium compounds; they mostly do not present major environmental concerns and continue to be popular for greening organic reactions. Perhaps, the biggest concern is with regard to their recovery from reactions as they are usually very soluble in both phases of the biphasic system, although heterogeneous PTC, involving, for example, silica-supported onium compounds have been reported.

1.4 Heterogeneous or Homogeneous

While homogeneous catalysis generally offers good activity and a homogeneous distribution of active sites, as explained earlier, it is not without problems notably with regard to separation and reuse. Here, heterogeneous catalysis has clear advantages. There are in fact a number of advantages of heterogeneous catalysis compared to homogeneous [20, 21].

- **Safety** – heterogeneous catalysts are often environmentally benign and safe to handle because of the active species being bound to a support material (e.g., silica-supported sulfonic acid for acid catalysis compared to sulfuric acid).
- **Separation and reusability** – the solid catalyst can either be used in a fixed bed configuration or simply filtered or centrifuged from a stirred tank reaction and then, in many cases reactivated for reuse (e.g., zeolites used in petroleum refining can be reactivated and reused for years before disposal).
- **Activity** – while homogeneous catalyst are commonly the most active, there are many cases where perhaps counterintuitively, the heterogeneous analog is more