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Preface

“Standard Colorimetry” is an ambitious title that comes from the project of a small book, already fully writ-
ten and never published, entitled Concise Handbook of Standard Colorimetry. The reviewers, who certainly 
knew my scientific production, suggested to broaden the content of the book, pointing me to chapters and 
contents. The book has become bigger, but more personal. This produced the change of the title, which con-
tracted as Standard Colorimetry.

The books published in recent years on colorimetry are all excellent, comprehensive and authoritative, and 
written by authors and experts, and surely many readers have not felt the need for the publication of a further 
book. However, the differences between these books, including this one, are obvious.

Each book highlights the author’s knowledge, expertise and experience, which are made of reliefs, accents 
that make the various points otherwise important and in this sense reveal the views of the author. These 
important features differentiate the various books. 

I do not like to take possession of the sentences of others, so the text is full of quotations in inverted com-
mas, indicating clearly the source. This is a way to go to the source and respect the authors. 

A software that accompanies this book has the function of giving visual concreteness to the numbers that 
specify the colour and is a tool for all colorimetric calculations.

Today this book is the book I wish I had read in a sequential way, starting from the first row, when, at the 
age of about 45 years, the case led me to passionately study human colour vision.

I thank the unknown reviewers. I appreciate the quality of their work and their competence.
I thank the many colleagues that through dialogue, often with very short conversations, e-mail exchanges, 

or simply the seminars I attended, helped me to understand and know, led me to get a varied overview of col-
our science. I cannot cite everyone. I feel obliged to mention one name among them all, Robert M. Boynton, 
because in 2003 in a very short workshop in La Jolla he made us understand that every formula is obtained 
by engineering, but its value lies in its capacity to explain the phenomena and not simply to fit the phenom-
ena. He had a high conception of science. Today there are too many formulae in colorimetry that have only a 
practical value but are unsatisfactory and do not help us to understand the phenomena.

Thanks to the readers who want to tell me the darkness and the errors encountered in reading the book or 
just want to comment. Send me suggestions and questions through e-mail: claudio.oleari@fis.unipr.it.

Claudio Oleari
2015

mailto:claudio.oleari@fis.unipr.it
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1
Generalities on Colour and Colorimetry

The Commission Internationale de l’Éclairage (CIE) is the official institution devoted to worldwide coopera-
tion and the exchange of information on all matters relating to the science and art of light and lighting, colour 
and vision, photobiology and image technology. 

CIE publications are the main reference for this book.1–3 This book is about colorimetry and has the defini-
tions of colour and colorimetry as its starting point.

1.1 Colour

In non‐specialist language, the word ‘colour’ is ambiguous, because it is used to describe the quality of the 
objects, self‐luminous and non‐luminous, and to describe a quality of the viewing experience. These mean-
ings of the same word ‘colour’ are different but they are not disjoint, because the first one is the stimulation 
of the visual experience and the other the visual experience itself. Between these two meanings there is a 
correspondence and colorimetry quantitatively describes this correspondence.

The colour of self‐luminous and non‐luminous objects is associated with a physical quantity, which is 
properly called colour stimulus and is measurable because it is external to the body of the observer:

“Colour stimulus – visible radiation entering the eye and producing a sensation of colour, either chro-
matic or achromatic.”1

“Color consists of the characteristics of light other than spatial and temporal inhomogeneities; light 
being the aspect of radiant energy of which a human being is aware through the visual sensations which 
arise from the stimulation of the retina of the eye.”4

The definition of colour as an effect of the colour stimulus is given by the Optical Society of America 
(OSA) in the 1952 report:



2 Standard Colorimetry

Among the many definitions of colour, the most comprehensive, albeit in its brevity, is given by the 
American Society for Testing and Materials (ASTM),5 which with the definitions opens highly technical 
discussions, which are clarified later in the book:

The ‘perceived colour’ is defined using the names of the colours. This means that the names of the colours 
represent fundamental concepts, which are not definable in other words. The perceived colour is incommuni-
cable. Humans evoke the perceived colour in the interlocutors with conventional words – red, yellow, green, 
blue, black, grey, white, so on –.

1.2 Colorimetry

Robert W. Hunt6,7 distinguishes between:

and

Psychophysical colour terms regard Psychophysical colorimetry and psychometric colour terms regard 
Psychometric colorimetry. Both definitions of psychophysical and psychometric colour refer to colour stim-
uli, whose measurement and processing are same as those in the human visual system. The human visual 
system is a tool that measures the colour stimulus, as a camera, (psychophysics) and processes the signals 
produced quantifying the colour attributes according to a perceptive scale (psychometrics).

