Earth-Abundant Materials for Solar Cells
Earth-Abundant Materials for Solar Cells

Cu$_2$–II–IV–VI$_4$ Semiconductors

SADAO ADACHI
Division of Electronics and Informatics
Faculty of Science and Technology
Gunma University
Japan
Contents

Preface ix

Abbreviations and Acronyms xi

1 Introduction 1

1.1 Natural Abundance of Elements in the Earth’s Crust 1

1.1.1 Chemical Elements 1

1.1.2 Solar Cells and Earth-Abundant Materials 4

1.2 Solar Radiation Spectrum 5

1.3 Shockley–Queisser Efficiency Limit 6

1.4 Fundamental Properties of Photovoltaic Semiconductor Materials 8

1.5 Solar Cell Device Characteristics 11

1.6 Prediction of Physical Properties for Complex Material System 13

1.6.1 An Effective Medium Approximation 13

1.6.2 An Interpolation Scheme 15

References 19

2 Structural Properties 21

2.1 Grimm–Sommerfeld Rule 21

2.2 Crystal Structure and Phase Stability 22

2.2.1 Crystal Structure 22

2.2.2 Theoretical Phase Stability 24

2.3 Lattice Constant and Related Parameters 25

2.3.1 Bulk Material 25

2.3.2 Nanocrystalline Material 52

2.4 Structural Phase Transition 58

References 61

3 Thermal Properties 67

3.1 Phase Diagram 67

3.1.1 Cu$_2$Zn–IV–VI$_4$ Quaternary 67

3.1.2 Cu$_2$Cd–IV–VI$_4$ Quaternary 72

3.1.3 Cu$_2$Hg–IV–VI$_4$ Quaternary 75

3.1.4 Cu$_2$–II–IV–VI$_4$ Solid Solution 78

3.2 Melting Point 81

3.3 Specific Heat 86

3.4 Debye Temperature 88

3.5 Thermal Expansion Coefficient 89
3.6 Thermal Conductivity 92
 3.6.1 Quaternary Material 92
 3.6.2 Alloy Material 101
3.7 Thermal Diffusivity 107
References 107

4 Elastic, Mechanical, and Lattice Dynamic Properties 111
 4.1 Elastic Constant 111
 4.1.1 General Remark 111
 4.1.2 Theoretical Value 113
 4.1.3 Young’s Modulus, Poisson’s Ratio, and Similar 115
 4.1.4 Sound Velocity 118
 4.2 Microhardness 121
 4.3 Lattice Dynamic Properties 124
 4.3.1 Phonon Dispersion Relation 124
 4.3.2 Raman Scattering: Tetragonal Lattice 126
 4.3.3 Raman Scattering: Orthorhombic Lattice 133
 4.3.4 Effect of Atomic Mass on Phonon Frequency 136
 4.3.5 Raman Scattering: Solid Solution 137
 4.3.6 Raman Scattering: Excitation Wavelength Dependence 143
 4.3.7 Far-IR Spectroscopy 148
 4.3.8 External Perturbation Effect 150
 4.3.9 Nanocrystalline Material 156
References 166

5 Electronic Energy-Band Structure 173
 5.1 General Remark 173
 5.1.1 Energy-Band Structure 173
 5.1.2 Γ-Point Energy-Band Scheme 180
 5.1.3 Band-Gap Energy: External Perturbation and Doping Effects 183
 5.1.4 Effective Mass: External Perturbation and Doping Effects 185
 5.2 Lowest Indirect and Direct Band-Gap Energies 185
 5.2.1 Quaternary Material 185
 5.2.2 Solid Solution 201
 5.3 Higher-Lying Band-Gap Energy 205
 5.4 External Perturbation Effect on the Band-Gap Energy: Experimental Data 205
 5.5 Effective Mass 211
 5.5.1 Electron Effective Mass 211
 5.5.2 Hole Effective Mass 217
 5.6 Nanocrystalline Band-Gap Energy 218
 5.6.1 Quaternary Material 218
 5.6.2 Solid Solution 222
 5.7 Heterojunction Band Offset 223
 5.7.1 General Consideration 223
 5.7.2 Theoretical Value 224
 5.7.3 Experimental Value 225
6 Optical Properties 245
 6.1 General Remark 245
 6.1.1 Dielectric Permittivity: 245
 Tensor Representation 245
 6.1.2 Optical Dispersion Relation 246
 6.1.3 Optical Spectrum: Classification into 250
 Several Regions
 6.2 The Reststrahlen Region 253
 6.2.1 Static and High-Frequency Dielectric Constants 253
 6.2.2 Reststrahlen Spectrum 254
 6.3 At or Near the Fundamental Absorption Edge 257
 6.3.1 Exciton Parameter 257
 6.3.2 Optical Absorption 261
 6.3.3 Refractive Index 271
 6.4 The Interband Transition Region 276
 6.4.1 Model Dielectric Function 276
 6.4.2 Optical Spectrum and MDF Analysis 279
 6.4.3 Optical Absorption Spectrum 288
 6.4.4 Optical Constant in the 0–10 000 eV Spectral Region 288
 References 296

7 Carrier Transport Properties 301
 7.1 Electron Transport Properties 301
 7.2 Hole Hall Mobility 303
 7.2.1 General Remark 303
 7.2.2 Room-Temperature Value 304
 7.2.3 Temperature Dependence 312
 7.2.4 Effect of Stoichiometry, Alloying, 319
 and Foreign Atom Doping
 7.3 Electrical Resistivity 327
 7.3.1 Free-Hole Conduction 327
 7.3.2 Hopping Conduction 332
 7.3.3 Transport in Degenerate Band 334
 7.3.4 Insulator-to-Metal Transition 335
 7.4 Minority-Carrier Transport 339
 7.4.1 Minority-Electron Mobility 339
 7.4.2 Minority-Electron Lifetime and Diffusion Length 342
 7.5 Effect of Grain Boundary 350
 7.6 Proposal: Graded-Absorber Solar Cell Structure 352
 7.7 Proposal: Controlling Transport Properties of Bulk Material 353
 by Heat Treatment
 References 354
Contents

