Edited by
Hugo E. Hernández-Figueroa
Erasmo Recami, and
Michel Zamboni-Rached

Non-Diffracting Waves
Related Titles

Couairon, A., Mysyrowicz, A.

Nonlinear propagation of ultrashort laser pulses
From fundamentals to filamentation and self-focusing

2015
Print ISBN: 978-3-527-41186-3

Hernández-Figueroa, H.E., Zamboni-Rached, M., Recami, E. (eds.)

Localized Waves

2008
Print ISBN: 978-0-470-10885-7
Non-Diffracting Waves
Contents

Preface XVII

List of Contributors XXIII

1 **Non-Diffracting Waves: An Introduction** 1

Erasmo Recami, Michel Zamboni-Rached, Hugo E. Hernández-Figueroa, and Leonardo A. Ambrosio

1.1 A General Introduction 1

1.1.1 A Prologue 1

1.1.2 Preliminary, and Historical, Remarks 3

1.1.3 Definition of Non-Diffracting Wave (NDW) 6

1.1.4 First Examples 8

1.1.5 Further Examples: The Non-Diffracting Solutions 9

1.2 Eliminating Any Backward Components: Totally Forward NDW Pulses 13

1.2.1 Totally Forward Ideal Superluminal NDW Pulses 14

1.3 Totally Forward, *Finite-Energy* NDW Pulses 17

1.3.1 A General Functional Expression for Whatever Totally-Forward NDW Pulses 20

1.4 Method for the Analytic Description of *Truncated* Beams 21

1.4.1 The Method 21

1.4.2 Application of the Method to a TB Beam 24

1.5 Subluminal NDWs (or Bullets) 25

1.5.1 A First Method for Constructing Physically Acceptable, Subluminal Non-Diffracting Pulses 26

1.5.2 Examples 29

1.5.3 A Second Method for Constructing Subluminal Non-Diffracting Pulses 32

1.6 “Stationary” Solutions with Zero-Speed Envelopes: Frozen Waves 33

1.6.1 A New Approach to the Frozen Waves 35

1.6.2 Frozen Waves in Absorbing Media 38

1.6.3 Experimental Production of the Frozen Waves 38

1.7 On the Role of Special Relativity and of Lorentz Transformations 38
1.8 Non-Axially Symmetric Solutions: The Case of Higher-Order Bessel Beams 42
1.9 An Application to Biomedical Optics: NDWs and the GLMT (Generalized Lorenz-Mie Theory) 44
1.10 Soliton-Like Solutions to the Ordinary Schroedinger Equation within Standard Quantum Mechanics (QM) 50
1.10.1 Bessel Beams as Non-Diffracting Solutions (NDS) to the Schroedinger Equation 52
1.10.2 Exact Non-Diffracting Solutions to the Schroedinger Equation 54
1.10.3 A General Exact Localized Solution 58
1.11 A Brief Mention of Further Topics 59
1.11.1 Airy and Airy-Type Waves 59
1.11.2 “Soliton-Like” Solutions to the Einstein Equations of General Relativity and Gravitational Waves 60
1.11.3 Super-Resolution 60
Acknowledgments 60
References 60

2 Localized Waves: Historical and Personal Perspectives 69
Richard W. Ziolkowski
2.1 The Beginnings: Focused Wave Modes 69
2.2 The Initial Surge and Nomenclature 71
2.3 Strategic Defense Initiative (SDI) Interest 71
2.4 Reflective Moments 72
2.5 Controversy and Scrutiny 73
2.6 Experiments 75
2.7 What’s in a Name: Localized Waves 76
2.8 Arizona Era 76
2.9 Retrospective 78
Acknowledgments 78
References 78

3 Applications of Propagation Invariant Light Fields 83
Michael Mazilu and Kishan Dholakia
3.1 Introduction 83
3.2 What Is a “Non-Diffracting” Light Mode? 83
3.2.1 Linearly Propagating “Non-Diffracting” Beams 84
3.2.2 Accelerating “Non-Diffracting” Beams 87
3.2.3 Self-Healing Properties and Infinite Energy 88
3.2.4 Vectorial “Non-Diffracting” Beams 88
3.3 Generating “Non-Diffracting” Light Fields 91
3.3.1 Bessel and Mathieu Beam Generation 91
3.3.2 Airy Beam Generation 93
3.4 Experimental Applications of Propagation Invariant Light Modes 93

