Bioactive Compounds from Marine Foods
The *IFT Press* series reflects the mission of the Institute of Food Technologists—to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley Blackwell, *IFT Press* books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 18,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

**IFT Press Advisory Group**

Nicolas Bordenave  
YiFang Chu  
J. Peter Clark  
Christopher J. Doona  
Jung Hoon Han  
Florence Feeherry  
Chris Findlay  
David McDade  
Thomas J. Montville  
Karen Nachay  
Martin Okos  
David S. Reid  
Sam Saguy  
Fereidoon Shahidi  
Cindy Stewart  
Herbert Stone  
Kenneth R. Swartzel  
Bob Swientek  
Hilary Thesmar  
Yael Vodovotz  
Ron Wrolstad
Titles in the IFT Press series

- Accelerating New Food Product Design and Development (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin)
- Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (Yoshinori Mine, Eunice Li-Chan, and Bo Jiang)
- Biofilms in the Food Environment (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- Calorimetry in Food Processing: Analysis and Design of Food Systems (Gönül Kaletunc)
- Coffee: Emerging Health Effects and Disease Prevention (YiFang Chu)
- Food Carbohydrate Chemistry (Ronald E. Wrolstad)
- Food Ingredients for the Global Market (Yao-Wen Huang and Claire L. Kruger)
- Food Irradiation Research and Technology, Second Edition (Christoper H. Sommers and Xueting Fan)
- Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control (Sadhana Ravishankar, Vijay K. Juneja, and Divya Jaroni)
- High Pressure Processing of Foods (Christopher J. Doona and Florence E. Feeherry)
- Hydrocolloids in Food Processing (Thomas R. Laaman)
- Improving Import Food Safety (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- Innovative Food Processing Technologies: Advances in Multiphysics Simulation (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- Microbial Safety of Fresh Produce (Xueting Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- Microbiology and Technology of Fermented Foods (Robert W. Hutkins)
- Multiphysics Simulation of Emerging Food Processing Technologies (Kai Knoerzer, Pablo Juliano, Peter Roupas and Cornelis Versteeg)
- Multivariate and Probabilistic Analyses of Sensory Science Problems (Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay)
- Nanoscience and Nanotechnology in Food Systems (Hongda Chen)
- Natural Food Flavors and Colorants (Mathew Attokaran)
- Nondestructive Testing of Food Quality (Joseph Irudayaraj and Christoph Reh)
- Nondigestible Carbohydrates and Digestive Health (Teresa M. Paeschke and William R. Aimutis)
- Nonthermal Processing Technologies for Food (Howard Q. Zhang, Gustavo V. Barbosa-Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- Nutraceuticals, Glycemic Health and Type 2 Diabetes (Vijai K. Pasupuleti and James W. Anderson)
- Organic Meat Production and Processing (Steven C. Ricke, Ellen J. Van Loo, Michael G. Johnson, and Corliss A. O’Bryan)
- Packaging for Nonthermal Processing of Food (Jung H. Han)
- Practical Ethics for Food Professionals: Ethics in Research, Education and the Workplace (J. Peter Clark and Christopher Ritson)
- Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- Processing and Nutrition of Fats and Oils (Ernesto M. Hernandez and Afaf Kamal - Eldin)
- Processing Organic Foods for the Global Market (Gwendolyn V. Wyard, Anne Plotto, Jessica Walden, and Kathryn Schuett)
- Regulation of Functional Foods and Nutraceuticals: A Global Perspective (Clare M. Hasler)
- Resistant Starch: Sources, Applications and Health Benefits (Yong-Cheng Shi and Clodualdo Maningat)
- Sensory and Consumer Research in Food Product Design and Development (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- Sustainability in the Food Industry (Cheryl J. Baldwin)
- Thermal Processing of Foods: Control and Automation (K.P. Sandeep)
- Trait - Modified Oils in Foods (Frank T. Orthoefer and Gary R. List)
- Water Activity in Foods: Fundamentals and Applications (Gustavo V. Barbosa-Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)

WILEY Blackwell
List of Contributors

1 An Update on the Biomedical Prospects of Marine-derived Small Molecules with Fascinating Atom and Stereochemical Diversity 1
Yvette Mimieux Vaske and Phillip Crews

1.1 Introduction 1
1.1.1 Overview of known compounds, highlighting molecules of significance 1
1.1.2 Selected important marine sources of MDSMs 3
1.1.3 Highlights of MDSMs of therapeutic potential 6
1.1.4 New insights and lessons that address supply challenges 10
1.2 A view based on atom diversity 11
1.2.1 Terpene 11
1.2.2 Polyketide 11
1.2.3 Alkaloid 13
1.2.4 Depsipeptide 14
1.2.5 Polyketide–peptide 15
1.3 A view based on stereochemical diversity 15
1.3.1 Terpene 15
1.3.2 Polyketide 17
1.3.3 Alkaloid 18
1.3.4 Depsipeptide 19
1.3.5 Polyketide–peptide 20
1.4 Case studies of chemical probes and chemical probes in the therapeutic discovery pipeline 20
1.5 Conclusion 21
Acknowledgments 21
References 21

2 Antihypertensive Peptides from Marine Sources 27
Roseanne Norris, Pádraigín A. Harnedy, and Richard J. FitzGerald

2.1 Introduction 27
2.2 Marine antihypertensive peptides and blood pressure control 28
2.3 Generation of marine antihypertensive peptides 32
### Contents

2.4 Structure–activity relationships 32  
2.5 Bioavailability 33  
2.6 *In vivo* animal studies 35  
2.7 *In vivo* human studies 41  
2.8 Marine peptides as antihypertensive ingredients 45  
2.9 Conclusion 48  
Acknowledgments 48  
References 48  