Appendix A Summary: Physical Properties of CZTS and CZTSe
References 363

Appendix B Summary: Physical Properties of c-CdS, w-CdS, and ZnO
References 369

Appendix C Optical Constants of Some Cu$_2$–II–IV–VI$_4$ Quaternary Semiconductors
References 379

Appendix D Optical Constants of c-CdS, w-CdS, and ZnO
References 415

Index
443
Cu₂−II−IV−VI₄ multinary semiconductors have been of great interest for many years because of their appearance as naturally occurring minerals and suitable band-gap energies for applications in various solar energy converters. Even though the basic material concept of Cu₂−II−IV−VI₄ multinary semiconductors is understood at this time, some practical device parameters in this material system have been hampered by a lack of definite knowledge of many material parameters and properties.

The purpose of this book is twofold: (1) to present key properties of Cu₂−II−IV−VI₄ multinary semiconductors, particularly Cu₂ZnSnS₄ and Cu₂ZnSnSe₄ quaternaries, and (2) to present various material parameters and constants of these multinary semiconductors for a variety of basic research and device applications. A set of the material parameters and properties of these semiconductors are considered in this book. They are (i) structural properties of not only bulk quaternaries but also their solid solutions and nanocrystalline materials; (ii) thermal properties; (iii) elastic, mechanical, and lattice dynamic properties; (iv) electronic energy-band structure consequences; (v) optical properties; and (vi) carrier transport properties. The host of effects associated with the presence of specific impurities and defects is, however, omitted from the coverage of this book.

The book attempts to summarize in graphical and tabular form most of the important theoretical and experimental data on the material parameters and properties of Cu₂−II−IV−VI₄ multinary semiconductors. The book is intended for scientists and engineers, in particular in the fields of multinary semiconductor physics and a variety of photovoltaic or solar cell devices. It is my hope that the book will be used to both beginning and advanced specialists and workers in related fields, thus contributing to the further developments in the various fields of Cu₂−II−IV−VI₄ multinary semiconductors.

Sadao Adachi
Gunma,
Japan
August 2015
Abbreviations and Acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
\(\mu \) - microcrystalline-
\(a \) - amorphous-
AM air mass
ASTM American Society for Testing and Materials
\(c \) - crystalline-
\(c \) - cubic-
CB conduction band
CP critical point
CVT chemical vapor transport
CZTS \(\text{Cu}_2\text{ZnSnS}_4 \)
CZTSe \(\text{Cu}_2\text{ZnSnSe}_4 \)
CZTSSe \(\text{Cu}_2\text{ZnSn(S}_x\text{Se}_{1-x})_4 \)
DFT density functional theory
DOS density of states
DSC differential scanning calorimetry
DTA differential thermal analysis
EDX energy-dispersive X-ray spectrometry
EM effective-medium
EQE external quantum efficiency
ER electroreflectance
EXAFS extended X-ray absorption fine structure
FC free-carrier
FWHM full-width at half-maximum
\(h \) - hexagonal-
HRTEM high-resolution transmission electron microscopy
HT high-temperature
ICB interconduction-band
IR infrared
IVB intervalence-band
JCPDS Joint Committee on Powder Diffraction Standards
KK Kramers–Krönig
LA longitudinal acoustic
LO longitudinal optical
LT low-temperature
\(m \) - monoclinic-
MBE molecular beam epitaxy
MDF model dielectric function
MREI modified random-element-isodisplacement
M-VRH Mott variable-range hopping
o- orthorhombic-
PL photoluminescence
PzR piezoreflectance
QD quantum dot
r- rhombohedral-
rms root mean squares
SE spectroscopic ellipsometry
SEM scanning electron microscopy
SLG soda-lime glass
SQ Shockley–Queisser
t- tetragonal-
TA transverse acoustic
TGA thermogravimetric analysis
THM travelling heater method
TO transverse optical
VB valence band
w- wurtzite-
WZ wurtzite
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
ZB zincblende
1

Introduction

1.1 Natural Abundance of Elements in the Earth’s Crust

1.1.1 Chemical Elements

Recent advances in Cu(Ga,In)Se₂ and CdTe thin-film solar cells have resulted in commercially viable photovoltaic modules. Currently, the best performing thin-film solar cells on the cell as well as on the module level are fabricated using Cu(Ga,In)Se₂ absorbers. Despite having superior efficiencies, Cu(Ga,In)Se₂ and CdTe are seemed to be not amenable for eventual terawatt- or petawatt-scale production due to the cost and/or scarcity of Cd, Ga, and In raw metals. Notice that both Ga and In are rather costly metals, about 100 times more expensive than Cu and Zn. Therefore, one major challenge for thin-film photovoltaic technology is to develop materials composed of earth-abundant and nontoxic elements.

CZTS is an emerging solar cell absorber, which is structurally similar to chalcopyrite semiconductors, such as CuGaSe₂, CuInSe₂, and Cu(Ga,In)Se₂, but contains only earth-abundant, nontoxic elements and has a near optimal direct band-gap energy of $E_g \approx 1.5$ eV with high optical absorption coefficients. The fact of CZTS being isoelectronic to chalcopyrite means that a number of its material properties (e.g., the crystal structure and tensor properties) are very similar to chalcopyrite semiconductors. This promises that the same preparation methods can be used and photovoltaic devices have been successfully prepared using the same device design, structure, and processing as chalcopyrite solar cells.