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Microscopy, Coherence, and Imaging</td>
<td>94</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Optical Micromanipulation with Propagation Invariant Fields</td>
<td>97</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Propagation Invariant Beams for Cell Nanosurgery</td>
<td>102</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>104</td>
</tr>
<tr>
<td>4</td>
<td>X-Type Waves in Ultrafast Optics</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Peeter Saari</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td>4.2</td>
<td>About Physics of Superluminal and Subluminal, Accelerating and Decelerating Pulses</td>
<td>110</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Remarks on Some Persistent Issues</td>
<td>110</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Group Velocity: Plane Waves versus Three-Dimensional Waves</td>
<td>110</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Group Velocity: Superluminal versus Subluminal Cylindrically Symmetric Wavepackets</td>
<td>111</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Group Velocity versus Energy Transport Velocity</td>
<td>116</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Group Velocity versus Signal Velocity</td>
<td>117</td>
</tr>
<tr>
<td>4.2.1.5</td>
<td>Cherenkov Radiation versus Superluminal X-Type Waves and Causality versus Acausality</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Accelerating and Decelerating Quasi-Bessel-X Pulses</td>
<td>120</td>
</tr>
<tr>
<td>4.2.3</td>
<td>“Technology Transfer” to Quantum Optics</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>Overview of Spatiotemporal Measurements of Localized Waves by SEA TADPOLE Technique</td>
<td>122</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Spatiotemporal Measurement of Light Fields</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2</td>
<td>New Results on Bessel-X Pulse</td>
<td>123</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Grating-Generated Bessel Pulses</td>
<td>124</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Lens-Generated Accelerating and Decelerating Quasi-Bessel-X Pulses</td>
<td>125</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Boundary Diffraction Wave as a Decelerating Quasi-Bessel-X Pulse</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusion</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>Limited-Diffraction Beams for High-Frame-Rate Imaging</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Jian-yu Lu</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>5.2</td>
<td>Theory of Limited-Diffraction Beams</td>
<td>138</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Generalized Solutions to Wave Equation</td>
<td>138</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Bessel Beams and X Waves</td>
<td>140</td>
</tr>
<tr>
<td>5.2.2.1</td>
<td>Bessel Beams</td>
<td>140</td>
</tr>
<tr>
<td>5.2.2.2</td>
<td>X Waves</td>
<td>140</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Limited-Diffraction Array Beams</td>
<td>141</td>
</tr>
<tr>
<td>5.3</td>
<td>Received Signals</td>
<td>142</td>
</tr>
</tbody>
</table>
5.3.1 Pulse-Echo Signals and Relationship with Imaging 142
5.3.2 Limited-Diffraction Array Beam Aperture Weighting and Spatial
Fourier Transform of Echo Signals 143
5.3.3 Special Case for 2D Imaging 144
5.4 Imaging with Limited-Diffraction Beams 144
5.4.1 High-Frame-Rate Imaging Methods 145
5.4.1.1 Plane-Wave HFR Imaging without Steering 145
5.4.1.2 Steered Plane-Wave Imaging 145
5.4.1.3 Limited-Diffraction Array Beam Imaging 146
5.4.2 Other Imaging Methods 147
5.4.2.1 Two-Way Dynamic Focusing 147
5.4.2.2 Multiple Steered Plane Wave Imaging 148
5.5 Mapping between Fourier Domains 148
5.5.1 Mapping for Steer Plane Wave Imaging 149
5.5.2 Mapping for Limited-Diffraction-Beam Imaging 150
5.5.2.1 General Case 150
5.5.2.2 Special Case 151
5.6 High-Frame-Rate Imaging Techniques–Their Improvements
and Applications 151
5.6.1 Aperture Weighting with Square Functions to Simplify Imaging
System 151
5.6.1.1 Applied to Transmission 151
5.6.1.2 Applied to Reception 152
5.6.2 Diverging Beams with a Planar Array Transducer to Increase Image
Frame Rate 153
5.6.3 Diverging Beams with a Curved Array Transducer to Increase Image
Field of View 153
5.6.4 Other Studies on Increasing Image Field of View 153
5.6.5 Coherent and Incoherent Superposition to Enhance Images and
Increase Image Field of View 153
5.6.6 Nonlinear Image Processing for Speckle Reduction 154
5.6.7 Coordinate Rotation for Reduction of Computation 154
5.6.8 Reducing Number of Elements of Array Transducer 154
5.6.9 A Study of Trade-Off between Image Quality and Data
Densification 154
5.6.10 Masking Method for Improving Image Quality 155
5.6.11 Reducing Clutter Noise by High-Pass Filtering 155
5.6.12 Obtaining Flow or Tissue Velocity Vectors for Functional
Imaging 155
5.6.13 Strain and Strain Rate Imaging to Obtain Tissue Parameters
or Organ Functions 156
5.6.14 High-Frame-Rate Imaging Systems 156
5.7 Conclusion 156
References 156
6 Spatiotemporally Localized Null Electromagnetic Waves 161
 Ioannis M. Besieris and Amr M. Shaarawi

6.1 Introduction 161
6.2 Three Classes of Progressive Solutions to the 3D Scalar Wave Equation 162
6.2.1 Luminal Localized Waves 163
6.2.1.1 Luminal 163
6.2.1.2 Modified Luminal 165
6.2.2 Superluminal Localized Waves 165
6.2.2.1 Superluminal 165
6.2.2.2 Hybrid Superluminal 166
6.2.2.3 Modified Hybrid Superluminal 167
6.2.3 Subluminal Localized Waves 168
6.3 Construction of Null Electromagnetic Localized Waves 169
6.3.1 Riemann–Silberstein Vector 169
6.3.2 Null Riemann–Silberstein Vector 170
6.3.3 The Whittaker–Bateman Method 171
6.4 Illustrative Examples of Spatiotemporally Localized Null Electromagnetic Waves 173
6.4.1 Luminal Null Electromagnetic Localized Waves 173
6.4.2 Modified Luminal Null Electromagnetic Localized Waves 175
6.4.3 Superluminal Null Electromagnetic Localized Waves 176
6.4.4 Hybrid Superluminal Null Electromagnetic Localized Waves 179
6.4.5 Modified Hybrid Superluminal Null Electromagnetic Localized Waves 181
6.4.6 A Note on Subluminal Null Electromagnetic Localized Waves 182
6.5 Concluding Remarks 183

References 185

7 Linearly Traveling and Accelerating Localized Wave Solutions to the Schrödinger and Schrödinger-Like Equations 189
 Ioannis M. Besieris, Amr M. Shaarawi, and Richard W. Ziolkowski