3 **Bioactive Peptides from Marine Processing Byproducts** 57  
Maria Hayes and David Flower  
3.1 Introduction 57  
3.2 Fish muscle proteins: precursors of fish bioactive peptides 58  
3.3 Fish meal production 59  
3.4 Fish silage production 59  
3.5 Traditional fermented fish protein products 60  
3.6 Strategies for the generation of bioactive peptides from marine byproducts 60  
3.6.1 Marine-derived peptides and human health 60  
3.6.1.1 Marine-derived peptides in the physiological control and maintenance of blood pressure: renin and ACE-I 61  
3.6.1.2 Antimicrobial peptides from marine sources and byproducts 63  
3.6.1.3 Antioxidant peptides from marine byproducts 65  
3.6.2 Membrane processing and the future for marine-derived bioactive peptide products 66  
3.7 Conclusion 66  
Acknowledgments 67  
References 67  

4 **Development of Marine Peptides as Anticancer Agents** 73  
Xiukun Lin and Lanhong Zheng  
4.1 Introduction 73  
4.2 Peptides that induce apoptosis 73  
4.2.1 Peptides that activate the intrinsic mitochondrial pathway 74  
4.2.2 Peptides that target the JNK or p38 MAPK pathways 79  
4.2.3 Marine peptides that target the PI3K/AKT pathway 80  
4.2.4 Peptides without a known mechanism for their apoptosis-inducing activity 80  
4.3 Peptides that affect the tubulin–microtubule equilibrium 81  
4.4 Peptides that inhibit angiogenesis 83  
4.5 Peptides without a known mechanism for their antitumor activity 84  
4.6 Conclusion 85  
Acknowledgments 86  
References 86  

5 **Using Marine Cryptides against Metabolic Syndrome** 95  
Yesmine Ben Henda and Stéphanie Bordenave-Juchereau  
5.1 Marine cryptides 95  
5.2 Definition of MetS 96  
5.3 Potential targets for marine cryptides 97  
5.3.1 Targeting dyslipidemia: modulating blood lipid profile 97  
5.3.2 Targeting arterial hypertension 99
5.3.3 Targeting diabetes 101

5.3.4 Targeting obesity 102
  5.3.4.1 Targeting obesity by increasing satiety 103
  5.3.4.2 Targeting obesity-modulating bile acid secretion and hormonal control of gallbladder filling 104

5.3.5 Others possible marine cryptide targets related to MetS 104
  5.3.5.1 Targeting stress 105
  5.3.5.2 Targeting adipocyte life cycle 106
  5.3.5.3 Targeting calcium 106
  5.3.5.4 Marine cryptides with anticoagulant or antiplatelet aggregation properties 107

5.4 Conclusion 108

References 108

6 Bioactive Phenolic Compounds from Algae 113
Yolanda Freile-Pelegri and Daniel Robledo

6.1 Introduction 113
  6.1.1 Understanding oxidative stress and the role of antioxidants 113
  6.1.2 The importance of marine algae as a source of antioxidants 115

6.2 Phenolic compounds from algae 116
  6.2.1 Structural diversity of phenolic compounds 116
  6.2.2 Role of phenolic compounds in algal cells 119

6.3 Algal phenolics as bioactive compounds 120
  6.3.1 Isolation and analysis of polyphenols 120
  6.3.2 Antioxidant activity of algal polyphenols 121
  6.3.3 Other bioactive properties of algal polyphenols 122

6.4 Conclusion 122
Acknowledgments 124
References 124

7 Bioactive Carotenoids from Microalgae 131
A. Catarina Guedes, Helena M. Amaro, Isabel Sousa-Pinto, and F. Xavier Malcata

7.1 Introduction 131

7.2 Potential health benefits 131
  7.2.1 Antioxidant features 133
    7.2.1.1 $\Delta^1$O$_2$ scavenging by carotenoids 134
    7.2.1.2 $\Delta^1$O$_2$ scavenging by xanthophylls 135
    7.2.1.3 $\Delta^3$O$_2$ Scavenging by $\beta$-carotene 135

  7.2.2 Antiinflammatory properties of microalgal carotenoids 135
    7.2.2.1 Antiinflammatory activity of astaxanthin 136
    7.2.2.2 Antiinflammatory activity of violaxanthin 138
    7.2.2.3 Antiinflammatory activity of lutein 138
    7.2.2.4 Antiinflammatory activity of $\beta$-carotene 138

  7.2.3 Antitumor properties of microalgal carotenoids 138
    7.2.3.1 Antitumor action by astaxanthin 140
    7.2.3.2 Antitumor action by $\beta$- and $\alpha$-carotene 141
    7.2.3.3 Antitumor action by lutein and zeaxanthin 141
    7.2.3.4 Antitumor action by violaxanthin 142
    7.2.3.5 Antitumor action by fucoxanthin 142
8 Omega-3 Fatty Acid-enriched Foods: Health Benefits and Challenges
Charlotte Jacobsen

8.1 Introduction
8.2 Overview of the health benefits of marine omega-3 fatty acids
8.3 Lipid oxidation: a major challenge
  8.3.1 Introduction to lipid oxidation
  8.3.2 Means of preventing oxidation in omega-3-enriched foods
    8.3.2.1 Composition of the food system, including pH
    8.3.2.2 Delivery systems
    8.3.2.3 Processing conditions for the emulsification of omega-3-enriched food emulsions
  8.3.3 Effect of antioxidant addition
    8.3.3.1 Effect of tocopherols
    8.3.3.2 Effect of ascorbic acid and ascorbyl palmitate
    8.3.3.3 Effect of EDTA
    8.3.3.4 Effect of lactoferrin
    8.3.3.5 Effect of gallic acid, propyl gallate, and caffeic acid
    8.3.3.6 Effect of lipophilized compounds in complex omega-3-enriched foods
    8.3.3.7 Effect of natural extracts
  8.3.4 Consumer acceptance of omega-3-enriched foods
8.4 Conclusion
References

