
Wolfgang Grellmann Sabine Seidler

Polymer Testing

HANSER

Grellmann, Seidler **Polymer Testing**

Wolfgang Grellmann Sabine Seidler (Eds.)

Polymer Testing

2nd Edition

With contribution by

Volker Altstädt, Monika Bauer, Christian Bierögel, Gert Busse, Klaus Friedrich, Henrik Höninger, Thomas Lüpke, Bernd Michel, Hans-Joachim Radusch, Falko Ramsteiner, Andreas Schönhals, Jörg Trempler

> HANSER Hanser Publications, Cincinnati

Hanser Publishers, Munich

The Editors: Prof. Dr. rer. nat. habil. Wolfgang Grellmann, Martin-Luther-University Halle-Wittenberg, Centre of Engineering Science, D-06099 Halle and Polymer Service GmbH Merseburg, D-06217 Merseburg, Germany

Prof. Dr.-Ing. habil. Sabine Seidler Vienna University of Technology, Institute of Materials Science and Technology Favoritenstraße 9, A-1040 Vienna, Austria

Distributed in North and South America by: Hanser Publications 6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA Fax: (513) 527-8801 Phone: (513) 527-8977 www.hanserpublications.com

Distributed in all other countries by Carl Hanser Verlag Postfach 86 04 20, 81631 München, Germany Fax: +49 (89) 98 48 09 www.hanser-fachbuch.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Library of Congress Cataloging-in-Publication Data Grellmann, Wolfgang, 1949-[Kunststoffpruefung. English] Polymer testing / Wolfgang Grellmann, Sabine Seidler. -- 2nd edition. pages cm Includes bibliographical references and index. ISBN 978-1-56990-548-7 (hardcover) -- ISBN 978-1-56990-549-4 (e-book) 1. Polymers--Testing. I. Seidler, Sabine, 1961- II. Title. TA455.P58G7413 2013 620.1'920287--dc23

Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-1-56990-548-7 E-Book ISBN 978-1-56990-549-4

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher.

© Carl Hanser Verlag, Munich 2013 Production Management: Steffen Jörg Coverconcept: Marc Müller-Bremer, www.rebranding.de, München Coverdesign: Stephan Rönigk Printed and bound by Kösel, Krugzell Printed in Germany

Preface to the Second Edition

The textbook *"Polymer Testing"* is mainly intended for the education of university students and students of universities of applied sciences. This textbook was deemed to be necessary because the testing of polymers has become established as a separate scientific discipline within polymer sciences in recent years. The textbook was first published in German in 2005. An improved English version was published in 2007, and a Russian edition appeared in 2010 with special consideration given to the specific GOST standards.

The positive reviews from our colleagues demonstrate that the concept "Method – Parameters – Examples" meets students` needs and is also accepted in practice.

Although there have been no significant changes to basic testing methods since the first edition appeared, there have been considerable advances in the evaluation of structure-property correlations and standardisation. It has become increasingly necessary to provide material-scientific parameters to quantify the relationship between microstructure and macroscopic properties. Therefore, it seemed necessary to publish a second edition. The previous edition has been comprehensively revised, and the new edition covers all the latest developments in the field, including all amendments to the most important polymer test standards up to May 2013.

Using the same concept and methodical structure in the presentation of polymer test procedures, the parameters obtained by the latter and the selected examples, the new edition provides university students and students of universities of applied sciences with a good and fast source of information. This is why the textbook has been widely adopted by universities and universities of applied sciences for the teaching of *"Polymer Testing"*.

In order to provide support the lecturers, a PowerPoint presentation has been created for all pictures and tables. It can be downloaded from www.hanserpublications.com. In this regard, we would like to thank Prof. Dr.-Ing. Christian Bierögel, in particular, for his valuable advice in the preparation of this edition and especially for the new publication of the pictures, which are now in colour, and his extensive work on producing the PowerPoint presentation of all pictures. A Wiki dictionary, *"Plastics Testing and Diagnostics*", has been produced on the scientific basis of the book and of publications from the Merseburg scientific school, and it often provides more detail than the book. The dictionary is available at www.polymerservice-merseburg.de/wiki-lexikon-kunststoffpruefung and can be used for practical work. An extensive compilation of fracture mechanics test specimens and approximation equations to calculate parameters in fracture mechanics are just two examples of what the dictionary offers.

We would like to thank Carl Hanser Verlag, especially Ms. Dr. N. Warkotsch, Ms. Dr. C. Strohm, Ms. Dipl.-Ing. (FH) U. Wittmann and Mr. S. Jörg, for their much-appreciated and reliable assistance.

June 2013

The Editors

Preface to the First Edition

This book is based on the editors' extensive experience in research, development and education in the field of materials science and especially polymer testing, polymer diagnostics and failure analysis. The results of their work were published in several reference books about deformation and fracture behavior of polymers, in numerous single publications in peer-reviewed scientific journals and in proceedings. Given the fact that the field of science undergoes a rapid and dynamic development it seemed prudent to present these results in a textbook for students.

The following factors convinced us that a comprehensive representation of the state of knowledge was needed:

- The ever-increasing importance of this materials group for continued technical progress led to an increasing share of polymers and compounds in various applications.
- The increased safety awareness led to the development of hybrid methods of polymer diagnostics, which enable a complex view of the connection between loading and material behavior under actual loading conditions and ambient influences
- As a result of the development of fiber-reinforced thermoplastic and thermosetting composite materials, new challenges to polymer testing methods emerged.
- The increasing use of polymers and elastomers in medical technology for various applications requires the development of technological testing methods for viability, serviceability, operating safety and /or service life.
- As a consequence of the trend to miniaturization components (microsystems), more suitable testing methods are necessary for the evaluation of various thermomechanical loadings of materials properties, e.g., in highly integrated electronic components.