7.1 Introduction 189
7.2 Linearly Traveling Localized Wave Solutions to the 3D Schrödinger Equation 191
7.2.1 MacKinnon-Type, Infinite-Energy, Localized, Traveling Wave Solutions 192
7.2.2 Extensions to MacKinnon-Type, Infinite-Energy, Localized, Traveling Wave Solutions 193
7.2.3 Finite-Energy, Localized, Traveling Wave Solutions 196
7.3 Accelerating Localized Wave Solutions to the 3D Schrödinger Equation 198
11 Spatiotemporal Localization of Ultrashort-Pulsed Bessel Beams at Extremely Low Light Level 257
 Martin Bock and Ruediger Grunwald
11.1 Introduction 257
11.2 Non-Diffracting Young’s Interferometers 258
11.3 Non-Diffracting Beams at Low Light Level 259
11.4 Experimental Techniques and Results 260
11.5 Retrieval of Temporal Information 263
11.6 Wave Function and Fringe Contrast 264
11.7 Conclusions 267
Acknowledgments 267
References 267

12 Adaptive Shaping of Nondiffracting Wavepackets for Applications in Ultrashort Pulse Diagnostics 271
 Martin Bock, Susanta Kumar Das, Carsten Fischer, Michael Diehl, Peter Boerner, and Ruediger Grunwald
12.1 Introduction 271
12.2 Space-Time Coupling and Spatially Resolved Pulse Diagnostics 272
12.3 Shack–Hartmann Sensors with Microaxicons 273
12.4 Nonlinear Wavefront Autocorrelation 275
12.5 Spatially Resolved Spectral Phase 276
12.6 Adaptive Shack–Hartmann Sensors with Localized Waves 277
12.7 Diagnostics of Ultrashort Wavepackets 278
12.7.1 Time-Wavefront Sensing 278
12.7.2 Travel-Time Mapping 280
12.7.3 Optical Angular Momentum of Few-Cycle Wavepackets 281
12.8 Conclusions 281
Acknowledgments 282
References 283

13 Localized Waves Emanated by Pulsed Sources: The Riemann–Volterra Approach 287
 Andrei B. Utkin
13.1 Introduction 287
13.2 Basics of the Riemann–Volterra Approach 289
13.2.1 Problem Posing 289
13.2.2 Riemann–Volterra Solution 290
13.3 Emanation from Wavefront-Speed Source Pulse of Gaussian Transverse Variation: Causal Clipped Brittingham’s Focus Wave Mode 291
13.4 Emanation from a Source Pulse Moving Faster than the Wavefront: Droplet-Shaped Waves 297
13.4.1 General Solution for the Superluminal (Supersonic) Motion 297
13.4.2 Droplet-Shaped Waves as Causal Counterparts of the X-Shaped Waves 302
13.5 Conclusive Remarks 302
References 304

14 Propagation-Invariant Optical Beams and Pulses 307
Kimmo Saastamoinen, Ari T. Friberg, and Jari Turunen
14.1 Introduction 307
14.2 Theoretical Background 308
14.3 General Propagation-Invariant Solutions 309
14.3.1 Conditions for Propagation Invariance 310
14.3.2 Plane-Wave Representation of Nonstationary Fields 311
14.3.3 Solutions in the Space-Frequency Domain 312
14.3.4 Solutions in the Space-Time Domain 313
14.4 Classification in Terms of Spectral and Angular Coherence 314
14.5 Stationary Propagation-Invariant Fields 315
14.5.1 Coherent Fields 316
14.5.2 Partially Coherent Fields 318
14.6 Nonstationary Propagation-Invariant Fields 319
14.6.1 Coherent Fields 320
14.6.2 Partially Coherent Fields 321
14.7 Conclusions 324
References 325

15 Diffractionless Nanobeams Produced by Multiple-Waveguide Metallic Nanostructures 327
Matyas Mechler and Sergei V. Kukhlevsky
15.1 Introduction 327
15.2 Concept of Diffractionless Subwavelength-Beam Optics on Nanometer Scale 328
15.3 Diffractionless Nanobeams Produced by Multiple-Waveguide Metallic Nanostructures 331
15.4 Summary and Conclusions 335
Acknowledgments 335
References 336

16 Low-Cost 2D Collimation of Real-Time Pulsed Ultrasonic Beams by X-Wave-Based High-Voltage Driving of Annular Arrays 339
Antonio Ramos, Luis Castellanos, and Héctor Calás
16.1 Introduction 339
16.2 Classic Electronic Procedures to Improve Lateral Resolutions in Emitted Beams for Ultrasonic Detection: Main Limitations 341
16.3 An X-Wave-Based Option for Beam Collimation with Bessel Arrays 343
16.3.1 Design of Bessel Arrays 344
16.3.1.1 Bases for Designing the Bessel Transducers 344
16.3.1.2 A Design Example: Bessel Transducer with 10 Annuli and 50 mm in Diameter 345
16.3.2 Modeling and Characterization of the Bessel Annular Arrays 345
16.3.2.1 Transducers' Complex Electric Impedance around the Resonance Frequency 346
16.3.2.2 Characterization of Emission Transfer Functions and Impulsive Responses 347
16.3.3 Some Characterization Results 348
16.3.4 Broadband X-Wave Pulses for Deriving the Bessel Array Excitations 353
16.4 Low-Cost Circuits for Efficient Rectangular Driving of Annular Piezoelectric Transducers 356
16.5 Comparative Excitation and Field Results Calculated for X-Beams 357
16.6 Conclusions 360
Acknowledgments 361
References 361

17 Localized Beams and Localized Pulses: Generation Using the Angular Spectrum 363
Colin Sheppard
17.1 Bessel Beams 363
17.2 The Bessel–Gauss Beam 365
17.3 Pulsed Bessel Beams 367
17.4 Applications in Biomedical Imaging 375
References 376