Table 1.1 lists the percent natural abundance for the stable nuclides in the earth’s crust. Figure 1.1 also plots the abundance in the earth’s crust versus atomic number for the elements from 1H to 94Pu. Given the first and second most abundant elements of oxygen
Table 1.1 Abundance of elements in the earth’s crust

<table>
<thead>
<tr>
<th>Z</th>
<th>Symbol</th>
<th>Crust abundant (%)</th>
<th>Z</th>
<th>Symbol</th>
<th>Crust abundant (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>0.14</td>
<td>51</td>
<td>Sb</td>
<td>0.00002</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>8×10^{-7}</td>
<td>52</td>
<td>Te</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>0.002</td>
<td>53</td>
<td>I</td>
<td>0.000045</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>0.00028</td>
<td>54</td>
<td>Xe</td>
<td>3×10^{-9}</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>0.001</td>
<td>55</td>
<td>Cs</td>
<td>0.0003</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>0.02</td>
<td>56</td>
<td>Ba</td>
<td>0.0425</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>0.0019</td>
<td>57</td>
<td>La</td>
<td>0.0039</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>46.1</td>
<td>58</td>
<td>Ce</td>
<td>0.00665</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>0.0585</td>
<td>59</td>
<td>Pr</td>
<td>0.00092</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>5×10^{-7}</td>
<td>60</td>
<td>Nd</td>
<td>0.00415</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>2.36</td>
<td>61</td>
<td>Pm</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>2.33</td>
<td>62</td>
<td>Sm</td>
<td>0.000705</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>8.23</td>
<td>63</td>
<td>Eu</td>
<td>0.0002</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>28.2</td>
<td>64</td>
<td>Gd</td>
<td>0.00062</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>0.105</td>
<td>65</td>
<td>Tb</td>
<td>0.00012</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>0.035</td>
<td>66</td>
<td>Dy</td>
<td>0.00052</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>0.0145</td>
<td>67</td>
<td>Ho</td>
<td>0.00013</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>0.00035</td>
<td>68</td>
<td>Er</td>
<td>0.00035</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>2.09</td>
<td>69</td>
<td>Tm</td>
<td>0.000052</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>4.15</td>
<td>70</td>
<td>Yb</td>
<td>0.00032</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>0.0022</td>
<td>71</td>
<td>Lu</td>
<td>0.00008</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>0.565</td>
<td>72</td>
<td>Hf</td>
<td>0.0003</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>0.012</td>
<td>73</td>
<td>Ta</td>
<td>0.00020</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>0.0102</td>
<td>74</td>
<td>W</td>
<td>0.000125</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>0.095</td>
<td>75</td>
<td>Re</td>
<td>7×10^{-8}</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>5.63</td>
<td>76</td>
<td>Os</td>
<td>1.5×10^{-7}</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>0.0025</td>
<td>77</td>
<td>Ir</td>
<td>1×10^{-7}</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>0.0084</td>
<td>78</td>
<td>Pt</td>
<td>5×10^{-7}</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>0.006</td>
<td>79</td>
<td>Au</td>
<td>4×10^{-7}</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>0.007</td>
<td>80</td>
<td>Hg</td>
<td>8.5×10^{-6}</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>0.0019</td>
<td>81</td>
<td>Tl</td>
<td>0.000085</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>0.00015</td>
<td>82</td>
<td>Pb</td>
<td>0.0014</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>0.00018</td>
<td>83</td>
<td>Bi</td>
<td>8.5×10^{-7}</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>0.000005</td>
<td>84</td>
<td>Po</td>
<td>2×10^{-14}</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>0.00024</td>
<td>85</td>
<td>At</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>1×10^{-8}</td>
<td>86</td>
<td>Rn</td>
<td>4×10^{-17}</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>0.09</td>
<td>87</td>
<td>Fr</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>0.037</td>
<td>88</td>
<td>Ra</td>
<td>9×10^{-11}</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>0.0033</td>
<td>89</td>
<td>Ac</td>
<td>5.5×10^{-14}</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>0.0165</td>
<td>90</td>
<td>Th</td>
<td>0.00096</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>0.002</td>
<td>91</td>
<td>Pa</td>
<td>1.4×10^{-10}</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>0.00012</td>
<td>92</td>
<td>U</td>
<td>0.00027</td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td></td>
<td>93</td>
<td>Np</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>1×10^{-7}</td>
<td>94</td>
<td>Pu</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>1×10^{-7}</td>
<td>95</td>
<td>Am</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>1.5×10^{-6}</td>
<td>96</td>
<td>Cm</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>7.5×10^{-6}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>0.000015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>0.000025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>0.00023</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers show percentage in mass.

and Si in the earth’s crust (see Figure 1.1), it should not be surprising that the most abundant minerals in the crust are the silicates. Use of abundant and nontoxic elements is a great advantage; however, the requirement of thick Si absorber layers (~100 μm), due to the low absorption coefficient of this semiconductor material, combined with the typical high-temperature processing makes c-Si technology expensive.

Cd, Ga, and In are the 65th, 35th, and 63rd most abundant elements in the earth’s crust, respectively. Cu is the 26th most abundant element in the earth’s crust and occurs as native copper or in minerals such as the copper sulfides, copper carbonates, and copper oxides.
Zn is the 24th most abundant element in the earth’s crust. The most common zinc ore is a ZnS (sphalerite) mineral. Sulfur (S) is also an abundant and multivalent nonmetal. S occurs in the earth naturally as the pure element and as sulfide and sulfate minerals. Tellurium and selenium have been depleted from the crust due to formation of volatile hydrides.

1.1.2 Solar Cells and Earth-Abundant Materials

Various solar cell devices exhibit varying conversion efficiencies and have varying costs. Semiconductor materials presently used or considered for photovoltaic solar cells include single-crystalline Si, polycrystalline Si, amorphous Si, GaAs, InP, CdS, CdTe, Cu–III–VI₂ chalcopyrite compounds (CuGaS₂, CuInSe₂, Cu(Ga,In)Se₂, etc.), and Cu₂–II–IV–VI₄ compounds (CZTS, CZTSe, etc.). Many currently available high-efficiency solar cells are made from bulk semiconductors that are cut into wafers. Thin-film layers have also been researched and shown promising properties in terms of solar cell efficiency. Si remains the only semiconductor that is well researched in both bulk and thin-film forms and also in both crystalline and amorphous phases.