In addition, a number of new standards and regulatory codes for polymer testing have been introduced over the past years, further emphasizing the need for a redesigned textbook for this discipline of science. The book presents a comprehensive representation of knowledge provided by respected colleagues from universities, universities of applied sciences and the polymer industry. A list of co-authors as well as acknowledgements for numerous colleagues and co-workers follow on separate pages.

The editors and co-authors tried hard to overcome the limits of classic polymer testing using ASTM and ISO standards in order to make the importance of polymer testing for the development and application of new polymers, composite materials and materials compounds, as well as the introduction of new technologies, more recognizable.

This book is primarily designed for students of bachelor, diploma and master courses of material science, material technology, plastic technology, mechanical engineering, process engineering and chemical engineering. It can be used by students, teachers of universities and colleges for supplementary studies in the disciplines of chemistry and industrial engineering. The methods of polymer testing are also essential to the development and application of biomedical or nanostructured materials.

With the publication of this book we hope that it will not only serve the important task of training of young scientists in physical and material oriented disciplines, but will also make a contribution to further education of professional polymer testers, design engineers, and technologists.

We thank Carl Hanser Publishers for publishing this book, entitled "Polymer Testing", especially we are grateful to Dr. Christine Strohm who thoroughly revised the complete text for this edition. We also thank Dr. Paul I. Anderson for the translation of several chapters. The main idea of this book was based on the 1992s book by Dr. Heinz Schmiedel "Handbook of Polymer Testing", written in German language. We kept the physical-methodical approach and also, the comprehensive chapter "Fracture Toughness Measurements in Engineering Plastics" based on our research work in this field for many years. For example it is pointed out on the extensive collection of fracture mechanics specimen and the evaluation equations for determination of fracture mechanics parameters.

We want to thank sincerely all co-workers from the Center of Engineering Science and the Institute of Polymer Materials e.V. of the Martin-Luther-University of Halle-Wittenberg and all collaborators from the Institute of Materials Science and Technology of the Vienna University of Technology who, with their commitment and their willing cooperation, made the publication of this book possible in the first place.

Sabine Seidler, Vienna

Wolfgang Grellmann, Halle

May 2007

Listing of Co-authors

Prof. Dr. *Volker Altstädt* University of Bayreuth, Germany (Chapter 10)

Prof. Dr. *Monika Bauer* Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Teltow, Germany Technical University of Brandenburg (BTU), Cottbus, Germany (Part 11.2)

Prof. Dr. *Christian Bierögel* Martin Luther University Halle-Wittenberg and Polymer Service GmbH Merseburg, Institute of Martin Luther University Halle-Wittenberg, Germany (Chapter 2, Part 4.3 and Chapter 9)

Prof. Dr. *Gert Busse* University of Stuttgart, Germany (Chapter 8)

Prof. Dr. Dr. Klaus Friedrich Institute for Composite Materials (IVW), Technical University of Kaiserslautern, Germany (Part 4.8)

Dr. *Henrik Höninger* IMA Materialforschung und Anwendungstechnik Dresden, Germany (formerly) (Parts 4.5, 4.6 and 11.3)

Dr. *Thomas Lüpke* Kunststoff-Zentrum (KUZ) Leipzig, Germany (Parts 4.1 and 4.2)

Prof. Dr. *Bernd Michel* FhG Institute for Reliability and Microintegration (IZM) Berlin, Germany (Chapter 12) Prof. Dr. *Hans-Joachim Radusch* Martin Luther University Halle-Wittenberg, Germany (Chapter 3)

Dr. Falko Ramsteiner BASF Group Ludwigshafen, Germany (formerly) (Chapter 7)

Prof. Dr. Andreas Schönhals

Federal Institute for Materials Research and Testing (BAM) Berlin, Germany (Part 6.3)

Dr. *Jörg Trempler* Martin Luther University Halle-Wittenberg, Germany (formerly) (Part 6.2)

The chapters and sections not listed above were written by the editors.

We owe particular gratitude for their assistance with the development and compilation of the manuscript to:

Ms. Dipl.-Ing. *Yvonne Chowdhury*, InnoMat GmbH, Teltow, Germany (Part 11.2), Ms. Dipl.-Ing. *Ivonne Pegel*, ESW GmbH, Wedel, Germany (Chapter 10) and Mr. Dr. *Hans Walter*, FhG Institute for Reliability and Microintegration (IZM) Berlin, Germany (Chapter 12).

In particular we would like to thank co-author Prof. Dr. *Christian Bierögel* not only for his contributions to the book, but moreover for his comprehensive assistance and critical advice during the composition of the manuscript.

We thank Prof. Dr. *Peter Grau* for the professional revision of the parts on micro-hardness testing.

For the critical revision of single chapters we thank our longtime co-workers Ao. Prof. Dr. mont. *Vasiliki-Maria Archodoulaki*, Dr. *Thomas Koch*, Prof. Dr. *Ines Kotter*, Dr. *Ralf Lach*, Prof. Dr. *Beate Langer* and finally Dr. *Katrin Reincke*.

We thank Ms. *Dagmar Fischer* for the technical editing of figures and images that we provided in various graphical file formats and their transformation into the format required for printing by Carl Hanser Publishers.