18 Lossy Light Bullets 379
Miguel A. Porras
18.1 Introduction 379
18.2 Lossy Light Bullets in Self-Focusing Media with Nonlinear Losses 380
18.3 The Structured Profile of Lossy Light Bullets and their Energy Reservoir 381
18.3.1 The Most Lossy Light Bullet in a Nonlinear Dissipative Medium 384
18.4 Propagation Properties of Physically Realizable Lossy Light Bullets 384
18.5 Self-Reconstruction Property 386
18.6 Stability Properties 387
18.6.1 The Most Lossy Light Bullet as an Attractor of the Self-Focusing Dynamics with Nonlinear Losses 388
18.6.2 Stability Under Small Perturbations 392
19 Beyond the Diffraction Limit: Composed Pupils 399
Anedio Ranfagni and Daniela Mugnai
19.1 Introduction 399
19.2 Theoretical Description 401
19.2.1 Analytical Details 402
19.3 Super Resolving Pupils 405
19.3.1 Amplitude Measurements: Transversal Dependence 405
19.3.2 Amplitude Measurements: Axial Dependence 409
19.3.2.1 The Shadow’s Theorem 411
19.4 Conclusions 413
Acknowledgments 415
References 415

20 Experimental Generation of Frozen Waves in Optics: Control of Longitudinal and Transverse Shape of Optical Non-diffracting Waves 417
Tárco A. Vieira, Marcos R.R. Gesualdi, and Michel Zamboni-Rached
20.1 Introduction 417
20.2 Frozen Waves: Theoretical Description 417
20.3 Frozen Waves: Experimental Generation 418
20.3.1 Holographic Experimental Setup 420
20.3.2 Results 421
20.3.2.1 Example One 422
20.3.2.2 Example Two 424
20.3.2.3 Examples Three and Four 425
20.3.2.4 Example Five 426
20.3.2.5 Example Six 426
20.3.2.6 Example Seven 427
20.4 Conclusions 430
Acknowledgments 430
References 430

21 Airy Shaped Waves 433
Kleber Zuza Nóbrega, Cesar Augusto Dartora, and Michel Zamboni-Rached
21.1 Introduction 433
21.2 Airy Beams 435
21.2.1 Ideal Airy Beam 436
21.3 Maximum Invariance Depth, Z_{max} 438
21.4 Analytical Description of Truncated Airy-Type Beams 441
21.4.1 Theoretical Framework 442
21.4.2 Examples 444
21.5 Airy Pulses Considerations 447
21.6 Conclusions 448
Acknowledgments 448
References 448

22 Solitons and Ultra-Short Optical Waves: The Short-Pulse Equation Versus the Nonlinear Schrödinger Equation 451
Jose Nathan Kutz and Edward Farnum
22.1 Introduction 451
22.2 Maxwell’s Equations 453
22.3 Linear Propagation 454
22.3.1 Center-Frequency Asymptotics 455
22.3.2 Short-Pulse Asymptotics 457
22.4 Nonlinear Propagation: Instantaneous Nonlinear Response 458
22.4.1 Center-Frequency Asymptotics 459
22.4.2 Short-Pulse Asymptotics 459
22.4.3 Soliton Solutions 460
22.5 Nonlinear Propagation: Time-dependent Nonlinear Response 461
22.5.1 Center-Frequency Asymptotics 462
22.5.2 Short-Pulse Asymptotics 462
22.6 Application: Mode-Locked Lasers 463
22.6.1 Haus Master Mode-locking Equation 463
22.6.2 SPE Master Equation 465
22.7 Conclusions 468
References 469

Index 473
Preface

Diffraction and dispersion effects are well known from centuries and are recognized to be limiting factors for many industrial and technological applications based, for example, on electromagnetic (EM) beams and pulses.

Diffraction is always present, affecting any waves that propagate in two-dimensional or three-dimensional (2D or 3D) media. Pulses and beams are constituted by waves traveling along different directions, which produces a gradual spatial broadening. This effect is a limiting factor whenever a pulse is needed, which maintains its transverse localization, for example, in free space communications, image forming, optical lithography, and EM tweezers.

Dispersion acts on pulses propagating in material media, causing mainly a temporal broadening; an effect due to the variation of the refraction index with the frequency, so that each spectral component of the pulse possesses a different phase-velocity. This entails a gradual temporal widening, which constitutes a limiting factor when a pulse is requested to maintain its time width, for example, in communication systems.

Consequently, the development of techniques capable of alleviating the signal degradation effects caused by these two effects is of crucial importance. Non-diffracting waves (NDWs), known also as localized waves, are indeed able to resist diffraction for a long distance. Today, NDWs are well established both theoretically and experimentally, and are having innovative applications not only in vacuum but in material (linear or nonlinear) media too, showing to be able to resist also dispersion. Moreover, the NDWs allow compensating even for effects such as attenuation. Indeed, in dispersing homogeneous media, it is possible for instance to construct pulses that simultaneously resist the effects of diffraction and dispersion; and, in absorbing homogeneous media, it is possible to construct beams that resist the simultaneous effects of diffraction and attenuation.

As expounded in this book, their potential applications are being intensively explored, always with surprising results, in fields such as microwaves, optics, acoustics, and are promising also in mechanics, geophysics, elementary particle physics, and gravitational waves. To confine ourselves to electromagnetism, let us mention the work on EM tweezers, optical (or acoustic) scalpsels, optical guiding of atoms or (charged or neutral) corpuscles, optical lithography, optical images, communications in free space, remote optical alignment, optical acceleration of
charged corpuscles, and so on. The NDWs are suitable superpositions of Bessel beams. (Let us recall in particular that a peculiar superposition of Bessel beams can be used to obtain “static” NDW fields, with high transverse localization, and whose longitudinal intensity pattern can assume any shape within a chosen interval of the propagation axis. Such beams, called “frozen waves” (FWs), have been experimentally produced in recent times in the case of optics as reported also in this book; they too promise to have very important applications, even in the field of medicine, for example, for tumor curing.)