Psychophysical colorimetry is limited to the measurement of colour stimuli, attributing the same speci-
fication to different colour stimuli which induce equal colour sensations. This is exactly what happens in a 
photographic camera.

The human eye, unlike the camera, has a sensor – the retina – that has not the same optical properties in 
all its parts. The central part, for acute vision, is different from the surrounding parts, for which, according 
to a simplified diagram, there are two different colorimetries. In 1931 the CIE defined a colorimetry for 

“Psychophysical colour terms – terms denoting objective measures of physical variables that are eval-
uated so as to relate to the magnitudes of important attributes of light and colour. These measures iden-
tify stimuli that produce equal responses in a visual process in specified viewing conditions.”

“Psychometric colour terms – terms denoting objective measures of physical variables that are evalu-
ated so as to relate to differences between magnitudes of important attributes of light and colour and 
such that equal scale intervals represent approximately equal perceived differences in the attribute 
considered. These measures identify pairs of stimuli that produce equally perceptible differences in 
response in a visual process in specified viewing conditions.”6

“Colour of an object – aspect of object appearance distinct from form, shape, size, position, or 
gloss that depends upon the spectral composition of the incident light, the spectral reflectance or 
transmittance of the object, and the spectral response of the observer, as well as the illuminating 
and viewing geometry.”5

1. 

“Perceived colour – attribute of visual perception that can be described by colour names such as 
white, grey, black, yellow, brown, vivid red, deep reddish purple, or by combinations of such names.
Discussion – perceived colour depends greatly on the spectral power distribution of the colour 
stimulus, but also on the size, shape, structure, and surround of the stimulus area, the state of adap-
tation of the observer’s visual system, and the observer’s experience with similar observations.”5

2. 
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acute vision – observer with a visual field of 2° described in Section 9.2 – and in 1964 a colorimetry for 
non‐acute vision – observer with the field of view of 10° described in Section 9.3 –.

The distinctions between psychophysical and psychometric colorimetries, and between the 2° and 10° 
visual fields, have led to four different colorimetries, as summarized in Table 1.1.

Over time, the study of colour‐vision has led to improving the standard observers by adding new cases 
within the schema of Table 1.1, that is, Vos and fundamental observers described in Sections 9.5 and 9.6. 
These improvements are considered so small that the industries and laboratories continue to use the standard 
CIE 1931 and CIE 1964.

This distinction among different colorimetries corresponds to a distinction among the historical phases of 
colorimetry7:

Table 1.1 Scheme of the colour specification according to historical steps, stages of vision, visual fields and 
referred to the CIE standard systems.

Historical steps/stages of vision/systems

First stage of vision: 
transduction

Second stage of vision:  
colour difference and  
illuminant discounting

Third stage of vision: 
colour appearance 
and adaptation

Psychophysics (Chapter 9) Psychometrics (Chapter 11) Colour appearance

v 
i 
s 
u 
a 
l

Visual field < 4° CIE 1931 
standard observer (X, Y, Z),

CIELUV system (L*, u*, v*) 
CIELAB system (L*, a*, b*)

CIECAM97 
CIECAM02 
Retinex

Vos observer
2° CIE fundamental observer

f 
i 
e 
l 
d

10° visual field CIE 1964 supplementary 
standard observer  
(X10, Y10, Z10)

CIELUV system (L*10, u*10, v*10) 
CIELAB system (L*10, a*10, b*10)

10° CIE fundamental 
observer

The third phase of colour‐appearance colorimetry is in rapid progress and is a subject of debate; therefore, 
it is not considered in this book.

A third phase concerned with ‘what colours look like’ and is termed “colour appearance:

     i. aspect of visual perception by which things are recognized and
ii.  in psychophysical studies, visual perception in which the spectral and geometric aspects of a visual 

stimulus are integrated with its illuminating and viewing environment.”1

A first phase concerned with ‘which colours match’ and is termed psychophysical in strict sense 
(Chapter 9) and also classical colorimetry or tristimulus colorimetry.

A second phase concerned with ‘whether colour differences are equal’ and is termed psychometric 
(Chapter 11).
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2
Optics for Colour Stimulus

2.1 Introduction

This chapter has solely educational purposes and only recalls classical optical phenomena, therefore its 
bibliography consist of textbooks, manuals and tutorials.

This chapter considers the physical nature of colour stimuli.