Table of Contents

No	omencl	ature (Selection	.)	XXI
Тε	erminology 2				
Sy	Symbols and Abbreviated Terms XX				XXXIII
1	Intro	luction	l		1
	1.1	The Genesis of Polymer Testing as a Science			
	1.2	Factors Influencing Data Acquisition			
	1.3	Classi	fication o	of Polymer Testing Methods	5
	1.4	Stand	ards and	Regulatory Codes for Polymer Testing	7
	1.5	Comp	vilation o	f Standards	10
	1.6	References by Area of Specialization			
2	Preparation of Specimens			15	
	2.1	Introduction			15
	2.2	Testing Molding Materials			17
	2.3	Specia	nen Prep	paration	18
		2.3.1	General	Remarks	18
		2.3.2	Specime	en Preparation by Direct Shaping	19
			2.3.2.1	Production of Specimens from Thermoplastic	
				Molding Materials	19
			2.3.2.2	Production of Specimens from Thermosetting	
				Molding Materials	26
			2.3.2.3	Production of Specimens from Elastomeric Materials	28
		2.3.3		en Preparation by Indirect Shaping	29
		2.3.4	Characte	erization of Specimen State	31
	2.4	Specia	nen Prep	paration and Conditioning	33
	2.5	Compilation of Standards			36
	2.6	References			38
3	Deter	mining	Process	-Related Properties	39
	3.1 Molding Materials			39	

	3.2	Deter	mining Bulk Material Properties	40
		3.2.1	Bulk Density, Compacted Apparent Density, Fill Factor	40
		3.2.2	Pourability, Angle of Repose, Slide Angle	41
	3.3	Deter	mining the Properties of Fluids	42
		3.3.1	Rheological Fundamentals	42
			3.3.1.1 Viscosity of <i>Newtonian</i> and non- <i>Newtonian</i> Fluids	42
			3.3.1.2 Temperature and Pressure Dependence of Viscosity	46
			3.3.1.3 Molecular Mass Influence on Viscosity	46
			3.3.1.4 Volume Properties	47
		3.3.2	Measuring Rheological Properties	48
			3.3.2.1 Rheometry/Viscometry	48
			3.3.2.2 Rotational Rheometers	49
			3.3.2.3 Capillary Rheometers	55
			3.3.2.4 Extensional Rheometers	66
		3.3.3	Selecting Measurement Methods for Characterizing	
			Polymer Materials	68
	3.4	Comp	pilation of Standards	69
	3.5	Refer	ences	70
4	Mech	anical	Properties of Polymers	73
	4.1	Fund	amental Principles of Mechanical Behavior	73
		4.1.1	Mechanical Loading Parameters	73
			4.1.1.1 Stress	73
			4.1.1.2 Strain	76
		4.1.2		77
			4.1.2.1 Elastic Behavior	77
			4.1.2.2 Viscous Behavior	80
			4.1.2.3 Viscoelastic Behavior	82
			4.1.2.4 Plastic Behavior	88
	4.2	Mech	anical Spectroscopy	90
		4.2.1	Experimental Determination of Time Dependent	
			Mechanical Properties	90
			4.2.1.1 Static Testing Methods	91
			4.2.1.2 Dynamic-Mechanical Analysis (DMA)	92
		4.2.2	Time and Temperature Dependence of Viscoelastic Properties	99
		4.2.3	Structural Factors Influencing Viscoelastic Properties	102
	4.3	Quasi	i-Static Test Methods	104
		4.3.1	Deformation Behavior of Polymers	104

	4.3.2	Tensile	Tests on Polymers	110
		4.3.2.1	Theoretical Basis of the Tensile Test	110
		4.3.2.2	Conventional Tensile Tests	113
		4.3.2.3	Enhanced Information of Tensile Tests	122
	4.3.3	Tear Te	est	128
	4.3.4	Compr	ession Test on Polymers	130
		4.3.4.1	Theoretical Basis of the Compression Test	130
		4.3.4.2	Performance and Evaluation of Compression Tests	133
	4.3.5	Bend Te	ests on Polymers	138
		4.3.5.1	Theoretical Basis of the Bend Test	138
		4.3.5.2	The Standardized Bend Test	144
4.4	Impa	ct Loadiı	ng	149
	4.4.1	Introdu	iction	149
	4.4.2	Charpy	Impact Test and Charpy Notched Impact Test	150
	4.4.3	Tensile	-Impact and Notched Tensile-Impact Tests	155
	4.4.4	Free-fal	lling Dart Test and Puncture Impact Test	158
4.5	Fatig	ie Behav	ior	161
	4.5.1	Fundan	nentals	161
	4.5.2	Experin	nental Determination of Fatigue Behavior	163
	4.5.3	Plannin	g and Evaluating Fatigue Tests	167
	4.5.4	Factors	Influencing the Fatigue Behavior and	
		Service	-Life Prediction of Service Life for Polymers	169
4.6	Long	-Term St	atic Behavior	171
	4.6.1	Fundan	nentals	171
	4.6.2	Tensile	Creep Test	173
	4.6.3	Flexura	l Creep Test	180
	4.6.4	Creep (Compression Test	181
4.7	Hard	ness Test	t Methods	183
	4.7.1	Princip	les of Hardness Testing	183
		-	itional Hardness Testing Methods	185
		4.7.2.1	Test Methods for Determining Hardness Values	
			after Unloading	185
		4.7.2.2	Test Methods for Determining Hardness Values	
			under Load	187
		4.7.2.3	Special Testing Methods	191
		4.7.2.4	Comparability of Hardness Values	191
	4.7.3	Instrum	nented Hardness Test	193
		4.7.3.1	Fundamentals of Measurement Methodology	193