We list in Table 1.2 the percent natural abundance per raw element for some interesting semiconductors used or to be used in photovoltaic applications. These specialized abundance values are calculated from the equation

\[S_a = \frac{\sum A_i n_i}{\sum n_i} \] (1.1)

where \(A_i \) and \(n_i \) are the percent abundance and number of the \(i \)th element of a semiconductor, respectively. Using values of \(A_i \) listed in Table 1.1, as an example, we obtain

\[S_a = \frac{0.006 \times 2 + 0.007 + 28.2 + 0.035 \times 4}{2 + 1 + 1 + 4} = 3.5449\% \] (1.2)

for Cu₂ZnSiS₄ quaternary. Recently, GaInN-based multiple quantum-well solar cells have drawn much attention due to their favorable photovoltaic characteristics, including direct and tunable band gaps covering nearly the entire solar spectrum, high absorption coefficient, high electron mobility, and superior solar radiation resistance [1]. Thus, the \(S_a \) values of GaN and InN are also listed in Table 1.2.

The largest \(S_a \) value in Table 1.2 is 28.2% for Si. CdTe is a well-known II–VI compound semiconductor. This material has the smallest \(S_a \) value of 0.000008% owing to their very small values of Cd and Te. Note that Cd present in the cells would be toxic if released. As expected, the S-based Cu₂–II–IV–VI₄ quaternaries provide larger \(S_a \) values (>3.5%) than those without containing Si (IV) element. The \(S_a \sim 0.02\% \) value of CZTS is about one order larger than that of CZTSe (∼0.0024%). These values are also considerably larger than that of GaAs (∼0.001%) but smaller than InP value of ∼0.05%.
1.2 Solar Radiation Spectrum

Radiation from the sun sustains life on earth and determines climate. Figure 1.2 shows the solar radiation spectra at both the top of the earth’s atmosphere and sea level. The energy flow within the sun results in a surface temperature of ~5800 K, so the spectrum of the radiation from the sun is similar to that of a 5800 K blackbody with fine structures (viz., the Fraunhofer lines) due to absorption in the cool peripheral solar gas. The irradiance of the sun falling on the earth changes over a year by about 7% due to the variation in the sun–earth distance. Solar activity variations also cause changes of up to 1%.

As the sunlight passes through the atmosphere, some is absorbed by atomic and molecular gases with specific absorption lines and bands (see O₂ and H₂O in Figure 1.2). There is the ozone (O₃) layer in the lower portion of the stratosphere from ~20 to 30 km above the earth’s
surface. The ozone layer absorbs ~98% of the sun’s UV (200–320 nm) radiation, which otherwise would potentially damage exposed life forms on the earth. Additional light is redistributed by Rayleigh scattering \(I_R \propto \lambda^{-4} \), which is responsible for the atmosphere’s blue color.

Identification of a reference spectral irradiance for terrestrial applications is a much more difficult subject because of the abovementioned effects of the atmosphere on sunlight, which are a function of the path length through the atmosphere [2]. A way of describing an atmospheric path is called the relative optical path length, which is simplified to “air mass (AM).” To a first approximation, the AM is the secant of the solar zenith angle (see Figure 1.2). Thus, AM1 indicates the sun is directly overhead, and AM1.414 is a 45° zenith angle. The extraterrestrial solar irradiance at a distance of one astronomical unit from the sun is commonly used as a reference spectral irradiance. This irradiance corresponds to AM0 because at the top of the atmosphere, the path length is zero. The AM0 and AM1.5 spectra are shown in Figure 1.2.

1.3 Shockley–Queisser Efficiency Limit

A solar cell energy conversion efficiency is the percentage of power converted from sunlight to electrical energy under certain conditions. The efficiency limit was first calculated by Shockley and Queisser in 1961 [3] and took into consideration the solar radiation by a 6000 K blackbody. It is one of the most fundamental parameters to solar cell production.
As mentioned in Section 1.2, the solar radiation with various wavelengths reaches the earth. Not all the photons can create an electron–hole pair. The photon with energy less than the band-gap energy \(E_g \) will be transmitted without being absorbed in the semiconductor or will be converted into heat. The photon having energy higher than \(E_g \) of a semiconductor absorber can excite an electron from the VB to the CB. The photon having excessively high energy can excite electron at the highly lying CB state; however, such electron will quickly relax toward the bottom of the CB states via the electron–phonon interaction or carrier–carrier scattering.

Figure 1.3 plots the SQ efficiency limit [3]. The experimental conversion efficiency versus \(E_g \) plots, gathered from various sources, are also shown in Figure 1.3. The solar radiation has peculiar spectrum peaking at ~500 nm, as shown in Figure 1.2. Only the photon that has enough energy \((E > E_g) \) to knock an electron out of its place can create an electron–hole pair. If a photon has 2.0 eV and falls onto a 1.1 eV cell, the excess energy of 0.9 eV will be lost in the form of heat. Thus, the theoretical SQ efficiency limit shows a maximum near \(E_g \sim 1.3 \) eV. There are a number of assumptions associated with the SQ limit that restrict its general applicability to all types of solar cells. A few of these assumptions are one semiconductor material and one \(pn \) junction per solar cell. The solid circles in Figure 1.3 represent the results obtained from such one \(pn \)-junction solar cells.