Considering the significant amount of exciting and impressive results published in the recent 5 years or so, we decided to edit this book on this topic, after the first one appeared in 2008, published by John Wiley & Sons, Inc. These books are the first ones of their kind in the literature. The present volume is composed of 22 chapters authored by many of the worldwide most productive researchers in the field, with a balanced presentation between theory and experiments.

Chapter 1, by Recami et al., presents a thorough review of NDWs, emphasizing their theoretical foundations (in terms of exact solutions to the wave equations) along with historical aspects and the interconnections of this subject with other technological and scientific areas. It shows in particular how to eliminate any backward-traveling components (also known as noncausal components) in the case of both ideal and realistic finite-energy NDW pulses; and a method is then presented for an analytical description of truncated beams. The interesting case of the subluminal NDWs, or bullets, is moreover investigated, which leads to a new analytic description of FWs (endowed with a static envelope) in terms of continuous Bessel beam superpositions. The production of FWs is studied for absorbing media too. The role of special relativity and of Lorentz transformations, for the physical comprehension of the whole issue of NDWs, is stressed. Further topics are the use of higher order Bessel beams; an application to biomedical optics (by recourse to the generalized Lorenz–Mie theory); and, last but not least, the important fact that “soliton-like” solutions can be found also in the rather different case of the ordinary, linear Schrödinger equation within standard quantum mechanics.

Chapter 2 is authored by Ziolkowski, who coined the term “localized waves” and was involved with the topic at its inception. He reviews the initial years of focus wave modes, EM bullets, EM missiles, acoustic directed energy pulse trains (ADEPTs), electromagnetic directed energy pulse trains (EDEPTs), Bessel beams, complex beams, etc., until around the mid-1990s.

Chapter 3, by Mazilu and Dholakia, reviews theory, generation, properties, and applications of various nondiffracting beams, particularly the Bessel beam and Airy beams, and describes some emergent applications including imaging, micromanipulation, and cell transfection.

Chapter 4, by Saari, faces the circumstance that NDWs naturally became attractive to representatives of various fields, so that some misunderstandings showed up among the newcomers, for example, about nature, propagation velocity, and other properties of the NDWs. The first part of this chapter attempts to clarify issues such as the superluminal group velocity of X-type waves as opposed to their energy
transport and signal velocity. It introduces the concept of superluminal accelerating and decelerating quasi-Bessel-X pulses, which are locally propagation-invariant. The second part of this chapter overviews experimental studies, where such a concept has been applied in time-domain treatment of diffraction of ultrashort light pulses on various apertures and optical elements.

Chapter 5, by J.-Y. Lu, deals with applications of limited-diffraction beams, such as X-waves, in high frame rate medical imaging. Various techniques related to such imaging method are introduced, including improvements of image quality and development of techniques for commercial realization of the method.

Chapter 6 is by Besieris and Shaarawi, who carefully discuss all the salient properties of spatiotemporally localized null EM waves (including their vortex structure, the Bateman constraint satisfied by them, and total energy and total angular momentum they carry). They show the Whittaker–Bateman potential theory to be a unifying approach for constructing wide classes of novel spatiotemporally localized luminal, superluminal, and hybrid null EM waves.

Chapter 7 is authored by Besieris, Shaarawi, and Ziolkowski. It aims at finding out a large class of nonsingular, localized, traveling wave solutions to the linear 3D Schrödinger equation, based on two interesting ansatzs. The second part of this chapter provides an account of a broad class of finite-energy accelerating localized wave solutions to the 3D Schrödinger equation, based on generalization of previous work on one-dimensional (1D) infinite-energy nonspreading wavepackets by Berry and Balazs.

In Chapter 8, Dubietis, Faccio, and Valiulis deal with the spontaneous formation of nonlinear X-waves, which is a known feature of intense ultrashort pulse propagation in transparent dielectrics (closely related to white-light continuum generation and femtosecond filamentation phenomena), and study the statistical aspects of the nonlinear X wave formation in presence of intensity, energy, and phase noise; meeting signatures of extreme events, that is, heavy-tailed statistical distributions. Such X-waves are interpreted as spatiotemporal optical rogue waves.

In Chapter 9, Conti shows how X-waves can be a basis for the second quantization of the optical field and how this approach enables to investigate nonlinear optical processes when employing highly nonmonochromatic beams. Implications on quantum entanglement and quantum information are discussed.

In Chapter 10, Hillion starts by recalling that the Helmholtz equation satisfied by the transverse electric (TE) and transverse magnetic (TM) fields (which is not the scalar Helmholtz equation) has elementary solutions in terms of Bessel and Hankel functions, and proves the existence of two different classes of solutions. He looks for solutions of the Helmholtz equation in the absence, or presence, of nonlinearities, showing, for example, that they are not of the Bessel type.

Chapter 11, by Bock and Grunwald, regards reflective axicons as modified, rotationally symmetric versions of the double slit setup, generating Bessel-like localized waves. Their experimental method works nondiffractively even for ultrashort pulses with large spectral bandwidths. They show how to reconstruct not only the spatial but also the temporal pulse information from quantum interference patterns formed by single photons; and introduce a spatiotemporal characterization
of pulsed nondiffracting beams even at the quantum level ("quantum nondiffracting pulses"). Their results allow to exclude, incidentally, the interpretations of the double-slit experiment in which an interaction is assumed between separated slits (e.g., via surface plasmons). They finally propose a new method for a complete pulse reconstruction based on the nonlinear conversion of single photons from localized wavepackets.