			4.7.3.2	Material Parameters Derived from Instrumented	
				Hardness Tests	195
			4.7.3.3	Examples of Applications	198
		4.7.4	Correlat	ting Microhardness with Yield Stress and	
			Fracture	e Toughness	200
	4.8	Fricti	on and W	Vear	203
		4.8.1	Introdu	ction	203
		4.8.2	Fundam	nentals of Friction and Wear	205
			4.8.2.1	Frictional Forces	205
			4.8.2.2	Temperature Increase Resulting from Friction	206
			4.8.2.3	Wear as a System Characteristic	207
			4.8.2.4	Wear Mechanisms and Formation of Transfer Film	207
		4.8.3	Wear Te	ests and Wear Characteristics	208
			4.8.3.1	Selected Model Wear Tests	209
			4.8.3.2	Wear Parameters and Their Determination	211
				Wear Parameters and Their Presentation	212
		4.8.4		Experimental Results	213
				Counterbody Influence	213
				Influencing of Fillers	214
				Influence of Loading Parameters	216
				Predicting Properties Via Artificial Neural Networks	217
			Summa		219
	4.9	Comp	pilation o	f Standards	219
	4.10	Refer	ences		225
5	Fracti	ure Tou	ughness N	Measurements in Engineering Plastics	233
	5.1	Intro	duction		233
	5.2	Curre	ent State a	and Development Trends	234
	5.3			Concepts of Fracture Mechanics	235
		5.3.1	Linear-I	Elastic Fracture Mechanics (LEFM)	235
				Tip-Opening Displacement (CTOD) Concept	240
		5.3.3		al Concept	243
		5.3.4	Crack R	esistance (R-) Curve Concept	245
	5.4	Exper	imental 1	Determination of Fracture Mechanical Parameters	247
		5.4.1	Quasi-st	tatic Loading	247
		5.4.2		ented Charpy Impact Test	251
			5.4.2.1	Test Configuration	251
			5.4.2.2	Maintenance of Experimental Conditions	252

			5.4.2.3	Types of Load-Deflection Diagrams - Optimization	
				of Diagram Shape	253
			5.4.2.4	Special Approximation Methods for	
				Estimating J Values	256
			5.4.2.5	Requirements for Specimen Geometry	258
		5.4.3	Instrum	nented Free-Falling Dart Test	261
	5.5	Appli	cations f	or Material Development	263
		5.5.1	Fracture	e Mechanical Toughness Evaluation on	
			Modifie	ed Polymers	263
			5.5.1.1	Particle Filled Thermoplastics	263
			5.5.1.2	Fiber-Reinforced Thermoplastics	267
			5.5.1.3	Blends and Copolymers	271
		5.5.2	Instrum	nented Tensile-Impact Testing for Product Evaluation	277
		5.5.3	Conside	eration of Fracture Behavior for Material Selection and	
			Dimens	ioning	280
	5.6	Comp	pilation o	of Standards	282
	5.7	Refer	ences		284
6	Testir	ng of Pl	nysical P	roperties	287
	6.1	Therr	nal Prop	erties	287
		6.1.1	Introdu	ction	287
		6.1.2	Determ	ining Heat Conductivity	289
		6.1.3.	Differer	ntial Scanning Calorimetry (DSC)	293
		6.1.4	Thermo	ogravimetric Analysis (TGA)	298
		6.1.5	Thermo	omechanical Analysis (TMA)	300
	6.2	Optic	al Prope	rties	304
		6.2.1	Introdu	ction	304
		6.2.2	Reflecti	on and Diffraction	304
			6.2.2.1	Directed and Diffuse Reflection	304
			6.2.2.2	Refractive Index Determination	305
		6.2.3	Dispers	ion	309
		6.2.4	Polariza	ation	310
			6.2.4.1	Optical Activity	310
			6.2.4.2	Polarization of Optical Components	311
			6.2.4.3	Polarization-Optical Testing Methods	312
		6.2.5	Transm	ission, Absorption and Reflection	319
		6.2.6	Gloss, I	ntrinsic Diffuse Reflectance and Haze	321
		6.2.7	Color		325

		6.2.8	Transparency and Translucency	328
		6.2.9	Infrared Spectroscopy	332
		6.2.10	Laser Technology	334
		6.2.11	Testing the Stability of Optical Values	335
	6.3	Electr	ical and Dielectrical Properties	337
		6.3.1	Introduction	337
		6.3.2	Physical Fundamentals	339
		6.3.3	Electrical Conductivity and Resistance	342
			6.3.3.1 Volume Resistivity	343
			6.3.3.2 Surface Resistivity	345
			6.3.3.3 Insulation Resistance	347
			6.3.3.4 Measuring Procedures	347
			6.3.3.5 Contacting and Specimen Preparation	350
		6.3.4	Dielectrical Properties and Dielectrical Spectroscopy	351
			6.3.4.1 Relaxation Processes	352
			6.3.4.2 Alternating Current Conductivity (AC Conductivity)	360
			6.3.4.3 Broadband Dielectric Measurement Techniques	360
		6.3.5	Special Technical Testing Methods	368
			6.3.5.1 Electrostatic Charge	368
			6.3.5.2 Electric Strength	370
			6.3.5.3 Creep Resistance and Arc Resistance	374
	6.4	Comp	vilation of Standards	376
	6.5	Refere	ences	380
7	Evalua	ating E	nvironmental Stress Cracking Resistance	385
	7.1	Gener	al Remarks on the Failure of Polymers in Aggressive Fluids	385
	7.2		g Environmental Stress Cracking Resistance	389
	/		Test Methods for Determining Environmental	007
		7.2.1	Stress Crack Formation	389
		7.2.2	Examples for Evaluating Environmental Stress Cracking	507
		1.2.2	Resistance with Standardized Test Methods	392
		723	Fracture Mechanics Test Methods	397
	7.3		ling Plastics Failure in Fluids Caused by Stress Cracking	401
	7.4		rs Influencing Stress Cracking Behavior	404
		7.4.1	Crosslinking	404
		7.4.1	Molecular Weight and Molecular Weight Distribution	404
		7.4.3	Branching	405
		7.4.3 7.4.4	Crystalline Regions	407
		/.1.1	Crystalline Regions	400