In Figure 1.3, the theoretical limit for \(c \)-Si solar cell is about 30%. About 50% of the solar energy gets converted to heat. About 20% of the photons pass through the solar cell. Difference of about 5% between the theoretical and experimental conversion efficiencies may account for optical losses at the surface of the cell even though it is usually textured and coated with an antireflection coating, electrical losses (e.g., Joule loss), etc.

Figure 1.3 SQ efficiency limit together with conversion efficiencies obtained from various semiconductor solar cells and dye-sensitized TiO\(_2\) solar cell. The shaded region indicates an optimal \(E_g \) range (~1.0–1.7 eV) in the SQ efficiency limit. The solid and open circles show the results obtained from one \(pn \)-junction and multijunction solar cells, respectively. CIGS = Cu(Ga,In)Se\(_2\).
The multijunction solar cell technology has been developed to capture more of the solar radiations than the case with conventional Si solar cells. Each multijunction solar cell is made of semiconductor layers desired to capture one range of wavelengths of sunlight. The open circles in Figure 1.3 are obtained from this type of multijunction solar cells.

1.4 Fundamental Properties of Photovoltaic Semiconductor Materials

Various semiconductors show varying conversion efficiencies and have varying costs. Semiconductor materials to be used for efficient solar cells must have characteristics matched to the spectrum of available light. Thus, the most important semiconductor properties for solar energy conversion devices are the band-gap energy E_g and optical absorption spectrum $\alpha(E)$.

We summarize in Table 1.3 the crystal structure, lattice constant, and lowest band-gap energy for some group IV, III–V, II–VI, and I–III–VI$_2$ semiconductors. Figure 1.4 also

<table>
<thead>
<tr>
<th>System</th>
<th>Material</th>
<th>CS</th>
<th>Lattice constant</th>
<th>E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a (nm)</td>
<td>c (nm)</td>
</tr>
<tr>
<td>IV</td>
<td>Diamond</td>
<td>d</td>
<td>0.35670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>d</td>
<td>0.54310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ge</td>
<td>d</td>
<td>0.56579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3C-SiC</td>
<td>zb</td>
<td>0.43596</td>
<td></td>
</tr>
<tr>
<td>III–V</td>
<td>α-GaN</td>
<td>h (w)</td>
<td>0.31896</td>
<td>0.51855</td>
</tr>
<tr>
<td></td>
<td>GaP</td>
<td>zb</td>
<td>0.54508</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GaAs</td>
<td>zb</td>
<td>0.565330</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GaSb</td>
<td>zb</td>
<td>0.609593</td>
<td></td>
</tr>
<tr>
<td></td>
<td>InP</td>
<td>zb</td>
<td>0.58690</td>
<td></td>
</tr>
<tr>
<td></td>
<td>InAs</td>
<td>zb</td>
<td>0.60583</td>
<td></td>
</tr>
<tr>
<td></td>
<td>InSb</td>
<td>zb</td>
<td>0.647937</td>
<td></td>
</tr>
<tr>
<td>II–VI</td>
<td>ZnO</td>
<td>h (w)</td>
<td>0.32495</td>
<td>0.52069</td>
</tr>
<tr>
<td></td>
<td>β-ZnS</td>
<td>zb</td>
<td>0.54102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZnSe</td>
<td>zb</td>
<td>0.56692</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZnTe</td>
<td>zb</td>
<td>0.61037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c-CdS</td>
<td>zb</td>
<td>0.5825</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c-CdSe</td>
<td>zb</td>
<td>0.60776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CdTe</td>
<td>zb</td>
<td>0.6481</td>
<td></td>
</tr>
<tr>
<td>I–III–VI$_2$</td>
<td>CuAlS$_2$</td>
<td>ch</td>
<td>0.532</td>
<td>1.043</td>
</tr>
<tr>
<td></td>
<td>CuAlSe$_2$</td>
<td>ch</td>
<td>0.561</td>
<td>1.092</td>
</tr>
<tr>
<td></td>
<td>CuAlTe$_2$</td>
<td>ch</td>
<td>0.596</td>
<td>1.177</td>
</tr>
<tr>
<td></td>
<td>CuGaS$_2$</td>
<td>ch</td>
<td>0.535</td>
<td>1.046</td>
</tr>
<tr>
<td></td>
<td>CuGaSe$_2$</td>
<td>ch</td>
<td>0.561</td>
<td>1.100</td>
</tr>
<tr>
<td></td>
<td>CuGaTe$_2$</td>
<td>ch</td>
<td>0.600</td>
<td>1.193</td>
</tr>
<tr>
<td></td>
<td>CuInS$_2$</td>
<td>ch</td>
<td>0.552</td>
<td>1.108</td>
</tr>
<tr>
<td></td>
<td>CuInSe$_2$</td>
<td>ch</td>
<td>0.578</td>
<td>1.155</td>
</tr>
<tr>
<td></td>
<td>CuInTe$_2$</td>
<td>ch</td>
<td>0.617</td>
<td>1.234</td>
</tr>
</tbody>
</table>

ch, chalcopyrite; CS, crystal structure; D, direct band gap; d, diamond; h, hexagonal; ID, indirect band gap; w, wurtzite; zb, zincblende.
shows the relationships between the direct/indirect band-gap energy E_g and lattice constant a for a number of group IV, III–V, and II–VI semiconductors crystallizing in the cubic structure. The alloy bowing parameters for E_g are taken from Adachi [4]. Note that semiconductor alloys can provide us a natural means of tuning the various material parameters so as to optimize and widen the applications of semiconductor devices. The solar irradiance spectrum at AM1.5 is also shown on the right-hand side of Figure 1.4. The same relationships, but for I–III–VI$_2$ chalcopyrite semiconductors, are shown in Figure 1.5. Here, no

Figure 1.4 (a) Band-gap energy E_g versus lattice constant a for a number of group IV, III–V, and II–VI semiconductors crystallizing in the cubic structure at 300 K [4]. The shaded region indicates an optimal E_g range (~1.0–1.7 eV) in the SQ efficiency limit (see Figure 1.3). (b) Spectral irradiance (SI) for sunlight at AM1.5