“Colour stimulus – visible radiation entering the eye and producing a sensation of colour, either chro-
matic or achromatic.”1–3

“Colour stimulus function ϕλ – description of a colour stimulus by the spectral concentration of a radi-
ometric quantity, such as radiance or radiant power, as a function of wavelength.”1–3

“Relative colour stimulus function ϕ(λ) – relative spectral power distribution of the colour stimulus 
function.”1–3

“The psychophysical specification of a colour stimulus is termed again colour stimulus and is denoted 
by a symbol in square brackets, for example, [ϕ]”1–3 (the context avoids ambiguity). Since the psyco-
physical colour stimulus is mathematically a vector, in this book the colour stimulus is always indicated 
in bold roman letters as scientific convention requires.

The colour stimulus function is a physical quantity measured in W/nm if it is the spectral distribution 
of the radiant power – also spectral flux –, or in W/(m2 sterad nm) if it is the spectral distribution of the 
radiance. The relative colour stimulus function is dimensionless and the spectral plots of this function 
and that of the colour stimulus function are proportional, that is, ϕλ = k ϕ(λ), where k is a constant with a 
suitable physical dimension. The colour stimulus functions must be used for the computations of absolute 
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quantities as, for example, the illuminance and the luminance, but generally the use of the relative colour 
stimulus function is more convenient and almost all the colour specification is made on a relative scale. 
[In colorimetry and photometry the absolute spectral distribution functions have dependence on the wave-
length λ written as a subscript while the relative spectral distribution functions have dependence written 
in brackets (λ).]

These definitions of colour stimulus are merely radiometric (Section 2.4) and only physical operations on 
these quantities are considered, for example, addition of many colour stimuli.

Colour stimuli produce colour sensations, that usually continue to be called colour stimuli, which should 
not be confused with the previous colour stimuli (the context avoids ambiguity). Psychophysical opera-
tions can be made on these last colour stimuli, for example, addition, comparison and colour matching, 
and in this case colour stimuli, which represent colour sensations, are written in square brackets [ψ] or as 
vectors.

The colour stimulus function characterized by a spectral power distribution constant is termed equal‐
energy (or equi-energy) stimulus function and denoted by the relative spectral radiance EE(λ) = 1. The equal 
energy stimulus function often plays a role in the normalization of the tristimulus space, used for the psycho-
physical specification of colour stimuli (Section 6.13).

Colour vision is a phenomenon triggered by colour stimulus, and it happens by the interaction between 
visible electromagnetic radiation (light) and the visual system. Activation consists of the absorption of radia-
tion by typical molecules located inside photosensitive cells of the retina on the fundus of the eye. Everything 
that happens before the activation itself concerns the interaction between the electromagnetic radiation and 
matter. It is therefore necessary to have a theoretical framework that describes the generation, propagation 
and interaction of light with matter in order:

1. to have a basis for the understanding of the meaning of colour stimulus function and of colour perception 
and

2. to quantify and forecast the light phenomena, and connect them with the physical nature of matter.

Point (1) is considered in this introductory section. The physical phenomena related to the colours, often 
called colour physics, are described in Chapter 3, while the fundamental optical phenomena used in colour 
science are concisely recalled where necessary.

It is known that visible light is an electromagnetic radiation constituted by mutually orthogonal electric 
and magnetic fields that propagate in space and time, in a vacuum and in matter, with a velocity dependent 
on the nature of the medium.

Electromagnetic radiation shows a dual nature, corpuscular and wave nature: the processes in which light 
is generated or absorbed can be explained assuming that it consists of quanta, postulated by Einstein and 
called photons, while light propagation in space and time is well explained by a wave‐like behaviour, fully 
described by Maxwell’s equations.

Everyday experience suggests we consider light as consisting of rays. Geometrical optics is based on this 
assumption and is derivable from wave optics by an approximation, termed eikonal approximation. Geomet-
rical optics is valid only when light interacts with objects, which are much larger than its wavelength.

All these descriptions of light radiation enter the representation of vision phenomena and the lab equip-
ment:

 ● The image formation in the eye is well described by geometrical optics.
 ● The transduction of light radiation into an electrical phenomenon in the photosensitive cells of the eye is 

a photochemical process and regards the quantum nature of light, that is, photons.
 ● The photo‐detection of solid state devices, generally used in radiometric, photometric and colorimetric 

instruments, is often a quantum phenomenon and regards the quantum nature of light.
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 ● The emission of light radiation from a body – light source – is a quantum process, albeit divided into two 
different processes:
1. transitions between electronic states of matter at different energy – responsible for the coloration of 

many bodies and
2. blackbody emission, a phenomenon dependent only on the temperature of the body (Section 3.3).