8

		Molecular Orientation	409
		Physical-Chemical Interaction Processes	412
		Viscosity of the Immersion Fluid	418
	7.4.8	Influence of Test Specimen Thickness	423
	7.4.9	Temperature Influence	424
7.5	Com	pilation of Standards	427
7.6	Refer	rences	428
Non-	-Destru	active Polymer Testing	431
8.1	Intro	duction	431
8.2	Non-	Destructive Testing by Electromagnetic Waves	433
	8.2.1	X-Ray Radiation	433
		8.2.1.1 Projection Methods by Means of Absorption	434
		8.2.1.2 Compton Backscatter	436
		8.2.1.3 X-Ray Refractometry	437
	8.2.2	Spectral Range of Visible Light	439
		8.2.2.1 Measuring Thickness of Transparent Components	440
		8.2.2.2 Photoelastic Imaging of Transparent Components	440
		8.2.2.3 Confocal Laser Scan Microscopes	441
		8.2.2.4 Line Projection for Detecting Contour	442
		8.2.2.5 Interferometric Methods	443
	8.2.3	Thermography	449
	8.2.4	Microwaves	449
	8.2.5	Dielectric Spectroscopy	453
	8.2.6	Eddy Current	455
8.3	Non-	Destructive Testing with Elastic Waves	456
	8.3.1	Elastic Waves under Linear Material Behavior	457
		8.3.1.1 Ultrasound	457
		8.3.1.2 Mechanical Vibrometry	467
	8.3.2	Elastic Waves with Non-linear Material Behavior	472
		8.3.2.1 Fundamentals on Elastic Waves in	
		Non-Linear Materials	472
		8.3.2.2 Non-Linear Air-Ultrasound	472
		8.3.2.3 Non-Linear Vibrometry	475
8.4	Non-	Destructive Testing by Dynamic Heat Transport	478
	8.4.1	External Excitation	478
		8.4.1.1 Heat-Flux Thermography by Non-Periodical	
		Heat Transport	478

		8.4.1.2 Thermography with Periodical Heat Transport8.4.2 Internal Excitation	481 484
		8.4.2.1 Thermography with Excitation by Elastic Waves	484
		8.4.2.2 Thermography with Other Types of Internal Excitation	489
	8.5	Outlook	489
	8.6	References	491
9	Hybri	id Methods of Polymer Diagnostics	497
	9.1	Objectives	497
	9.2	Tensile Test, Acoustic Emission Test and Video Thermography	499
	9.3	Tensile Test and Laser Extensometry	501
	9.4	Fracture Mechanics and Non-Destructive Testing	506
	9.5	References	510
10	Testir	ng of Composite Materials	513
	10.1	Introduction	513
	10.2	Theoretical Background	514
		10.2.1 Anisotropy	514
		10.2.2 Elastic Properties of Laminates	516
		10.2.3 Influence from Moisture and Temperature	516
		10.2.4 Laminate Theory and St. Venant's Principle	517
		10.2.5 Applying Fracture Mechanical Concepts to Fiber Composites	518
	10.3.	Specimen Preparation	520
		10.3.1 Manufacture of Laminates	520
		10.3.2 Preparing Specimens for Unidirectional Loading	522
	10.4	Determining Fiber Volume Content	524
	10.5	Mechanical Test Methods	525
		10.5.1 Tensile Tests	525
		10.5.2 Compression Tests	528
		10.5.3 Flexural Tests	532
		10.5.4 Interlaminar Shear Strength	534
		10.5.5 Shear Tests	536
		10.5.5.1 \pm 45° Off-Axis Tensile Test	536
		10.5.5.2 10° Off-Axis Tensile Test	538
		10.5.5.3 Two- and Three-Rail Shear Test	538
		10.5.5.4 <i>Iosipescu</i> Shear Test	540
		10.5.5.5 Plate-Twist Shear Test	541
		10.5.5.6 Torsional Loading on Thin-Walled Tubes	542

	10.6	Fracture Mechanical Test Methods	543
		10.6.1 Experimental Tests on Fiber Composite Materials	543
		10.6.2 Special Specimen Configuration	544
		10.6.2.1 Specimens for Mode I Loading	544
		10.6.2.2 Specimen for Mode II Loading	546
		10.6.2.3 Mixed-Mode Specimens	549
		10.6.3 Fracture Mechanical Values of Fiber Composite Materials	551
	10.7	Dedicated Test Methods	553
		10.7.1 Edge Delamination Test (EDT)	553
		10.7.2 Boeing Open-Hole Compression Test	554
	10.8	Peel Strength of Flexible Laminates	554
	10.9	Impact Loading and Damage Tolerance	556
	10.10	Compilation of Standards and Guidelines	560
	10.11	References	562
11	Techn	ological Testing Methods	565
	11.1	Heat Distortion Resistance	565
		11.1.1 Fundamentals and Definitions	565
		11.1.2 Determining Heat Distortion Resistance Temperature HDT	
		and Vicat Softening Temperature	566
		11.1.3 Practical Examples for the Informational Value of the <i>Vicat</i>	
		and HDT Test	569
	11.2	Fire Behavior	573
		11.2.1 Introduction	573
		11.2.2 Stages of a Fire and Fire-Determining Parameters	575
		11.2.3 Fire Tests	577
		11.2.3.1 Smoldering Fire	578
		11.2.3.2 Ignitability	579
		11.2.3.3 Flame Spread	584
		11.2.3.4 Heat Release	586 588
		11.2.3.5 Fire Resistance	
		11.2.3.6 Ease of Extinguishment11.2.4 Utilization of a Cone Calorimeter to Characterize Fire Behavior	588 590
	11.3	Component Testing	590 596
	11.5	11.3.1 Introduction	596
		11.3.2 Basic Testing Methods	590 597
		11.3.2.1 General Remarks	597
		11.3.2.2 Testing Visible Features	597