9 Sterols in Algae and Health
Graciliana Lopes, Carla Sousa, Patrícia Valentão, and Paula B. Andrade

9.1 Introduction
9.2 Biosynthesis of phytosterols
  9.2.1 The MVA pathway
  9.2.2 The DOXP/MEP pathway
  9.2.3 Squalene formation, cyclization, and substitution in the side chain
  9.2.4 Biosynthesis of phytosterols in algae
9.3 Analysis of phytosterols
  9.3.1 Phytosterols extraction and purification techniques
  9.3.2 Phytosterols identification and quantification
9.4 Phytosterol composition of algae
9.5 Phytosterols and health
  9.5.1 Absorption and cholesterol-lowering properties of phytosterols
    9.5.1.1 Mechanism of action
  9.5.2 Effects on LDL-C and CHD
  9.5.3 Phytosterolemia and atherosclerosis
  9.5.4 Reduction of cancer risk
  9.5.5 Effects on fat-soluble vitamin absorption
  9.5.6 Dietary algae consumption and health
10 Biological Effects and Extraction Processes Used to Obtain Marine Chitosan
A. Montilla, A. I. Ruiz-Matute, and N. Corzo

10.1 Introduction
10.2 Chitin extraction processes
10.3 Obtention of chitosan
10.3.1 Properties of chitosan
10.3.2 Chemical modifications of chitosan
10.3.3 Physical forms of chitosan
10.4 Attainment of chitooligosaccharides
10.4.1 Chemical methods
10.4.2 Physical methods
10.4.3 Enzymatic methods
10.5 Biological activities of chitosan and COS
10.5.1 Antioxidant activity
10.5.2 Hypocholesterolemic and hypolipidemic effects
10.5.3 Antimicrobial activity
10.5.4 Antihypertensive activity
10.5.5 Prebiotic effects
10.5.6 Ion-binding properties
10.6 Food applications
10.7 Regulatory aspects
10.8 Conclusion

11 Biological Activity of Algal Sulfated and Nonsulfated Polysaccharides
Pilar Rupérez, Eva Gómez-Ordóñez, and Antonio Jiménez-Escrig

11.1 Introduction
11.2 Current interest in seaweeds
11.2.1 Seaweeds as an underexploited resource
11.2.2 Nutritional value of seaweeds
11.2.2.1 Dietary fiber
11.2.2.2 Physicochemical properties of dietary fiber
11.2.3 Biological properties of seaweeds
11.2.3.1 Anticoagulant capacity
11.2.3.2 Antioxidant capacity
11.2.3.3 Effect on lipid metabolism
11.2.4 Legislation
11.3 Polysaccharides: occurrence, structure, and bioactivity
11.3.1 Hydrocolloid–phycocolloid versus nonhydrocolloid algal polysaccharides
11.3.2 Sulfated polysaccharides
11.3.2.1 Fucoidan/fucan
11.3.2.2 Carrageenan
11.3.2.3 Agar/agaran
11.3.2.4 Ulvan
11.3.3 Nonsulfated polysaccharides
11.3.3.1 Alginate
11.3.3.2 Laminaran/laminarin
12 Taurine Content in Marine Foods: Beneficial Health Effects
Rune Larsen, Karl-Erik Eilertsen, Hanne Mæhre, Ida-Johanne Jensen, and Edel O. Elvevoll

12.1 Introduction 249
12.2 Taurine physiology 250
  12.2.1 Biosynthesis and metabolism 250
12.3 Dietary sources 252
  12.3.1 Taurine content in foods 252
  12.3.2 Dietary intake and safety-related considerations 259
  12.3.3 Stability 259
12.4 Health benefits of dietary intake of taurine 260
  12.4.1 Cardiovascular diseases—dyslipidemia and atherosclerosis 260
  12.4.2 Hypertension 261
  12.4.3 Diabetes 261
  12.4.4 Infant development 262
  12.4.5 Liver disease and alcohol-induced hepatic damage 262
12.5 Conclusion 262
References 262

13 Seaweed Antimicrobials: Isolation, Characterization, and Potential Use in Functional Foods
Shiau Pin Tan, Laurie O’Sullivan, Maria Luz Prieto, Peter McLoughlin, Peadar G. Lawlor, Helen Hughes, and Gillian E. Gardiner

13.1 Introduction 269
13.2 Seaweeds 270
  13.2.1 Classification of seaweeds 270
  13.2.2 Seaweed ecology 270
  13.2.3 Seaweed structure and morphology 272
  13.2.4 Uses of seaweeds 272
13.3 Extraction of antimicrobial compounds from seaweeds 273
  13.3.1 Sample preparation 273
  13.3.2 Extraction methods 274
  13.3.3 Solvent selection 275
13.4 Separation and purification of antimicrobial compounds from seaweeds 279
  13.4.1 Solvent–solvent extraction 279
  13.4.2 Solid phase extraction 279
13.5 Structural elucidation of antimicrobial compounds from seaweeds 288
13.6 In vitro assessment of the antimicrobial activity of seaweeds and seaweed-derived compounds 293
  13.6.1 Methods of assessing the antimicrobial activity of seaweed extracts 293
    13.6.1.1 Disk-diffusion and well-diffusion assays 293
    13.6.1.2 Broth-dilution assay 294
    13.6.1.3 Bioautography assay 294
  13.6.2 In vitro evaluation of the antimicrobial activity of seaweeds 295
  13.6.3 Antiadhesion activity of seaweeds 296
  13.6.4 Evaluation of the antimicrobial and antiadhesion activity of seaweeds in animal studies 297
13.6.5 Evaluation of the antimicrobial and antiadhesion activity of seaweeds in human studies 299
13.7 Potential applications of seaweed antimicrobials in functional foods 299
13.7.1 The concept of functional foods 299
13.7.2 The potential of seaweed antimicrobials as functional ingredients 300
13.8 Conclusion 302
Acknowledgments 302
References 303