Figure 1.5 (a) Band-gap energy E_g versus effective lattice constant a_{eff} for a number of I–III–VI$_2$ semiconductors crystallizing in the chalcopyrite structure at 300 K. The E_g versus a_{eff} data for CZTS and CZTSe quaternaries are also shown by the open circles. The shaded region indicates an optimal E_g range (~1.0–1.7 eV) in the SQ efficiency limit (see Figure 1.3). (b) Spectral irradiance (SI) for sunlight at AM1.5
alloy bowing of E_g is taken into consideration for such chalcopyrite semiconductor alloys. The effective cubic lattice constant a_{eff} is calculated, using the lattice parameters a and c, by

$$a_{\text{eff}} = \sqrt[3]{\frac{a^2 c}{2}}$$

(1.3)

Figure 1.6 Room-temperature optical absorption spectra $\alpha(E)$ for a number of semiconductors which are important or to be used for photovoltaic device applications: (a) group IV, (b) III–V, (c) II–VI, and (d) I–III–VI$_2$ semiconductors [5, 6]. The $\alpha(E)$ spectra for anisotropic semiconductors correspond to those for the ordinary ray ($E \perp c$).
Cu(Ga,In)Se$_2$ is an alloy being used for the most efficient thin-film solar cell technology. Its endpoint material (CuGaSe$_2$ and CuInSe$_2$) values of E_g fall in an optimal band-gap range (≈1.0–1.7 eV) of the SQ efficiency limit. The E_g versus a_{eff} data for CZTS and CZTSe are also plotted in Figure 1.5. An expression for a_{eff} of these quaternary materials is given in Table 2.2. Like Cu(Ga,In)Se$_2$ alloy, CZTS and CZTSe have E_g values falling in the optimal SQ efficiency limit.

The principal means of carrier generation in photovoltaic devices is the absorption of light. Figure 1.6 shows the optical absorption spectra $\alpha(E)$ of a number of semiconductors which are important or to be used for photovoltaic device applications: (a) group IV, (b) III–V, (c) II–VI, and (d) I–III–VI$_2$ semiconductors. The experimental data are taken from Adachi [5, 6]. The absorption edge of the direct band-gap semiconductors such as GaAs and CdTe is sharper than that of the indirect band-gap materials such as c-Si and 3C-SiC. The fundamental absorption edge of amorphous materials like a-Si can be treated as the “non-direct” absorption edge rather than the direct or indirect absorption edge [7]. However, this treatment ultimately provides a formula that is almost identical to that of the indirect absorption edge. Thus, the $\alpha(E)$ spectrum at the fundamental absorption edge of a-Si gradually increases with increasing E as in c-Si (Figure 1.6a).

Ge is an indirect band-gap semiconductor; however, it has the lowest direct band gap near 0.795 eV at 300 K that is close to the lowest indirect band gap near 0.67 eV. Thus, much stronger dipole transitions taking place at the Γ point make this indirect band-gap semiconductor as a direct band-gap semiconductor in nature. GaP is a suitable material to investigate some of the indirect band-gap semiconductor properties, since it has three indirect band gaps, near 2.26 eV ($\Gamma_8 \rightarrow X_6$), 2.48 eV ($\Gamma_8 \rightarrow X_7$), and 2.63 eV ($\Gamma_8 \rightarrow L_6$) at 300 K, which are well separated from the lowest direct band gap ($\Gamma_8 \rightarrow \Gamma_6$) at 2.76 eV. A gradual increase in the absorption coefficient can be found for the experimental data of c-CdSe (Figure 1.6c). This may come from an effect of the crystalline imperfections introduced during crystal growth. Note that CdSe usually crystallizes in the wurtzite structure (w-CdSe). Recent crystal growth technique, however, enabled to synthesize unusual polytypic crystals. The $\alpha(E)$ data of c-CdSe plotted in Figure 1.6c are obtained from an epitaxial sample grown on (001) GaAs by MBE. For E well above the fundamental absorption edge, all the semiconductors in Figure 1.6 show saturated absorption values in the range of $\alpha \sim 10^5–10^6 \text{cm}^{-1}$.

1.5 Solar Cell Device Characteristics

Figure 1.7 shows the spectral efficiency of several different kinds of solar cells, together with the solar irradiance spectrum. Although the absolute conversion efficiencies depend on the type of solar cells, their curves are understood to reflect the solar irradiance spectrum. If we consider a multijunction solar cell, a combination of a GaInP and/or a GaAs cell with a c-Si solar cell appears to be an excellent combination, because the spectral efficiency of the III–V solar cells is much higher at short wavelength, while the c-Si solar cell exhibits best performance at long wavelengths [8]. It is also understood that an a-Si solar cell can hardly increase the device efficiency when combined with a c-Si solar cell, but should be a good combination with a μc-Si solar cell. If Si is alloyed with carbon in a layer, the band-gap energy increases and more blue light can be absorbed. Conversely, if Si is alloyed with
Figure 1.7 Spectral efficiency for some different kinds of solar cells along with the spectral irradiance at AM1.5

Figure 1.8 (a) Optical absorption spectra $\alpha(E)$ for w-CdS and ZnO [5, 6], (b) normalized EQE of CZTS and CZTSSe solar cells, and (c) normalized EQE of CZTSe and CZTSSe solar cells. The spectral irradiance at AM1.5 is shown in (b) and (c). The experimental photovoltaic characteristics of CZTS, CZTSSe, and CZTSe solar cells are taken from Ennaoui et al. [9], Woo et al. [10], and Repins et al. [11], respectively.
Ge in another layer, the band-gap energy is decreased and more red lights can be absorbed. Detailed material properties of semiconductor alloys are found in Adachi [4].