	11.3.2.3 Testing Materials Properties	599
	11.3.2.4 Testing Serviceability	601
	11.3.3 Testing Plastic Piping	603
	11.3.3.1 Quality Assurance for Plastic Piping	603
	11.3.3.2 Testing Hydrostatic Rupture Strength for Plastic Pipes	604
	11.3.4 Testing Plastics Components for Application in Vehicle Design	607
	11.3.4.1 Test Requirements	607
	11.3.4.2 Mechanical Tests	607
	11.3.4.3 Permeation and Emission Tests	609
	11.3.5 Testing Plastics Components for Application in	
	Building Construction	612
	11.3.5.1 Introduction	612
	11.3.5.2 Testing Sandwich Panels	613
	11.3.5.3 Testing Plastic Casing Pipes	616
11	.4 Implant Testing	621
	11.4.1 Introduction	621
	11.4.2 Push-out Tests for Implants	623
	11.4.3 Testing the Application Behavior of Pharyngotracheal	
	Voice Prostheses	626
	11.4.4 Determining the Mechanical Properties of Human Cartilage	629
11	.5 Compilation of Standards	631
11	.6 References	634
12 Te	sting of Microcomponents	637
12	.1 Introduction	637
12	.2 Microspecimen Testing	640
	12.2.1 Micro-Tensile Tests	640
	12.2.2 Fracture Mechanics Investigations Using Mini	
	Compact Tension (CT) Specimens	645
12		647
12	C C	649
	12.4.1 Non-Contacting Displacement Field Analysis Using	
	Digital Image Correlation (Gray-Value Correlation Analysis)	649
	12.4.2 In-Situ Deformation Measurement with	
	Atomic Force Microscopy (AFM)	651
12	.5 References	655
Subje	ct Index	659

Nomenclature (Selection)

a	(mm)	initial crack length (i.e. machined notch plus razor-sharpened tip), the physical crack size at the start of testing
a _{BS}	(mm)	physical crack length augmented to account for crack tip plastic deformation (fracture mirror length)
a _{cN}	$(kJ m^{-2})$	Charpy impact strength of notched specimen according to ISO 179
a _{cU}	$(kJ m^{-2})$	<i>Charpy</i> impact strength of unnotched specimen according to ISO 179
a _{eff}	(mm)	effective crack length
a/W		ratio of initial crack length to specimen width
a (λ)		absorption degree
А	(µm)	average interparticle distance
A ₀	(mm ²)	cross-section
A _{el}	(N mm)	elastic part of $A_{_{\rm G}}$
A _G	(N mm)	total deformation energy of test specimen computed from the area under the load–deflection diagram up to $\rm F_{max}$
$A_{_{\rm H}}$	(N mm)	nominal impact energy of pendulum hammer
A_k	(N mm)	complementary deformation energy, used in the J-integral evalua- tion method of <i>Merkle</i> and <i>Corten</i>
A _n		$n^{\mbox{\tiny th}}$ amplitude considered for the calculation of the logarithmic decrement
A_{pl}	(N mm)	plastic part of A _G
A _R	(N mm)	crack propagation energy
A _s	(mm ²)	damage area
b	(mm)	specimen width according to ISO 179
b _N	(mm)	remaining width at the notch base of the test specimen according to ISO 179-1
В	(mm)	specimen thickness
С	$(mm N^{-1})$	compliance
C_i		constants of the power law for describing $J_{\mbox{\tiny R}}\mbox{-}curves$
d	(mm)	effective way of light through the specimen
D	(µm)	average particle diameter

D _{1,2}		geometrical functions in the J-integral evaluation method of <i>Merkle</i> and <i>Corten</i> (MC)
Е	(MPa)	Young's modulus (modulus of elasticity)
Е	$(kJ m^{-2})$	tensile-impact strength according to ISO 8256
E ₅₀	(J)	energy at 50 % failure according to ISO 6603-1
E _c	(J)	corrected impact energy according to ISO 179-1
E _d	(MPa)	dynamic flexural modulus
E _f	(MPa)	flexural modulus according to ISO 178
E _n	$(kJ m^{-2})$	tensile-impact strength (notched specimen) according to ISO 8256
E _t	(MPa)	modulus of elasticity according to ISO 527
F	(mm)	deflection
f_{gy}	(mm)	deflection at the transition from elastic to elastic-plastic material behavior
f_{K}	(mm)	maximum deflection $f_{_{max}}$ excluding the component $f_{_B}$
f_{max}	(mm)	deflection at maximum load F _{max}
F	(N)	load (force)
F_1	(N)	inertial load, which arises from the inertia of the part of the test specimen accelerated after the first contact with the striker
\mathbf{F}_{gy}	(N)	characteristic load value corresponding to the transition from elastic to elastic-plastic material behavior
F _{max}	(N)	maximum load
F _P	(N)	maximum load (force) according to ISO 6603-2
g		gloss degree
G		gloss
G	(MPa)	shear modulus
G	$(N mm^{-1})$	energy release rate
G ₁₂	(MPa)	interlaminar shear modulus
G _I	$(N mm^{-1})$	energy release rate in mode I
G_{Ic}	(N mm ⁻¹)	energy release rate, critical value at the point of unstable crack growth; static loading, geometry-independent
G_{IIc}	$(N mm^{-1})$	energy release rate in mode II, critical value at the point of unstable crack growth; static loading, geometry-independent
G′	(MPa)	dynamic modulus (storage modulus)
G″	(MPa)	dynamic modulus (loss modulus)
GD		basic dispersion
h		gloss height
Н		heterogeneity

