Aerospace propulsion devices embody some of the most advanced technologies, ranging from materials and fluid control to heat transfer and combustion. In order to maximize performance, sophisticated testing and computer simulation tools are developed and used. Aerospace Propulsion comprehensively covers the mechanics and thermal-fluid aspects of aerospace propulsion, starting from the fundamental principles, and covering applications to gas-turbine and space propulsion (rocket) systems. It presents modern analytical methods using MATLAB® and other advanced software, and includes essential elements of both gas-turbine and rocket propulsion systems. Gas-turbine coverage includes thermodynamic analysis, turbine components, diffusers, compressors, turbines, nozzles, compressor-turbine matching, combustors and afterburners. Rocket coverage includes chemical rockets, electrical rockets, nuclear and solar sail.

Key features:
- Both gas-turbine and rocket propulsion covered in a single volume
- Presents modern analytical methods and examples
- Combines fundamentals and applications, including space applications
- Accompanied by a website containing MATLAB® examples, problem sets and solutions

Aerospace Propulsion is a comprehensive textbook for senior undergraduate and graduate aerospace propulsion courses, and is also an excellent reference for researchers and practicing engineers working in this area.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Propulsion</td>
<td>Lee</td>
<td>October 2013</td>
</tr>
<tr>
<td>Aircraft Flight Dynamics and Control</td>
<td>Durham</td>
<td>August 2013</td>
</tr>
<tr>
<td>Civil Avionics Systems, Second Edition</td>
<td>Moir, Seabridge and Jukes</td>
<td>August 2013</td>
</tr>
<tr>
<td>Modelling and Managing Airport Performance</td>
<td>Zografos</td>
<td>July 2013</td>
</tr>
<tr>
<td>Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes</td>
<td>Torenbeek</td>
<td>June 2013</td>
</tr>
<tr>
<td>Design and Analysis of Composite Structures: With applications to aerospace Structures, Second Edition</td>
<td>Kassapoglou</td>
<td>April 2013</td>
</tr>
<tr>
<td>Aircraft Systems Integration of Air-Launched Weapons</td>
<td>Rigby</td>
<td>April 2013</td>
</tr>
<tr>
<td>Understanding Aerodynamics: Arguing from the Real Physics</td>
<td>McLean</td>
<td>November 2012</td>
</tr>
<tr>
<td>Aircraft Design: A Systems Engineering Approach</td>
<td>Sadraey</td>
<td>October 2012</td>
</tr>
<tr>
<td>Introduction to UAV Systems, Fourth Edition</td>
<td>Fahlstrom and Gleason</td>
<td>August 2012</td>
</tr>
<tr>
<td>Theory of Lift: Introductory Computational Aerodynamics with MATLAB and Octave</td>
<td>McBain</td>
<td>August 2012</td>
</tr>
<tr>
<td>Sense and Avoid in UAS: Research and Applications</td>
<td>Angelov</td>
<td>April 2012</td>
</tr>
<tr>
<td>Morphing Aerospace Vehicles and Structures</td>
<td>Valasek</td>
<td>April 2012</td>
</tr>
<tr>
<td>Gas Turbine Propulsion Systems</td>
<td>MacIsaac and Langton</td>
<td>July 2011</td>
</tr>
<tr>
<td>Advanced Control of Aircraft, Spacecraft and Rockets</td>
<td>Tewari</td>
<td>July 2011</td>
</tr>
<tr>
<td>Cooperative Path Planning of Unmanned Aerial Vehicles</td>
<td>Tsourdos et al</td>
<td>November 2010</td>
</tr>
<tr>
<td>Principles of Flight for Pilots</td>
<td>Swatton</td>
<td>October 2010</td>
</tr>
<tr>
<td>Air Travel and Health: A Systems Perspective</td>
<td>Seabridge et al</td>
<td>September 2010</td>
</tr>
<tr>
<td>Unmanned Aircraft Systems: UAVS Design, Development and Deployment</td>
<td>Austin</td>
<td>April 2010</td>
</tr>
<tr>
<td>Introduction to Antenna Placement & Installations</td>
<td>Macnamara</td>
<td>April 2010</td>
</tr>
<tr>
<td>Principles of Flight Simulation</td>
<td>Allerton</td>
<td>October 2009</td>
</tr>
<tr>
<td>Aircraft Fuel Systems</td>
<td>Langton et al</td>
<td>May 2009</td>
</tr>
<tr>
<td>The Global Airline Industry</td>
<td>Belobaba</td>
<td>April 2009</td>
</tr>
<tr>
<td>Computational Modelling and Simulation of Aircraft and the Environment: Volume 1 – Platform Kinematics and Synthetic Environment</td>
<td>Diston</td>
<td>April 2009</td>
</tr>
<tr>
<td>Handbook of Space Technology</td>
<td>Ley, Wittmann Hallmann</td>
<td>April 2009</td>
</tr>
<tr>
<td>Aircraft Performance Theory and Practice for Pilots</td>
<td>Swatton</td>
<td>August 2008</td>
</tr>
<tr>
<td>Introduction to Aircraft Aeroelasticity And Loads</td>
<td>Wright & Cooper</td>
<td>December 2007</td>
</tr>
<tr>
<td>Stability and Control of Aircraft Systems</td>
<td>Langton</td>
<td>September 2006</td>
</tr>
<tr>
<td>Military Avionics Systems</td>
<td>Moir & Seabridge</td>
<td>February 2006</td>
</tr>
<tr>
<td>Design and Development of Aircraft Systems</td>
<td>Moir & Seabridge</td>
<td>June 2004</td>
</tr>
<tr>
<td>Aircraft Loading and Structural Layout</td>
<td>Howe</td>
<td>May 2004</td>
</tr>
<tr>
<td>Aircraft Display Systems</td>
<td>Jukes</td>
<td>December 2003</td>
</tr>
<tr>
<td>Civil Avionics Systems</td>
<td>Moir & Seabridge</td>
<td>December 2002</td>
</tr>
</tbody>
</table>
Contents