Chapter 12 is authored by Bock et al. It shows that the arrays of free-space localized wavepackets allow an improved diagnostics of ultrashort pulses. In particular, the "needle pulses" can be used for analyzing the temporal properties of wavepackets with spatial resolution. The concept of needle beams is then extended toward more complex nondiffracting patterns. With reflective liquid-crystal-on-silicon-type spatial light modulators (SLMs), shaping and characterization of wavepackets at pulse durations down to 6 fs are demonstrated.

In Chapter 13, Utkin observes that the well-known frequency domain methods, for describing wave generation and propagation, disseminated the belief that a wave is something having a phase and an amplitude, rather than a solution of the wave equations. Although being complex and less universal, the space–time domain methods may be more adequate for solving wave propagation problems; for example, when the source term has complicated spatiotemporal structure. This chapter introduces a new space–time domain ansatz, calling into the play an inhomogeneous partial differential equation (PDE) of the hyperbolic type. In many practically important cases, the canonical PDE has a known Riemann function, which makes possible to construct the unique solution to the above initial value problem harnessing the Riemann–Volterra formula. The applicability of the method for causal description of launching localized waves by physically admissible sources is demonstrated for two practically important cases: generation of a finite-support focus wave mode by a luminal-speed pulse with the Gaussian transverse variation, and launching of a droplet-shaped wave by a line source traveling with a superluminal speed.

Chapter 14, by Saastamoinen, Friberg, and Turunen, overviews a wide class of optical fields, which possess the same spectral density distribution across every plane perpendicular to the nominal propagation direction. Examples are given for both stationary and nonstationary fields with different spatial and temporal coherence properties. The simplest special cases include sharply peaked Bessel fields, Bessel-correlated fields, and localized wave packets, such as X-waves and focus wave modes.

Chapter 15, by Mechler and Kukhlevsky, shows—using the scalar diffraction theory and the image method—how any arbitrary scalar field, confined by a 2D or 3D optical waveguide, can be generated in free space by the appropriate light source. The correspondence between the guided and free-space waves is illustrated using several particular fields, such as the diffraction-free, self-imaging, ultra-short, soliton-like, partially coherent waves, and laser fractals.

Chapter 16, by Ramos, Castellanos, and Callás, starts referring to the experimental production of X-shaped acoustic waves by Lu et al. in 1992, which was based on the sequential excitations of annular array rings and subsequent synthesis by
software composition. Its extension for a strict real-time regime would need an expensive, fast instrumentation with parallel electronic channels; however, fast beam synthesis is actually required in ultrasonic applications for medical diagnosis by imaging or noninvasive inspection in quality control. In this chapter, principles and implementation details are described for achieving real-time radiation of localized ultrasonic beams in pulsed regime, in such a way to achieve efficient implementations of fast X-beam collimations in the megahertz range at a low cost, for the multichannel electronics involved. A real-time ultrasonic emitting and beam-forming experiment in laboratory is described in detail. Optimization results for the annuli emissions and acoustic beam-forming patterns, from a specially designed piezoelectric annular array, are also compared with those obtained using the ideal zero-order X-wave solutions proposed in the classical approach by Lu et al.; and a very acceptable approximation level is obtained.

Chapter 17 is authored by Sheppard. It starts from pulsed beams generated by coherent superposition of Bessel beams. They can be compared among themselves using 3D (generalized) pupils. Applications in microscopy and tomography are discussed.

In Chapter 18, Porras reviews the properties of lossy light bullets; an alternative form of light wave localization in nonlinear media with dissipation (which is between a soliton and a conical wave). Unlike well-known dissipative light bullets, lossy light bullets do not require a continuous gain to sustain stationary propagation. Lossy light bullets are self-healing and are stabilized by losses, which make them attract the self-focusing dynamics in dissipative media.

Chapter 19, by Ranfagni and Mugnai, recalls how in 1952 Toraldo di Francia proposed an intriguing method to increase the optical resolving power. His theory might seem to be in contradiction with Heisenberg’s uncertainty correlations. In this chapter, the authors report the results of microwave investigations, which demonstrate the correctness of that theoretical prediction and its interpretation in relation to the uncertainty principle. Experimental measurements, employing special composed pupils, have been made in order to verify the possibility of obtaining a considerable reduction in the beam width and a field concentration along the axial axis, as compared to a simple pupil. Further experiments have been devoted to evaluate the pulse delay in the propagation, in the presence of this kind of pupils.

Chapter 20, by Vieira, Gesualdi, and Zamboni-Rached, presents, for the first time, the experimental generation of FWs in optics, obtained using a setup for the optical reconstruction of computer-generated holograms (CGHs), based on a 4-F Fourier filtering system and a nematic liquid crystal spatial light modulator (LC-SLM). The CGHs have been implemented computationally and, subsequently, electronically in the LC-SLM for optical reconstruction. The results agree with the corresponding theoretical (analytic) solutions and bear excellent perspectives for scientific and technological applications.

Chapter 21 is authored by Nóbrega, Dartora, and Zamboni-Rached. It presents an analytic method for the description of Airy-type beams when truncated by finite apertures: a method based on suitable superposition of exponentially decaying
Airy beams. The results can be quickly evaluated via the simple analytic solution proposed in this chapter, and agree with those obtained in the literature through numerical methods. Three different truncated beams are analyzed: ideal Airy, Airy-Gauss, and Airy-exponential beams.