14 Seaweed-based Functional Foods 313
Nissreen Abu-Ghannam and Sabrina Cox

14.1 Introduction 313
14.2 Overview of seaweed bioactive components for the development of functional foods 314
14.2.1 Dietary fiber 314
14.2.2 Phenolic content and antioxidant capacity 315
14.2.3 Omega-3 fatty acids 315
14.2.4 Fucoidans 315
14.3 Seaweed pretreatment prior to incorporation in functional foods 316
14.3.1 Drying and rehydration 316
14.3.2 Hydrothermal processing 319
14.4 Incorporation of seaweeds in the development of functional foods 320
14.4.1 Incorporation of seaweeds in bakery products 321
14.4.2 Incorporation of seaweeds in meat-based products 322
14.5 Conclusion 323
Acknowledgments 324
References 324

15 Sea Cucumber as a Source of Bioactive Compounds: Current Research on Isostichopus badionotus and Isostichopus fuscus from Mexico 329
Leticia Olivera-Castillo, Raquel García Barrientos, Isabel Guerrero Legarreta, Arisaí Hernández Sámano, and Yasser Chim Chi

15.1 Introduction 329
15.2 Taxonomy and classification 330
15.3 Habitat and distribution 330
15.4 Worldwide markets 330
15.5 Sea cucumber species of commercial interest in Mexico 331
15.6 Biologically active compounds: enzymes and peptides 332
15.6.1 Enzymes 332
15.6.2 Peptides 336
15.7 Conclusion 338
Acknowledgments 338
References 338

16 Advanced Extraction Processes to Obtain Bioactives from Marine Foods 343
Merichel Plaza and Irene Rodríguez-Meizoso

16.1 Introduction 343
16.2 Fundamentals of extraction from solid samples 344
16.3 Sample pretreatment before extraction 351
16.4 Supercritical fluid extraction 353
16.4.1 Theory 353
### Contents

16.4.2 Instrumentation 354  
16.4.3 Applications 355  

16.5 Pressurized fluid extraction 359  
16.5.1 Theory 359  
16.5.2 Instrumentation 360  
16.5.3 Applications 361  

16.6 Ultrasound-assisted extraction 362  
16.6.1 Theory 362  
16.6.2 Instruments 362  
16.6.3 Applications 362  

16.7 Microwave-assisted extraction 363  
16.7.1 Theory 363  
16.7.2 Instruments 364  
16.7.3 Applications 365  

16.8 Latest trends in advanced extraction 365  
16.8.1 Surfactant-assisted extraction 365  
16.8.2 Enzyme-assisted extraction 366  
16.8.3 Gas-expanded liquids 366  
16.8.4 Hyphenation of extraction techniques 367  

16.9 Conclusion 367  
Acknowledgments 367  
References 368  

17 Extraction of High-added-value Compounds from Codfish (Gadus morhua) Salting Wastewater 373  
Vincenza Ferraro, Isabel B. Cruz, Ruben Ferreira Jorge, Manuela E. Pintado, and Paula M. L. Castro  

17.1 Introduction 373  
17.2 Byproducts and waste from the codfish salting process 374  
17.2.1 High-added-value compounds in codfish salting wastewater 377  
17.2.2 Concentrations of high-added-value compounds in codfish salting wastewater during the salting process 378  
17.2.3 Recovery of amino acids and proteins from codfish salting wastewater 380  
17.2.4 Antioxidant capacity and bioavailability of free amino acid mixtures extracted from codfish salting wastewater 381  
17.2.4.1 Antioxidant capacity 381  
17.2.4.2 In vitro intestinal permeability 384  
17.2.5 Properties of myofibrillar proteins extracted from codfish salting wastewater 387  
17.3 Conclusion 388  
References 388  

18 Toxicity Risks Associated with the Recovery of Bioactive Compounds from Marine Sources 395  
Ljerka Prester  

18.1 Introduction 395  
18.2 Seafood-associated infections 396  
18.2.1 Bacteria 396  
18.2.1.1 Vibrio spp. 396  
18.2.1.2 Salmonella and Shigella 398  
18.2.1.3 Clostridium botulinum 398
18.2.2 Viruses 398
  18.2.2.1 Norovirus 398
  18.2.2.2 Hepatitis A virus 399
18.2.3 Parasites 399
  18.2.3.1 Anisakis simplex 399
18.3 Toxin-related seafood illnesses 399
  18.3.1 Histamine fish poisoning 399
    18.3.1.1 Secondary biogenic amines in seafood 401
  18.3.2 Poisoning associated with marine algal toxins 402
    18.3.2.1 Paralytic shellfish poisoning 402
    18.3.2.2 Amnesic shellfish poisoning 402
    18.3.2.3 Neurotoxic shellfish poisoning 405
    18.3.2.4 Ciguatera fish poisoning 405
    18.3.2.5 Diarrethic shellfish poisoning 405
    18.3.2.6 Azaspiracid poisoning 406
    18.3.2.7 Palytoxicosis 406
    18.3.2.8 Puffer fish (tetrodotoxin) poisoning 406
    18.3.2.9 Biosafety considerations 407
18.4 Seafood allergy 407
  18.4.1 Fish and shellfish allergens 407
  18.4.2 Symptoms of seafood allergy 409
18.5 Contaminants in fish and shellfish 409
  18.5.1 Methylmercury in seafood: health effects 410
    18.5.1.1 Toxicity of methylmercury 410
    18.5.1.2 Methylmercury poisoning through fish consumption 411
  18.5.2 Other heavy metals and arsenic in seafood 411
  18.5.3 Dioxins, dioxinlike compounds, and polychlorinated biphenyls in seafood 412
    18.5.3.1 Potential health effects of dioxins and PCBs in dietary fish intake 412
18.6 The risks and benefits of fish consumption 415
18.7 Conclusion 415
Acknowledgments 416
References 416