Figure 1.8 shows (a) the optical absorption spectra \(\alpha(E) \) of \(w \)-CdS and ZnO, (b) normalized EQE of CZTS and CZTSSe solar cells, and (c) normalized EQE of CZTSe and CZTSSe solar cells. The experimental absorption spectra \(\alpha(E) \) of \(w \)-CdS and ZnO are taken from Adachi [5, 6]. The photovoltaic characteristics of CZTS, CZTSSe, and CZTSe solar cells are taken from Ennaoui et al. [9], Woo et al. [10], and Repins et al. [11], respectively. These solar cell devices had layers of chemical-bath-deposited \(n \)-type CdS and sputter-deposited ZnO on \(p \)-CZTS, \(p \)-CZTSSe, or \(p \)-CZTSe layer. The \(n \)-type CdS layer was deposited to form a \(pn \) heterojunction with the \(p \)-type CZTS, CZTSSe, or CZTSe layer. The deposition of such wide-band-gap II–VI semiconductor layers made possible expanding optical transmittance in the shorter-wavelength region, as can be understood in Figure 1.8.

1.6 Prediction of Physical Properties for Complex Material System

1.6.1 An Effective Medium Approximation

Almost all Cu_{2}–II–IV–VI_{4} semiconductors were grown in the form of films, though a very few works grew such multinary semiconductors in the single-crystalline ingot form (see Nagaoka et al. [12]). A factor that can significantly influence the material properties is surface microroughness or voids present in the films. As shown in Figure 1.9, surface microroughness can be characterized by mean height of irregularities about an average and a correlation length between irregularities. Thus, the roughened surface layer on a substrate can be regarded as a physical mixture of voids and dense film material with an apparent thickness of \(d \). An EM approximation or an EM theory pertains to theoretical or analytical modeling such as composite film and bulk materials.

![Figure 1.9](image.png)
(a) Roughened surface (or voids)
(b) Substrate with equivalent EM layer thickness \(d \)

\textit{Figure 1.9} (a) A roughened surface and (b) its equivalent EM layer thickness \(d \) on a substrate of the original material
Simple approaches to the description of the material properties of a multiphase mixture were given by Lorentz and Lorenz (Lorentz–Lorenz), Maxwell and Garnet (Maxwell–Garnet), and Bruggeman [13–16]. They all have the same generic form:

$$\frac{\langle \varepsilon \rangle - \varepsilon_h}{\langle \varepsilon \rangle + 2\varepsilon_h} = f_1 \frac{\varepsilon_1 - \varepsilon_h}{\varepsilon_1 + 2\varepsilon_h} + f_2 \frac{\varepsilon_2 - \varepsilon_h}{\varepsilon_2 + 2\varepsilon_h} + \cdots$$ \hspace{1cm} (1.4)

where $\langle \varepsilon \rangle$, ε_h, ε_1, ε_2, ... are the material parameters of the effective medium, host medium, and inclusions of types 1, 2, ..., in the host, respectively. f_1, f_2, ... represent the volume fractions of inclusions, 1, 2, ..., in the total volume. As we will see next, the primary difference in the Lorentz–Lorenz, Maxwell–Garnet, and Bruggeman EM approximation models is the choice of the “host” medium.

We consider, as an example, the dielectric permittivity of the complex multiphase materials. The Lorentz–Lorenz EM approximation was developed to describe point polarizable entities of polarizability α embedded in vacuum. In this case, $\varepsilon_h = 1 + i0$ (vacuum) and Equation 1.4 can be written as

$$\frac{\langle \varepsilon \rangle - 1}{\langle \varepsilon \rangle + 2} = f_1 \frac{\varepsilon_1 - 1}{\varepsilon_1 + 2} + f_2 \frac{\varepsilon_2 - 1}{\varepsilon_2 + 2}$$ \hspace{1cm} (1.5)

The dielectric constant ε of a medium containing a mixture of dipoles, with the ith type having polarizability α_i and occurring with a density N_i, can be given by the Clausius–Mossotti relation:

$$\frac{\varepsilon - 1}{\varepsilon + 2} = \sum_i \frac{N_i \alpha_i}{3}$$ \hspace{1cm} (1.6)

Thus, the Lorentz–Lorenz EM expression is expressed in terms of α_i’s, which are related by the Clausius–Mossotti relation of Equation 1.6.

The Maxwell–Garnet EM approximation corresponds to macroscopic dielectric inclusions in a host dielectric background, and the quantities in Equation 1.4 have their obvious interpretations. In the case of a single inclusion in a host background, this equation becomes

$$\frac{\langle \varepsilon \rangle - \varepsilon_h}{\langle \varepsilon \rangle + 2\varepsilon_h} = f_1 \frac{\varepsilon_1 - \varepsilon_h}{\varepsilon_1 + 2\varepsilon_h}$$ \hspace{1cm} (1.7)

Equation 1.7 degenerates to the Lorentz–Lorenz form if the host happens to be vacuum or air. This is then not a bad approximation if the inclusions make up a small fraction of the total volume.

For a single type of inclusion in a single host, $\langle \varepsilon \rangle$ has different values in the Maxwell–Garnet EM approximation if the role of host and inclusion is interchanged—even if the respective volume fractions stay the same. To avoid this ambiguity in bulk applications, Bruggeman suggested replacing ε_h in Equation 1.4 with $\langle \varepsilon \rangle$, that is, letting the EM itself acts as host medium. Under this assumption, Equation 1.4 becomes

$$\sum_{i=1}^{n} f_i \frac{\varepsilon_i - \langle \varepsilon \rangle}{\varepsilon_i + 2\langle \varepsilon \rangle} = 0$$ \hspace{1cm} (1.8)
with
\[\sum_{i=1}^{n} f_i = 1.0 \]

This is known as the Bruggeman EM approximation. This approximation gives a rigorous result of self-consistency that can be shown to be varied under fairly general conditions [15].