 ● The interaction of the electromagnetic radiation with matter is describable with one of the three descrip-
tions (geometrical, wave and quantum optics) according to the phenomena involved.

Here we describe briefly the characteristics of light according to the wave and quantum model. (It is 
assumed that the reader is familiar with geometrical optics.)

2.2 Electromagnetic Waves

The wave hypothesis dates back to Huygens (1629–1695), but then there are the Maxwell equations (1873) 
that fully describe the light as electromagnetic waves. The electromagnetic properties of the matter, in which 
there are waves, are represented by the dielectric constant ε and magnetic permeability μ. In fact, these are 
precisely the electromagnetic properties of matter that determine the light velocity v = (εμ)1/2 and conse-
quently the optical properties. The light velocity in the vacuum, denoted by c, is the maximum possible 
velocity and is an universal constant of physics. The refractive index n≡c/v, known in geometric optics, is a 
quantity that summarizes these properties. The refractive index is a function of the wavelength and is typical 
for any material.

The waves, solutions of Maxwell’s equations in an optically homogeneous medium, are represented by 
sinusoidal functions called wave functions, whose argument, the phase of the wave, is defined at the point x 
of the space along the direction of propagation and the time instant t by

x t
x t2 0 0π

λ τ
ϑ κ ω ϑ−



 − = − − (2.1)

τ is the period;
ν = 1/τ is the frequency;
ω = 2πν is the pulsation;
λ is the wavelength;
κ = 2π/λ is the wave number (sometimes the wave number is simply the reciprocal of λ); and
ϑ0 is the initial phase.

The electromagnetic waves have the following properties:

 ● The quantities described by wave functions are the electric field vector E x t( )0

�
κ ω ϑ− −  and the mag-

netic field vector H x t( )0

�
κ ω ϑ− − . A qualitative representation of a wave in space and time is given in 

Figure 2.1.
 ● E
�
 and H
�

 are perpendicular to each other and to the direction of propagation – transverse waves – (Figure 2.1).
 ● The waves associated with the electric filed are plane waves if the vectors E

�
 at any points of the propaga-

tion line belong to a plane. Since electric and magnetic fields are linked together by Maxwell’s equations, 
the vectors H

�
 of the magnetic field belong to a plane orthogonal to the plane of the electric field. The 

surfaces on which the phase of the wave is constant are called wave fronts, and the planes tangent to these 
surfaces are perpendicular to the direction of propagation.
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 ● A light wave is linearly polarized if the wave is a plane wave (Figure 2.1). Linear polarization and plane 
polarization are synonyms.

 ● Light polarization, represented in waves by the direction of the electric field, is a property with a role in 
the processes of reflection and refraction, and is therefore in part responsible for the surface appearance of 
bodies. Therefore, it has an important role in colorimetry and should not be ignored, especially in colori-
metric measurements, in which the radiation reflected by a body is measured and the optical components 
of the instrument reflect light.

 ● An example of linearly polarized light is the light emitted by an LCD monitor. It can be easily checked 
with Polaroid sun glasses rotated on the screen, which operates as a polarization analyser.

 ● In the majority of cases, the light is not polarized and it is not possible to define a single plane for the 
oscillation of the electric field, but thanks to the superposition principle, it is possible to consider it as a 
sum of linearly polarized waves. The decomposition of a light beam in waves of different polarization 
facilitates the discussion of the phenomena of reflection and refraction. It is also of practical utility since 
many everyday devices polarize light as, for example, polaroid filters used in sunglasses.

 ● The flow of power ϕe of the electromagnetic radiation (energy per unit of time and area, measured in 
W/m2) proceeds in the direction orthogonal to the fields E

�
 and H

�
.

 ● The electric and magnetic field magnitudes are proportional to each other H E( / )
� �

ε µ= .
 ● The wave is coherent, which means when the phase is known at a point in space and at an instant in time, 

then it can be determined at any other point and instant.
 ● The velocity at which the plane waves propagate in space is implicitly defined by the argument of the 

wave functions (κ x – ω t –ϑ0), which takes the same value for different pairs of variables x and t. If  
we consider the wave function at the instants t1 and t2, it follows that this function has the same values at 
the points x1 and x2 such that (κ x1 – ω t1) = (κ x2 – ω t2), from which ω (t1 – t2) = κ (x1 – x2), and then the 

x

(a)

(b)

(c)

x

t

H

E

λ

τ

H

E

Figure 2.1 (a) Plane electromagnetic waves represented in space at fixed time and (b) in the time in a fixed 
point in space. This graphical representation shows the wavelength and the frequency in space and time, 
respectively. (c) The third graph from the top represents a wave with ‘circular polarization’; here only the 
electric field is represented and the magnetic field is orthogonal to the electric field. The electric field and 
magnetic field are mutually perpendicular and together orthogonal to the propagation direction.
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wave advances rigidly with a velocity v =(x1 – x2)/ (t1 – t2) = ω/κ = λ/τ = λν. The velocity in the vacuum 
is c = 2.997925 × 108 m/s.