LID	$(N mm^{-2})$	hall in domestion handress according to DIN EN ISO 2020 1
HB		ball indentation hardness according to DIN EN ISO 2039-1
HDT	(°C)	heat distortion temperature according to ISO 75
НК	$(N mm^{-2})$	Knoop hardness
HM	$(N mm^{-2})$	Martens hardness
HR	(N mm ⁻²)	<i>Rockwell</i> hardness
HV	(N mm ⁻²)	<i>Vickers</i> hardness
Ι		intensity
I _p	(A)	photometer current intensity at a bearing specimen
I _{po}	(A)	photometer current intensity at a bearing specimen at perpendicu- lar light direction
I	(A)	photometer current intensity at a bearing matt white standard
I _{swo}	(A)	photometer current intensity at a bearing matt white standard at perpendicular light direction
J	(N mm ⁻¹)	J-integral; a mathematical expression, a line or surface integral that encloses the crack front from one surface to the other, used to characterize the local stress-strain field around the crack front; fracture mechanics parameters are calculated using methods of evaluation of this integral
J _I	(N mm ⁻¹)	J value in mode I (the index I is only used in the case of geometry independence)
J_{Id}	(N mm ⁻¹)	critical J value at the point of unstable crack growth; dynamic load- ing, geometry-independent
J_{Id}^{MC}	(N mm ⁻¹)	critical J value at the point of unstable crack growth, for dynamic loading, in the geometry-independent J-integral evaluation method of <i>Merkle</i> and <i>Corten</i>
J_{Id}^{ST}	(N mm ⁻¹)	critical J value at the point of unstable crack growth, for dynamic loading, in the geometry-independent J-integral evaluation method of <i>Sumpter</i> and <i>Turner</i>
J _{0,2}	(N mm ⁻¹)	technical crack initiation value for an amount of crack growth of $\Delta a = 0.2 \text{ mm}$
J_i	$(N mm^{-1})$	physical crack initiation value determined from intersection of stretch zone width and J-R curve
JT ₁	$(N mm^{-1})$	energy absorption capacity of a material during stable crack growth
k		<i>Boltzmann</i> number $(k = 1, 38 \cdot 10^{-23} \text{ J K}^{-1})$
k		number of colour order of an isochromatic line series
K	(MPa)	compression modulus
К	$(MPa mm^{1/2})$	stress intensity factor
K _I	$(MPa mm^{1/2})$	stress intensity factor in mode I (the index I is only used in the case of geometry independence)

K _{Ic}	(MPa mm ^{1/2})	fracture toughness, critical value at the point of unstable crack growth; static loading, geometry-independent
K _{Id}	$(MPa mm^{1/2})$	fracture toughness, critical value at the point of unstable crack growth; dynamic loading, geometry-independent
$K_{Ic;Id}^{CTOD}$	$(MPa mm^{1/2})$	$K_{_{1c}}$ and $K_{_{1d}}$, calculated from CTOD
1	(mm)	specimen length
L	(mm)	clamping length; initial distance between grips
L	(mm)	support span according to ISO 179-1
L_0	(mm)	initial gauge length
m	(g)	mass
m		constraint factor in relation between J and δ concepts
m _p	(kg)	weight of pendulum hammer
M _c		molecular weight of a chain network
M_{W}	$(g mol^{-1})$	molecular weight, weight average
MFR	$(g(10 min)^{-1})$	melt mass-flow rate according to ISO 1133
MVR	$(\text{cm}^3 (10 \text{ min})^{-1})$	melt volume-flow rate according to ISO 1133
n		rotational factor
n		refraction, refraction index
n _c		refraction at wavelength C (656 nm) of the <i>Fraunhofer</i> line
n _D		refraction at wavelength D (589 nm) of the Fraunhofer line
n _f		refraction of immersion oil at temperature in contrast minimum
n _F		refraction at wavelength F (486 nm) of the Fraunhofer line
n _x		refraction of immersion oil at room temperature
Ν		crosslink density
p (λ)		spectral reflexion degree
р	(MPa)	pressure
Q	(J)	quantity of heat
r _N	(µm)	notch base radius according to ISO 179-1
R		universal gas constant ($R = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$)
R _s		reflectance of a layer above a black ground
R_{∞}		reflectance of an optical dense layer
s	(mm)	support span
S		dispersion coefficient
t	(s)	time
t _b	(ms)	time to brittle fracture
t _B	(ms)	time to fracture

t _p	(ms)	time to maximum load according to ISO 6603-2
tan δ		mechanical loss factor
Т		total transmission
Т	(°C)	temperature
T _D		translucency
T _g	(°C)	glass transition temperature
Т _g		haze dimension
		tearing modulus
$T_J T_J^{0,2}$		tearing modulus determined from J– Δa curve at $\Delta a = 0.2$ mm
T _m	(°C)	melting temperature
T _p		transparency
T _s		transmittance of the scattered light
Ts	(N mm ⁻¹)	tear strength
$T_{\delta}^{0,2}$		tearing modulus determined from δ - Δa curve at $\Delta a = 0,2$ mm
U	(N mm)	deformation energy
v	(mm)	crack-mouth-opening displacement
\mathbf{v}_{I}	$(m s^{-1})$	impact velocity according to ISO 13802
v_L	(mm)	load-line displacement
v _T	$(mm min^{-1});$ $(m s^{-1})$	cross-head speed
V	mm ³	volume
VST	(°C)	Vicat softening temperature
W	(mm)	specimen width
Ws	$(mm^{3}(Nm)^{-1})$	specific wear rate
х		standardized colour data
Х		intensity of the colour red
у		standardized colour data
Y		intensity of the colour green
Z	(mm)	distance of knife-edge from specimen surface
Z		intensity of the colour blue
α	(K^{-1})	linear thermal expansion
β		proportionality constant of geometrical size criterion for LEFM
β	$(n \circ C^{-1})$	temperature coefficient of refraction
γ		shear strain
$\gamma_{_{12}}$		interlaminar shear strain
γ		shear rate