Index 431
List of Contributors

Nissreen Abu-Ghannam
School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland

Helena M. Amaro
CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; ICBAS—Institute of Biomedical Sciences Abel Salazar, Porto, Portugal

Paula B. Andrade
REQUIMTE/Pharmacognosy Laboratory, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal

Yesmine Ben Henda
Molecular Approaches, Environment and Health, LIENSs Laboratory, University of La Rochelle, La Rochelle, France

Stéphanie Bordenave-Juchereau
Molecular Approaches, Environment and Health, LIENSs Laboratory, University of La Rochelle, La Rochelle, France

Paula M. L. Castro
Center for Biotechnology and Fine Chemicals (CBQF), Associated Laboratory, School of Biotechnology, Catholic University of Portugal, Porto, Portugal

Yasser Chim Chi
CINVESTAV, Unidad Mérida, Yucatán, Mexico

Nieves Corzo
Institute of Food Science Research – CIAL (CSIC-UAM), Madrid, Spain

Sabrina Cox
School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland

Phillip Crews
Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA

Isabel B. Cruz
WeDoTech—Companhia de Ideias e Tecnologias, Cideb/School of Biotechnology, Catholic University of Portugal, Porto, Portugal

Karl-Erik Eilertsen
Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fisheries Science, University of Tromsø, Tromsø, Norway

Edel O. Elvevoll
Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fisheries Science, University of Tromsø, Tromsø, Norway

Vincenzo Ferraro
Center for Biotechnology and Fine Chemicals (CBQF), Associated Laboratory, School of Biotechnology, Catholic University of Portugal, Porto, Portugal

Richard J. FitzGerald
Department of Life Sciences, University of Limerick, Limerick, Ireland

David Flower
Dublin Institute of Technology, Dublin, Ireland
Yolanda Freile-Pelegrín
Department of Marine Resources, CINVESTAV, Unidad Mérida, Yucatán, Mexico

Raquel García Barrientos
Universidad Politécnica de Tlaxcala, San Pedro Xalcaltzinco Tepeyanco, Tlaxcala, Mexico

Gillian E. Gardiner
Eco-Innovation Research Centre, Department of Chemical & Life Sciences, Waterford Institute of Technology, Waterford, Ireland

Eva Gómez-Ordóñez
Metabolism and Nutrition Department, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), University City, Madrid, Spain

A. Catarina Guedes
CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal

Isabel Guerrero Legarreta
Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico, D.F., Mexico

Pádraigín A. Harnedy
Department of Life Sciences, University of Limerick, Limerick, Ireland

Maria Hayes
Food BioSciences Department, Teagasc Food Research Centre, Dublin, Ireland

Arisá Hernández Sámano
Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico, D.F., Mexico

Helen Hughes
Eco-Innovation Research Centre, Department of Chemical & Life Sciences, Waterford Institute of Technology, Waterford, Ireland

Charlotte Jacobsen
National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark

Ida-Johanne Jensen
Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fisheries Science, University of Tromsø, Tromsø, Norway

Antonio Jiménez-Escrig
Metabolism and Nutrition Department, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), University City, Madrid, Spain

Ruben Ferreira Jorge
WeDoTech—Companhia de Ideias e Tecnologias, Cideb/School of Biotechnology, Catholic University of Portugal, Porto, Portugal

Rune Larsen
Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fisheries Science, University of Tromsø, Tromsø, Norway

Peadar G. Lawlor
Teagasc, Pig Development Department, Animal & Grassland Research & Innovation Centre, Fermoy, Co. Cork, Ireland

Xiukun Lin
Department of Pharmacology, Capital Medical University, Beijing, China

Graciliana Lopes
REQUIMTE/Pharmacognosy Laboratory, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal

Hanne Mæhre
Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fisheries Science, University of Tromsø, Tromsø, Norway

F. Xavier Malcata
CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; Departament of Chemical Engineering, University of Porto, Porto, Portugal
Peter McLoughlin  
Eco-Innovation Research Centre, Department of Chemical & Life Sciences, Waterford Institute of Technology, Waterford, Ireland

Antonia Montilla  
Institute of Food Science Research — CIAL (CSIC-UAM), Madrid, Spain

Roseanne Norris  
Department of Life Sciences, University of Limerick, Limerick, Ireland

Leticia Olivera-Castillo  
CINVESTAV, Unidad Mérida, Yucatán, Mexico

Laurie O’Sullivan  
Eco-Innovation Research Centre, Department of Chemical & Life Sciences, Waterford Institute of Technology, Waterford, Ireland

Manuela E. Pintado  
Center for Biotechnology and Fine Chemicals (CBQF), Associated Laboratory, School of Biotechnology, Catholic University of Portugal, Porto, Portugal