Series Preface ix
Preface xi

1 Introduction to Propulsion Systems 1
 1.1 Conservation of Momentum 7
 1.2 Conservation of Energy (the First Law of Thermodynamics) and Other Thermodynamic Relationships 10
 1.3 One-Dimensional Gas Dynamics 13
 1.4 Heat Transfer 14
 1.5 Standard Atmospheric Air Properties 15
 1.6 Unit Conversion 17
 1.7 Problems 20
Bibliography 20

2 Principle of Thrust 21
 2.1 Thrust Configurations 21
 2.2 Thrust Equation 23
 2.3 Basic Engine Performance Parameters 28
 2.4 Propulsion and Aircraft Performance 34
 2.5 Propeller Propulsion 38
 2.6 MATLAB® Program 39
 2.7 Problems 40
Bibliography 42

3 Basic Analyses of Gas-Turbine Engines 43
 3.1 Introduction 43
 3.2 Gas-Turbine Engine as a Power Cycle (Brayton Cycle) 43
 3.3 Ideal-Cycle Analysis for Turbofan Engines 49
 3.4 Turbojets, Afterburners and Ramjets 61
 3.4.1 Turbojet 61
 3.4.2 Turbojets with Afterburners 64
 3.4.3 Turbofan Engines with Afterburning (Mixed Stream) 68
 3.4.4 Ramjets 70
Bibliography 73
3.5 Further Uses of Basic Engine Analysis
3.6 MATLAB® Program
3.7 Problems
Bibliography

4 Gas-Turbine Components: Inlets and Nozzles
4.1 Gas-Turbine Inlets
4.2 Subsonic Diffuser Operation
4.3 Supersonic Inlet Operation
4.4 Gas-Turbine Nozzles
4.5 Problems
Bibliography