Chapter 22, by Kutz, deals with sources of ultrashort light pulses, which enable direct observation of some of the fastest processes in nature, along with studies of matter under extreme conditions (leading to the first studies of the hitherto unexplored field of attosecond physics). It envisions that even single-electron transition events can now be captured. The theoretical models, however, have lagged behind because of their adherence to standard center-frequency expansion techniques for modeling the electric field envelope in Maxwell’s equations; whereas below a few femtosecond regimes such theories begin to breakdown and new approaches must be developed. In this chapter, a mode-locking theory is developed, which is valid in the ultrashort pulse regime, the starting point being Maxwell’s equations. When pushed to the extreme of a few femtoseconds or attosecond pulses, even the so-called nonlinear Schrödinger equation (NLS) description becomes suspect. Thus, a simplified approach is taken in this chapter, where the description of the pulse is derived directly from Maxwell’s equations. Specifically, a mode-locking in a laser cavity is considered, taking advantage of the robust and stable mode-locking that results in the short-pulse limit.

Preparation of this book’s manuscript was greatly facilitated by Anja Tschoertner, Aarthi Elumalai, and George J. Telecki from Wiley Publishers. We thank them for their fine, friendly, and professional work. The authors, all of them among the world leaders in this field, contributed always enthusiastically in a very efficient manner; we thank in particular Richard W. Ziolkowski, a pioneer in the field. We are also very indebted to Kai Chang, as well as Claudio Conti, and Daniele Faccio, for inspirational encouragement or help.

July 2013

Hugo E. Hernández-Figueroa
Erasmo Recami
Michel Zamboni-Rached
List of Contributors

Leonardo A. Ambrosio
University of Campinas
DMO–FEEC
Campinas, SP
Brazil

Ioannis M. Besieris
Virginia Polytechnic Institute and State University
The Bradley Department of Electrical and Computer Engineering
Blacksburg, VA
USA

and
Metrolux optische Messtechnik GmbH
Göttingen
Germany

Héctor Calás
Ultrasonic Signals Systems, and Technologies Laboratory
Ultrasonic Imaging and Detection Group
Spanish National Research Council (CSIC)
Madrid
Spain

Luis Castellanos
Ultrasonic Signals Systems, and Technologies Laboratory
Ultrasonic Imaging and Detection Group
Spanish National Research Council (CSIC)
Madrid
Spain

Peter Boerner
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Berlin
Germany

Claudio Conti
University Sapienza
Department of Physics
Rome
Italy
List of Contributors

Cesar Augusto Dartora
Federal University of Parana
Electrical Engineering
Department
Curitiba, PR
Brazil

Susanta Kumar Das
Max-Born-Institut für
Nichtlineare Optik und
Kurzzeitspektroskopie
Berlin
Germany

Michael Diehl
Metrolux optische Messtechnik GmbH
Göttingen
Germany

Kishan Dholakia
University of St. Andrews
School of Physics and Astronomy
St. Andrews
UK

Audrius Dubietis
Vilnius University
Department of Quantum Electronics
Vilnius
Lithuania

Daniele Faccio
Heriot-Watt University
School of Engineering and Physical Sciences
Edinburgh
UK

Edward Farnum
Kean University
New Jersey Center for Science Technology and Mathematics
Union, NJ
USA

Carsten Fischer
Metrolux optische Messtechnik GmbH
Göttingen
Germany

Ari T. Friberg
University of Eastern Finland
Department of Physics and Mathematics
Joensuu
Finland
and
Aalto University
Department of Applied Physics
Espoo
Finland
and
Royal Institute of Technology
Department of Microelectronics and Applied Physics
Kista
Sweden

Marcos R.R. Gesualdi
Universidade Federal do ABC
UFABC
Santo André, SP
Brazil

Ruediger Grunwald
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Berlin
Germany
Hugo E. Hernández-Figueroa
University of Campinas
DMO–FEEC
Campinas, SP
Brazil

Pierre Hillion
Institut Henri Poincaré
Le Vésinet
France

Sergei V. Kukhlevsky
University of Pécs
Department of Physics
Faculty of Natural Sciences
Pécs
Hungary

Jose Nathan Kutz
University of Washington
Department of Applied Mathematics
Seattle, WA
USA

Jian-yu Lu
The University of Toledo
Ultrasound Laboratory
Department of Bioengineering
Toledo, OH
USA

Michael Mazilu
University of St. Andrews
School of Physics and Astronomy
St. Andrews
UK

Matyas Mechler
University of Pécs
High-Field Terahertz Research Group
MTA-PTE
Hungary

Daniela Mugnai
Nello Carrara Institute of Applied Physics–CNR
Florence Research Area
Sesto Fiorentino
Italy

Kleber Zuza Nóbrega
Federal Institute of Maranhão
Electro–Electronics Department
São Luís, MA
Brazil

Miguel A. Porras
Universidad Politécnica de Madrid
Departamento de Física Aplicada a los Recursos Naturales and Grupo de Física de Sistemas Complejos
Madrid
Spain

Antonio Ramos
Ultrasonic Signals Systems, and Technologies Laboratory
Ultrasonic Imaging and Detection Group
Spanish National Research Council (CSIC)
Madrid
Spain

Anedio Ranfagni
Nello Carrara Institute of Applied Physics–CNR
Florence Research Area
Sesto Fiorentino
Italy

Erasmo Recami
INFN–Sezione di Milano
Milan
Italy
List of Contributors

and

Università statale di Bergamo
Facoltà di Ingegneria
Dalmine (BG)
Italy

Peeter Saari
University of Tartu
Institute of Physics
Tartu
Estonia

and

Estonian Academy of Sciences
Tallinn
Estonia

Kimmo Saastamoinen
University of Eastern Finland
Department of Physics and Mathematics
Joensuu
Finland