Merichel Plaza  
Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden

Ljerka Prester  
Institute for Medical Research and Occupational Health, Zagreb, Croatia

Maria Luz Prieto  
Eco-Innovation Research Centre, Department of Chemical & Life Sciences, Waterford Institute of Technology, Waterford, Ireland

Daniel Robledo  
Department of Marine Resources, CINVESTAV, Unidad Mérida, Yucatán, Mexico

Irene Rodríguez-Meizoso  
Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden

Ana I. Ruiz-Matute  
Institute of Food Science Research — CIAL (CSIC-UAM), Madrid, Spain

Pilar Rupérez  
Metabolism and Nutrition Department, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), University City, Madrid, Spain

Carla Sousa  
REQUIMTE/Pharmacognosy Laboratory, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal

Isabel Sousa-Pinto  
CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal

Shiau Pin Tan  
Eco-Innovation Research Centre, Department of Chemical & Life Sciences, Waterford Institute of Technology, Waterford, Ireland

Patrícia Valentãš  
REQUIMTE/Pharmacognosy Laboratory, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal

Yvette Mimieux Vaske  
Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA

Lanhong Zheng  
Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
1 An Update on the Biomedical Prospects of Marine-derived Small Molecules with Fascinating Atom and Stereochemical Diversity

Yvette Mimieux Vaske and Phillip Crews

Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA

1.1 INTRODUCTION

In this chapter we discuss a selection of structurally diverse marine-derived small molecules (MDSMs) with potent and/or specific bioactivity and analyze their biomedical applications. The compounds included have been isolated either from marine macroorganisms, including sponges, ascidians (tunicates), bryozoans, and molluscs, or from microorganisms, such as bacteria and fungi. Our inquiry begins with a look back in time at a selection of important marine natural products, with particular focus on compounds in the clinical pipeline. The chapter continues with an analysis of a biosynthetically diverse assortment of 22 MDSMs and their structural elements of atom and stereochemical diversity. Entries have been divided into five biosynthetic classes: terpene, polyketide, alkaloid, depsipeptide, and polyketide–peptide. Enormous structural variety is represented by the marine natural products treated herein. The compounds selected can be considered to represent case examples of significant biomolecules with positivity and, in some cases, potent bioactivity accompanied by an unusual mechanism of action.

1.1.1 Overview of known compounds, highlighting molecules of significance

The ocean covers more than 70% of the earth’s surface and is home to exceptional biodiversity: more than one million marine species and an estimated one billion different kinds of marine microbe (Census of Marine Life Press Release 2010). We and others firmly believe that MDSMs represent a continuing resource for tools important in cell biology research and in the design of the next-generation leads for drug discovery and development. The record to date firmly illustrates that the structures of natural products continue to be invaluable in expanding pharmacophore structural space. For example, Newman and Cragg recently provided a detailed analysis of the last 30 years of natural products in drug discovery, wherein they contended that, “Nature’s ‘treasure trove of small molecules’ remains to be explored, particularly from the marine and microbial environments” (Newman & Cragg 2012).
It is appropriate to return to a theme expressed in the past based on ecology and natural history. Simply stated, marine-derived biosynthetic products must have unprecedented chemodiversity (National Research Council 2002) in comparison to those from the terrestrial realm, due to the difference in biosynthetic machinery that must exist between the macroorganisms abundant in these different environments. The structures shown in this review will provide the reader with up-to-date information related to these results. On the horizon is the demonstration that stunning natural products will be discovered from marine-derived strains isolated and re-cultured grown under saline conditions (Imhoff et al. 2011). Thus, many of the molecules discussed in this chapter have been chosen to illustrate the headway being made in this direction.

This treatise extends to recent annual reviews in the literature, which focus on several important issues. At the top of the list are discussions of marine natural products in biomedical investigations, and there is a steady stream of such comprehensive papers (Hughes & Fenical 2010a; Radjasa et al. 2011; Gerwick & Moore 2012). The dynamic pipeline of MDSMs into “marine pharmaceuticals” has been well documented by reviews in the peer-reviewed literature (Newman & Cragg 2004, 2012; Fenical 2006; Molinski et al. 2009; Mayer et al. 2010; Montaser & Luesch 2011). It is also important to be aware of accounts of marine natural products structural revisions (Suyama et al. 2011). Central to efforts to confirm structure assignment and absolute stereochemistry has been the interplay between total syntheses and reexamination of the spectroscopic data (Suyama et al. 2011). Lastly, a further indication of the importance of MDSMs in biomedical discovery is a recent in-depth review dedicated to aspects surrounding the organic synthesis of biologically active marine natural products (Morris & Phillips 2011).

1.1.1.1 Clinical candidates and MDSM chemical probes

Marine macro- and microorganisms are sources of tremendous chemodiversity and offer new scaffolds for biomedical exploration. The connection between an MDSM’s structure, biological activity, and biological target for mechanism of action is at the crux of collaborative investigations by the marine natural products, synthetic, and chemical biology communities. Illustrated in Figure 1.1 is a selection of four important marine-derived natural products which summarize those molecules that are (a) presently used as synthetic clinical therapeutics and (b) employed as chemical probes in chemical biology, biochemistry, and molecular genetics to further our understanding of biological function. The biosynthetic classes, biological targets, and commercial sources, if available, are given below the structures, as is additional citation information useful in further current-awareness searches.