1.6.2 An Interpolation Scheme

A chemical compound is a substance consisting of two or more chemical elements that are chemically combined in fixed proportions. The ratio of each element is usually expressed by chemical formula. For example, water is a compound consisting of two hydrogen atoms bonded to an oxygen atom (H₂O). The atoms within a compound can be held together by a variety of interactions, ranging from covalent bonds to electrostatic forces in ionic bonds. A continuum of bond polarities exists between the purely covalent and ionic bonds. For example, H₂O is held together by polar and covalent bonds. Sodium chloride (NaCl) is an example of an ionic compound. H₂O and NaCl are binary compounds, whereas CaCO₃ and Cu₂SnS₃ are ternary compounds. CZTS is one of the Cu₂–II–IV–VI₄ quaternary compounds.

An alloy is a combination, either in solution or compound, of two or more elements. An alloy with two components is called a binary alloy; one with three is a ternary alloy; one with four is a quaternary alloy; one with five is a pentanary alloy. The resulting alloy substance usually has properties significantly different from those of its components. The proportions of the ingredients are available.

Simply, an alloy is formed from a physical mixture of two or more substances, whereas a compound is formed from a chemical reaction. An alloy crystal is sometimes called a mixed crystal or a solid solution. For example, GaAs is a compound consisting of Ga atoms bonded to As atoms. It is not an alloy. AlₓGa₁₋ₓAs is a ternary alloy compound consisting of AlAs and GaAs with a mole ratio of \(x : (1 – x) \). The bonds in AlAs and GaAs are not adequately described by any of these extreme types, but have characteristics intermediate to those usually associated with the covalent and ionic terms. The bonds in silicon, Si—Si, can be described by the covalent bond term only. It is an elemental semiconductor, not a compound semiconductor. Similarly, C (diamond), Ge, and Sn (gray tin) are elemental semiconductors.

Like AlₓGa₁₋ₓAs, SiₓGe₁₋ₓ (0 ≤ x ≤ 1.0) is an alloy semiconductor. The bonds Si—Ge, Si—Si, and Ge—Ge in SiₓGe₁₋ₓ are, therefore, described by the covalent term only. It should be noted, however, that silicon carbide (SiC) is a compound, not a binary alloy. This is because that the chemical bonds in SiC cannot be described only by the covalent term, but have characteristics intermediate to those associated with the covalent and ionic terms, like AlAs and GaAs.

If one uses the linear interpolation scheme, the binary material parameter \(B \) for an alloy of the form \(AₓB₁₋ₓ \) can be derived from binary parameters (\(B \)) by [4]

\[B(x) = xA_A + (1 – x)A_B \equiv a + bx \]

(1.10)
where \(a \equiv A_A \) and \(b \equiv A_A - A_B \). Some material parameters, however, deviate significantly from the linear relation of Equation 1.10, exhibiting an approximately quadratic dependence on \(x \). The binary material parameter in such a case can be very efficiently approximated by the relationship

\[
B(x) = xA_A + (1-x)A_B + x(1-x)C_{A-B} \equiv a + bx + cx^2
\]

(1.11)

where \(a \equiv A_B \), \(b \equiv A_A - A_B + C_{A-B} \), and \(c \equiv -C_{A-B} \). The parameter \(c \) is called a bowing parameter.

The essentially same expressions can be obtained for a ternary alloy semiconductor in the form of \(A_xB_{1-x}C \):

\[
T(x) = xB_{AC} + (1-x)B_{BC} \equiv a + bx
\]

(1.12)

\[
T(x) = xB_{AC} + (1-x)B_{BC} + x(1-x)C_{A-B} \equiv a + bx + cx^2
\]

(1.13)

where \(a \equiv B_{BC} \), \(b \equiv B_{AC} - B_{BC} + C_{AB} \), \(b \equiv B_{AC} - B_{BC} \), and \(c \equiv -C_{A-B} (c \equiv 0) \). The parameter \(c \) is a ternary bowing parameter. The material parameters of a quaternary alloy in the form of \(A_xB_{1-x}C_yD_{1-y} \) or \(A_xB_yC_{1-x-y}D_{AB}C_{1-x-y}D_{1-x-y} \) can also be given in a variety of interpolation expressions [4].

CZTS can be regarded as a quasibinary material:

\[
Cu_2ZnSnS_4 \leftrightarrow Cu_2S + ZnSnS_3
\]

(1.14)

or

\[
Cu_2ZnSnS_4 \leftrightarrow Cu_2SnS_3 + ZnS
\]

(1.15)

Similarly, this quaternary compound can be regarded as a quasiterinary material:

\[
Cu_2ZnSnS_4 \leftrightarrow Cu_2S + ZnS + SnS_2
\]

(1.16)

or

\[
Cu_2ZnSnS_4 \leftrightarrow 2CuS + ZnS + SnS
\]

(1.17)

Using the linear interpolation scheme, the effective cubic lattice constant of CZTS can be expressed from Equation 1.14 as

\[
a_{\text{eff}}(\text{CZTS}) = \frac{1}{2}a_{\text{eff}}(Cu_2S) + \frac{1}{2}a_{\text{eff}}(ZnSnS_3)
\]

(1.18)

from Equation 1.15 as

\[
a_{\text{eff}}(\text{CZTS}) = \frac{1}{2}a_{\text{eff}}(Cu_2SnS_3) + \frac{1}{2}a_{\text{eff}}(ZnS)
\]

(1.19)

from Equation 1.16 as

\[
a_{\text{eff}}(\text{CZTS}) = \frac{1}{3}a_{\text{eff}}(Cu_2S) + \frac{1}{3}a_{\text{eff}}(ZnS) + \frac{1}{3}a_{\text{eff}}(SnS_2)
\]

(1.20)