 ● The waves are classified by their wavelength λ or frequency ν = c/λ. Since the velocity depends on the 
medium, by convention the wavelength is considered in a vacuum and is very close to that in air. A clas-
sification according to decreasing wavelength (Figure 2.2) distinguishes between radio waves (used in 
telecommunications), microwaves (typical of radar and microwave ovens), infrared radiation (IR), visible 
radiation (VIS), ultraviolet radiation (UV), X‐rays and γ‐rays. There are no precise limits for the spectral 

Figure 2.2 Complete spectrum of electromagnetic radiation characterized by wavelength and frequency. The 
part of the spectrum related to visible light is expanded and a hue name is associated to each wavelength range. 
The colours printed here are only representative and approximate for many reasons, which will become clear 
on reading the book. For completeness, the non‐spectral hues (purple and magenta hues) are added, which 
are specified by the complementary wavelengths (Section 4.3). ‘c’ before the wavelength numbers in the extra‐
spectral region means ‘complementary of’.
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range of visible radiation since they depend upon the amount of radiant power reaching the retina and 
the responsivity of the photosensitive cells. Generally, the lower limit is taken between 360 and 400 nm 
and the upper limit between 760 and 830 nm. A finer subdivision of UV radiation distinguishes between 
UVC with 100 < λ < 280 nm, UVB with 280 < λ < 315 nm and UVA with 315 < λ < 400 nm, while in 
IR radiation we have NIR (near‐IR) with 0.8 < λ < 2.5 μm, and IR‐A with 0.78 < λ < 1.4 μm, IR‐B with  
1.4 < λ < 3.0 μm and IR‐C with 3 μm < λ < 1 mm.

“Monochromatic radiation – radiation characterized by a single frequency or a single wavelength.

NOTE 1 – In practice, radiation of a very small range of frequencies can be described by stating a single 
frequency or wavelength (NB: In reality a radiation with a single wavelength cannot exist).

NOTE 2 – The wavelength in air or in vacuum is also used to characterize a monochromatic radiation. 
The medium must be stated.

NOTE 3 – The wavelength in standard air is normally used in photometry, radiometry and  
colorimetry.”1–3

A clarification is required: the radiation of a single wavelength is not selectable instrumentally (Section 
12.3.1) and is theoretically definable only in an infinite optically homogeneous space. In a strict sense, the 
word ‘monochromatic’ is improperly used; anyway, it is used. This does not condition the science of col-
our, and the monochromatic radiations can be considered as a language approximation. A radiation, which 
is non‐monochromatic but is defined within a narrow spectral range, is a spectral radiation defined within 
a band specified by its width (Section 12.3.1). In colorimetry, the bandwidth should be 1 nm (Section 
6.10). In practice, often the spectral radiations used have a bandwidth up to 10 nm and Gaussian spectral 
distribution.

“Monochromatic stimulus – colour stimulus consisting of monochromatic radiation. Equivalent term: 
spectral stimulus.”1

Anticipating the description of the colour sensations, Figure 2.2 proposes the visible electromagnetic 
radiation associated with the various spectral hues (albeit approximated by the printing process) and the 
corresponding names. There are extra‐spectral hues provided by a mixture of radiation of short and long 
wavelengths with the intensity in a variable ratio. These extra‐spectral hues cannot be associated with a 
wavelength; however, the convention is to associate them with the complementary wavelengths, denoted by 
the letter ‘c’ followed by the value of the complementary wavelength. 

The plane wave functions with different wavelengths are simultaneously solutions of Maxwell’s equations 
because these differential equations are linear. It follows that also a linear combination of these waves is a 
wave function solution of Maxwell’s equations. This is summarized in the superposition principle, so the 
sum of many solutions is still a solution. This latter property enables treating any light beam as a sum of 
monochromatic beams, which are defined by a single wavelength. This property is of particular importance 
in colour science.

Complementary wavelength to a light radiation is the wavelength of the spectral radiation, which when 
mixed with this in an appropriate ratio of intensity generates a light‐looking achromatic – without hue –.

Radiation defined by a superposition of different monochromatic waves is termed heterochromatic.