There are two complex structures in Figure 1.1, either of which can be considered a poster child for exotic yet exceedingly important scaffolds. Both possess a blizzard of chiral centers and a density of functionalization. But the pathways to their respective developments as preclinical or clinical agents were slightly different. The former possesses a virtually identical synthetic scaffold to the natural product. Here is a brief outline. Irvalec® (panel A1), under development by PharmaMar (Spain; www.pharmamar.com), is an unnatural salt of isokahalalide F, a natural product congener co-isolated with kahalalide F (11 in Figure 1.2) (Gao et al. 2009). Alternatively, eribulin mesylate (E7389) represents a reduced-complexity analogue of a very complex natural product. This compound is marketed as Halaven® (Eisai, Japan; www.eisai.com) and gained US Food and Drug Administration (FDA) approval in November 2010 for treatment of metastatic breast cancer unresponsive to other drug treatments (Jefferson 2010). A combined synthetic—structure–activity relationship (SAR) investigation found that the entire western portion of halichondrin B (2) could be truncated without a deleterious effect on the therapeutic activity (Qi & Ma 2011).

Two additional compounds are shown in Figure 1.1b, which represent commercially available MDSM chemical probes. We have adopted the definition of a “chemical probe” set forth in an editorial in Nature Chemical Biology (Editorial 2010) and elaborated on in a commentary by Frye (2010): “Potent, selective and cell-permeable small molecules that perturb a biological target in a dose-dependent manner [and] can be used to dynamically ‘probe’ the role of the target in biology.” Terrestrial and marine natural-product chemical probes were recently reviewed by Carlson (2010), and the reader is
encouraged to refer to the literature for additional perspective. The notion that natural products have evolved for specificity towards biological macromolecules, particularly proteins and genes, is supported by the community (Clardy & Walsh 2004; Piggott & Karuso 2004; Carlson 2010). The sponge-derived probes jasplakinolide and psammaplin A are both important MDSM chemical probes and the reader is directed to recent literature surrounding their biological function (Boulant et al. 2011; Baud et al. 2012).

1.1.2 Selected important marine sources of MDSMs

Figure 1.2  A glimpse into the past via a selection of 14 invertebrate- and microorganism-derived natural products in clinical use or of therapeutic potential.
An Update on the Biomedical Prospects

Figure 1.3  A recent snapshot of MDSMs in the literature, highlighting (a) a histogram of the number of compounds reported between 2003 and 2010, and (b) an expanded view of MDSM sources reported between 2008 and 2010. (Adapted from Blunt et al. 2005, 2006, 2007, 2008, 2010, 2011, 2012). *Microorganisms: fungi, bacteria, phytoplankton, and brown, green, and red algae. (For a color version of this figure, please see the color plate section.)

of peer-reviewed compounds, with an emphasis on new compounds and their biological activities. Marine natural products are also entered and tabulated in MarinLit, a database of the marine natural products literature produced and maintained by the Department of Chemistry, University of Canterbury, New Zealand (http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml). Figure 1.3a is a histogram of the number of marine natural products reported in the literature between 2003 and 2010. It shows an upward trend, with the number of new compounds reported annually increasing for the years examined.

Marine natural products included in the annual NPR review consist of published MDSMs isolated from both macroorganisms, such as sponges, cnidarians, bryozoans, molluscs, tunicates, and echinoderms, and microorganisms, such as fungi, bacteria, phytoplankton, green algae, brown algae, and red algae. Figure 1.3b shows an expanded view of MDSMs reported in the literature between 2008 and 2010 by Blunt et al. (2010, 2011, 2012). The approximate percentages are as follows: sponges, 31.9%; microorganisms, 30.7%; cnidarians, 24.7%; tunicates (ascidians), 4.3%; bryozoans, 0.8%. It is interesting to note that the three top producers of marine natural products are sponges, microorganisms, and cnidarians. Consistently, the majority of the MDSMs in this chapter are from sponge and microorganism (fungus and bacterium) sources.
1.1.2.1 Macroorganisms: an analysis of their critical role

The marine invertebrate groups of interest in the isolation of MDSMs include phyla such as Porifera, Coelenterata, Mollusca, Tunicata, and Annelida. A recent analysis by Leal et al. (2012) examined new MDSMs from invertebrates that appeared over the last 20 years. Marine macroorganisms are valuable producers of biomedically relevant MDSMs, many of which serve as therapeutic lead compounds, such that future conservation efforts are imperative in preserving marine invertebrates and the bionetworks that support them (Kingston 2011). Reef-invertebrate marine natural products have previously been reviewed in the literature, and the reader is directed to other references for further discussion and perspective (Fenical 2006; Carrol & Crews 2010; Mayer et al. 2010; Radjasa et al. 2011).

1.1.2.2 Microorganisms: questions about their being the actual source

Marine microorganisms are increasingly the focus of marine natural products isolation efforts, as they have proven to be prolific producers of chemodiverse MDSMs (Zhu et al. 2011). The advancement of biomolecular technology, particularly genomic and metagenomic techniques and analysis, offers the advantage of allowing sustainable investigation of MDSMs from renewable sources (Imhoff et al. 2011). Representative groups from the kingdoms Fungi and Bacteria will be considered in this chapter (Gerwick & Moore 2012; Zotchev 2012). Advancements in seawater isolation and fermentation techniques have facilitated investigation of marine-derived fungal and bacterial strains and have led to the isolation of novel secondary metabolites (Radjasa et al. 2011).