Amr M. Shaarawi
The American University of Cairo
Department of Physics
New Cairo
Egypt

Colin Sheppard
Italian Institute of Technology
Department of Nanophysics
Genova
Italy

Jari Turunen
University of Eastern Finland
Department of Physics and Mathematics
Joensuu
Finland

Andrei B. Utkin
Technical University of Lisbon
INOVA–INESC Inovação and ICEMS
Instituto Superior Técnico
Lisbon
Portugal

Gintaras Valiulis
Vilnius University
Department of Quantum Electronics
Vilnius
Lithuania

Târcio A. Vieira
Universidade Federal do ABC
UFABC
Santo André, SP
Brazil

Michel Zamboni-Rached
University of Campinas
DMO–FEEC
Campinas, SP
Brazil

Richard W. Ziolkowski
The University of Arizona
Department of Electrical and Computer Engineering
Tucson, AZ
USA
1

Non-Diffracting Waves: An Introduction

Erasmo Recami, Michel Zamboni-Rached, Hugo E. Hernández-Figueroa, and Leonardo A. Ambrosio

1.1 A General Introduction

1.1.1 A Prologue

In this chapter, which essentially deals with exact solutions to the wave equations, we begin by introducing the topic of non-diffracting waves (NDW), including some brief historical remarks, and by a simple definition of NDWs; afterward we present some recollections – besides of ordinary waves (Gaussian beams, Gaussian pulses) – of the simplest NDWs (Bessel beams, X-shaped pulses, etc.). More details can be found in the first two (introductory) chapters of the volume on Localized Waves published [1] in 2008. In section 1.2 we go on to show how to eliminate any backward-traveling components (also known as non-causal components), first in the case of ideal NDW pulses, and then, in section 1.3, for realistic, finite-energy NDW pulses. In particular, in section 1.3.1 we forward a general functional expression for any totally-forward non-diffracting pulses. Then, in section 1.4 an efficient method is set forth for the analytic description of truncated beams, a byproduct of its being the elimination of any need of lengthy numerical calculations. In section 1.5 we explore the not-less-interesting question of the subluminal NDWs, or bullets, in terms of two different methods, the second one being introduced as it allows the analytic description of NDWs with $v = 0$ that is of NDWs with a static envelope (“frozen waves” (FW)) in terms of continuous Bessel beam superpositions. The production of such FWs (which, indeed, have been generated experimentally in recent time for optics) is developed theoretically in section 1.6 also for the case of absorbing media. Section 1.7 discusses the role of special relativity and of Lorentz transformations (LTs), which is relevant for the physical comprehension of the whole issue of NDWs. In section 1.8 we present further analytic solutions to the wave equations, with use of higher-order components.

1) Work partially supported by FAPESP, CAPES, and CNPq (Brazil), and by INFN (Italy).
Non-Diffracting Waves: An Introduction

Bessel beams (namely, non-axially symmetric solutions). Next, section 1.9 deals in detail with an application of NDWs to biomedical optics by having recourse to the generalized Lorenz–Mie theory (GLMT). In section 1.10 we exploit the important fact that “soliton-like” solutions can be found also in the rather different case of the ordinary, linear Schrödinger equation – which is not a properly said wave equation – within standard quantum mechanics; by also constructing, for instance, a general exact non-diffracting solution for such equation. These “localized” solutions to the Schrödinger equation may a priori be of help for a better understanding, say, of de Broglie’s approach and of the particle-wave duality. Some complementary issues are mentioned in the last section.

Let us now start by recalling that diffraction and dispersion are long-known phenomena limiting the applications of beams or pulses.

Diffraction is always present, affecting any waves that propagate in two or three-dimensional (3D) media. Pulses and beams are constituted by waves traveling along different directions, which produces a gradual spatial broadening. This effect is a limiting factor whenever a pulse is needed, which maintains its transverse localization, like, for example, in free space communications, image forming, optical lithography, and electromagnetic tweezers, etc.

Dispersion acts on pulses propagating in material media causing mainly a temporal broadening, an effect due to the variation of the refraction index with the frequency, so that each spectral component of the pulse possesses a different phase velocity. This entails a gradual temporal widening, which constitutes a limiting factor when a pulse is needed that maintains its time width, like, for example, in communication systems.

It has been important, therefore, to develop techniques able to reduce those phenomena. NDW, known also as localized waves, are, indeed, able to resist diffraction for a long distance. Today, NDW are well-established both theoretically and experimentally, and have innovative applications not only in vacuum, but also in material (linear or nonlinear) media, also showing resistance to dispersion. As mentioned, their potential applications are being explored intensively, always with surprising results, in fields like acoustics, microwaves, and optics, and are also promising in mechanics, geophysics [2], and even elementary particle physics [3] and gravitational waves. One interesting acoustic application has been already obtained in high-resolution ultra-sound scanning of moving organs in the human body. We shall see that NDWs are suitable superpositions of Bessel beams. And worth noticing is that peculiar superposition of Bessel beams can be used to obtain “static” NDW fields, with high transverse localization, and whose longitudinal intensity pattern can assume any desired shape within a chosen interval \(0 \leq z \leq L\) of the propagation axis; such waves with a static envelope [1, 4–7], that we called FW, have been produced experimentally in recent times in the case of optics, as reported elsewhere also in this book. These FWs promise to have very important applications (even in the field of medicine and of tumor curing [8]).

To confine ourselves to electromagnetism, let us recall again the present-day studies on electromagnetic tweezers, optical (or acoustic) scalpels, optical