XXVI

δ	(mm)	crack-tip-opening displacement describing the local strain field in front of the crack tip, calculated with the help of the plastic-hinge model
$\boldsymbol{\delta}_{I}$	(mm)	crack-tip-opening displacement in mode I (the index I is only used in the case of geometry independence)
$\boldsymbol{\delta}_{Ic}$	(mm)	critical δ value for unstable crack growth, quasi-static loading, geometry-independent
$\boldsymbol{\delta}_{Id}$	(mm)	critical δ value for unstable crack growth, dynamic loading, geometry-independent
$\boldsymbol{\delta}_{Idk}$	(mm)	critical δ value for unstable crack growth obtained by using advanced plastic-hinge model, dynamic loading, geometry-independent
$\delta_{0,2}$	(mm)	technical crack-opening displacement calculated at $\Delta a = 0.2 \text{ mm}$
δ	(mm)	crack-tip-opening displacement at physical crack initiation
Δa	(mm)	amount of stable crack growth, distance between original crack size and crack front after loading
Δa_{max}	(mm)	upper validity limit of Δa
Δa_{\min}	(mm)	lower validity limit of Δa
Δl	(mm)	increase in specimen length
ΔL	(mm)	increase in clamping length
ΔL_0	(mm)	increase in gauge length
Δn		birefringence
Δt	(s)	time difference
Δv	$(m s^{-1})$	velocity change
3		proportionality constant of geometrical size criterion for J-integral concept
3	(%)	strain
3	(°)	angle of incidence
ε′	(°)	angle of refraction
3	(s ⁻¹)	strain rate
$\epsilon_{_{AE}}$	(%)	critical strain at acoustic onset
ε _B	(%)	tensile strain at break according to ISO 527
$\epsilon_{\rm f}$	(%)	normal flexural strain
ε _l	(%)	local strain
ϵ_{lmax}	(%)	maximum local strain
ϵ_{lmin}	(%)	minimum local strain
$\epsilon_{_{\rm M}}$	(%)	normative strain at tensile strength according to ISO 527
ε _q	(%)	lateral (transverse) strain

	(0)	
ε _t	(%)	nominal tensile strain according to ISO 527
ϵ_{tB}	(%)	nominal tensile strain at break according to ISO 527
$\boldsymbol{\epsilon}_{tM}$	(%)	nominal strain at tensile strength according to ISO 527
$\epsilon_{_W}$	(%)	true strain
ε	(%)	yield strain according to ISO 527
η		geometrical function
η		dynamic viscosity
$\eta_{\rm el; pl}$		geometrical functions for assessment of elastic (el) and plastic (pl) parts of deformation energy used in the J-integral evaluation method of <i>Sumpter</i> and <i>Turner</i>
λ		extension ratio
λ	$(W (m K)^{-1})$	heat conductivity
λ	(nm)	light wavelength
Λ		logarithmic decrement according to ISO 6721-1
μ		coefficient of friction, Poisson's ratio
ν		Poisson's ratio
ν		Abbe number
ξ		proportionality constant of geometrical size criterion for CTOD
ρ	(kg m^{-3})	density
σ	(MPa)	stress
$\sigma_{_B}$	(MPa)	tensile stress at break according to ISO 527
$\sigma_{\rm f}$	(MPa)	flexural stress according to ISO 178
σ_{fc}	(MPa)	flexural strength at peripheral strain of 3.5 % according to ISO 178
$\sigma_{_{fM}}$	(MPa)	flexural strength according to ISO 178
$\sigma_{_{\rm F}}$	(MPa)	yield stress: either σ_y or $\sigma_F = 1/2(\sigma_y + \sigma_M)$
σ_1	(MPa)	local stress
σ_{M}	(MPa)	tensile strength according to ISO 527
σ_{v}	(MPa)	comparative stress
$\sigma_{\rm w}$	(MPa)	true stress
σ_v	(MPa)	yield stress (yield point) according to ISO 527
τ	(MPa)	shear stress
τ		oscillation period
τ_{12}	(MPa)	interlaminar shear stress
τ(λ)		spectral transmittance
$\phi_{\rm v}$		filler or fiber content
Φ		light beam that is bearing on a layer

$\Phi_{\rm ds}^{\rm KW}$		small angle light scattering
Φ_{ds}^{WW}		wide angle light scattering
$\Phi_{_{dp}}$		linear transmitted part of light
$\Phi_{_e\lambda}$	(W)	hitting spectral radiant flux
$(\Phi_{e\lambda})_{a}$	(W)	absorbed spectral radiant flux
$(\Phi_{e\lambda})_{p}$	(W)	reflected spectral radiant flux
$(\Phi_{_e\lambda})_\tau$	(W)	transmitted spectral radiant flux

Terminology

AE	acoustic emission analysis
AF	aramid-fiber
AFM	atomic force microscopy
ASTM	American Society for Testing and Materials
ATR	attenuated total reflection
BMI	Bismaleinimide
BSS	Boeing Specification Support Standard
BTT	brittle-to-tough transition temperature
CA	coupling agent
CF	carbon-fiber
CFC	carbon-fiber composite
CFRP	carbon-fiber reinforced polymer
CFR	Code of Federal Regulations
СТ	compact tension specimen
CTOD	crack-tip-opening displacement
DCB	double-cantilever beam specimen
DENT	double-edge-notched tension specimen
DIN	German Institute of Industrial Standards (Deutsches Institut für
	<u>N</u> ormung)
DMTA	dynamic-mechanical-thermal analysis
DOP	Dioctylphthalat
DSC	differential scanning calorimetry
DTG	differential thermogravimetry
DVM	German Association for Materials Testing (Deutscher Verband für
	<u>M</u> aterialprüfung)
DVS	German Association for Welding (Deutscher Verband für Schweis-
	sen und verwandte Verfahren)
EN	European Norm
EPFM	elastic-plastic fracture mechanics
ESIS	European Structural Integrity Society
ESPI	electronic speckle-pattern interferometry
FAR	Federal Aviation Regulations
FEM	finite element method