1.1.3 Highlights of MDSMs of therapeutic potential

Table 1.1 and Figure 1.2 present 14 examples of MDSMs in clinical use or of therapeutic potential, most of which have been the subjects of extensive reviews (Mayer et al. 2010; Montaser & Luesch 2011; Radjasa et al. 2011; Gerwick & Moore 2012; Newman & Cragg 2012). The compounds in Table 1.1 illustrate the chemodiversity of secondary metabolites from marine invertebrate and microorganism sources. Ecteinascidin 743 (4), commercially known as Yondelis® (PharmaMar), from an ascidian (EU approved 2007), and ziconotide (14), whose commercial name is Prialt® (Elan Corp., Ireland; www.elan.com), from a cone shell (US approved 2004), are two flagship, clinically used compounds based precisely on a marine natural product (Radjasa et al. 2011). For many of the MDSMs in Table 1.1, the supply problem has been addressed by either total synthesis of the MDSM or synthetic redesign of a simplified analogue. The table also includes comments providing further points of reference.

1.1.3.1 Terpene

The diterpene–glycoside pseudopterosin (1) is a significant potent antiinflammatory agent and the basis of the Estée Lauder cosmetic cream Resilience (Kerr 2000). Additional analogues of this compound have been evaluated as wound-healing agents (Haimes & Jimenez 1997; Hoarau et al. 2008). Discovered in the 1980s, it still represents a landmark and useful development; its privileged chemical structure continues to inspire many researchers.

1.1.3.2 Polyketide

An exceedingly important entry here is represented by the structure of sponge-derived halichondrin B (2). After decades of study, a monumental synthesis campaign uncovered a reduced complexity substructure with exquisite antitumor activity. As already noted, the clinically approved analogue, derived by total synthesis, is eribulin mesylate, E7389 (Halaven®) (Figure 1.1a). A second example in this biosynthetic class is fijianolide B (3) (lauimalide), a cytotoxic agent with microtubule stabilizing activity similar to that of paclitaxel (Qi & Ma 2011).
Table 1.1 A glimpse into the past via a selection of 14 invertebrate- and microorganism-derived natural products in clinical use or of therapeutic potential (adapted from Radjasa et al. 2011).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound name</th>
<th>Invertebrate source</th>
<th>Biosynthetic class</th>
<th>Target</th>
<th>Therapeutics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pseudopterosin A</td>
<td>Soft coral Pseudopterogorgia elisabethae</td>
<td>Diterpene glycoside</td>
<td>Antiinflammatory; wound healing</td>
<td>First discovered in 1986, its 25 analogues are of continuing interest.</td>
<td>Estee Lauder's Resilience® label lists P. elisabethae, source of 1, as an active ingredient.</td>
</tr>
<tr>
<td>2</td>
<td>Halichondrin B</td>
<td>Sponge Lissodendoryx sp.</td>
<td>Polyketide</td>
<td>Cancer: clinical use USA</td>
<td>—</td>
<td>Reduced-complexity synthetic analogue Halaven® (Eribulin mesylate, E7389) marketed by Eisai. US FDA approved November 2010.</td>
</tr>
<tr>
<td>3</td>
<td>Fijianolide B (Laulimalide)</td>
<td>Sponge Cacospongia mycofijiensis</td>
<td>Polyketide–macrolide</td>
<td>Cancer</td>
<td>Many analogues evaluated to develop SAR against microtubulin target; in vivo activity shown.</td>
<td>Commercial chemical probe targeting microtubules/CAS #: 115268-43-3 (PacMar Bioactives).</td>
</tr>
<tr>
<td>4</td>
<td>Ecteinascidin 743</td>
<td>Ascidian Ecteinascidia turbinata</td>
<td>Alkaloid</td>
<td>Cancer: clinical use EU</td>
<td>Enantiopure clinical compound via semisynthesis.</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Manzamine A</td>
<td>Sponge Haliclona sp.; Pellina sp.; Pachypellina sp.; Xestospongia sp.; Ircinia sp.; Amphimedon sp.</td>
<td>Alkaloid</td>
<td>Antimalaria: assay positive control</td>
<td>Isolation from diverse sponges and a marine-derived bacterium providing a means of sustainable supply.</td>
<td>Commercial chemical probe targeting GSK-3B/CAS #: 104196-68-1 (Santa Cruz Biotech).</td>
</tr>
<tr>
<td>Entry</td>
<td>Compound name</td>
<td>Invertebrate source</td>
<td>Biosynthetic class</td>
<td>Target</td>
<td>Therapeutics</td>
<td>Use</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>7</td>
<td>Jorumycin (7)</td>
<td>Mollusc <em>Jorunna funebris</em></td>
<td>Alkaloid</td>
<td>Cancer: phase II clinical trial</td>
<td>Synthetic analogue Zalypsis® under development by PharmaMar.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(−)-phenylahistin (8)</td>
<td>Fungus <em>Aspergillus ustus</em> (derived from alga <em>Halimeda lacrimosa</em>)</td>
<td>Alkaloid–diketopiperzine</td>
<td>Cancer: antimicrotubule</td>
<td>Colchicine-like tubulin depolymerization agent. Potent and selective activity against HT-29 human colon cancer cell line. This compound provided the stimulus to synthesis of plinabulin (NPI-2358), which is in a cancer phase II clinical trial. Dropped from clinical trials (1995).</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Didemnin B (9)</td>
<td>Ascidian <em>Trididemnum solidum</em></td>
<td>Depsipeptide</td>
<td>Cancer: phase I clinical trial</td>
<td>Advanced by NCI to phase I anticancer clinical trial and subsequently discontinued.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dehydrodidemnin B (10) (Aplidin®)</td>
<td>Ascidian <em>Aplidium albicans</em></td>
<td>Depsipeptide</td>
<td>Cancer: phase III clinical trial</td>
<td>Analogue replacing didemnin B under development by PharmaMar. EU-approved as orphan drug.</td>
<td></td>
</tr>
</tbody>
</table>