5 Compressors and Turbines
5.1 Introduction
5.2 Basic Compressor Aero-Thermodynamics
 5.2.1 Compressor Stage Performance
 5.2.2 Pressure Coefficient and Boundary Layer Separation
 5.2.3 de Haller Number and the Diffusion Factor
 5.2.4 Mach Number Effect
 5.2.5 Degree of Reaction
5.3 Radial Variations in Compressors
 5.3.1 Stage Work and Degree of Reaction for Free-Vortex Swirl Distribution
5.4 Preliminary Compressor Analysis/Design
5.5 Centrifugal Compressors
5.6 Turbine
 5.6.1 Estimation of the Blade Stagnation Temperature
 5.6.2 Turbine Blade and Disk Stresses
5.7 MATLAB® Programs
5.8 Problems
Bibliography

6 Combustors and Afterburners
6.1 Combustion Chambers
6.2 Jet Fuels and Heating Values
6.3 Fluid Mixing in the Combustor
6.4 Afterburners
6.5 Combustor Heat Transfer
6.6 Stagnation Pressure Loss in Combustors
6.7 Problems
Bibliography

7 Gas-Turbine Analysis with Efficiency Terms
7.1 Introduction
7.2 Turbofan Engine Analysis with Efficiency Terms
7.2.1 Polytropic Factor 162
7.2.2 Diffuser 164
7.2.3 Compressor and Fan 164
7.2.4 Combustor 165
7.2.5 Turbine Power Balance 165
7.2.6 Nozzle Exit Pressure 165
7.2.7 Output Parameters 166
7.3 MATLAB® Program 172
7.4 Problems 174
Bibliography 175

8 Basics of Rocket Propulsion 177
8.1 Introduction 177
8.2 Basic Rocketry 182
 8.2.1 Specific Impulse 182
 8.2.2 Vehicle Acceleration 183
 8.2.3 Staging 184
 8.2.4 Propulsion and Overall Efficiencies 188
8.3 MATLAB® Programs 189
8.4 Problems 190
Bibliography 191

9 Rocket Propulsion and Mission Analysis 193
9.1 Introduction 193
9.2 Trajectory Calculations 195
9.3 Rocket Maneuvers 203
 9.3.1 Coplanar Orbit Change 205
 9.3.2 Hohmann Transfer 206
 9.3.3 Plane Change 207
 9.3.4 Attitude Adjustments 208
9.4 Missile Pursuit Algorithms and Thrust Requirements 209
 9.4.1 Velocity Pursuit 210
 9.4.2 Proportional Navigation 211
 9.4.3 Command-to-Line-of-Sight (CLOS) 212
9.5 Problems 213
Bibliography 215

10 Chemical Rockets 217
10.1 Rocket Thrust 217
 10.1.1 Ideal Rocket Thrust 217
 10.1.2 Thrust Coefficient and Characteristic Velocity 218
10.2 Liquid Propellant Rocket Engines 220
 10.2.1 Liquid Propellants and Their Chemistry 222
 10.2.2 Chemical Equilibrium 225
 10.2.3 Liquid Propellants Combustion Chambers 232
10.3 Solid Propellant Combustion 244
10.3.1 Burning Rate Analysis 247
10.4 Rocket Nozzles 252
 10.4.1 Thrust Vector Control 254
 10.4.2 Nozzle and Combustion Chamber Heat Transfer 254
10.5 MATLAB® Program 256
10.6 Problems 256
Bibliography 258

11 Non-Chemical Rockets 259
 11.1 Electrothermal Devices 261
 11.2 Ion Thrusters 265
 11.2.1 Ion Generation 266
 11.2.2 Acceleration of Ions 271
 11.2.3 Electromagnetic Thrusters 275
 11.3 Problems 280
Bibliography 282

Appendices 283
 Appendix A: Standard Atmospheric Air Properties 283
 Appendix B: Specific Heats for Air as a Function of Temperature 286
 Appendix C: Normal Shock Properties 287
 Appendix D: Oblique Shock Angle Chart 291
 Appendix E: Polynomial Coefficients for Specific Heat of Selected Gases 292
 Appendix F: Standard state Gibbs free energy $(T=298.15K, P=1$ atm) $\bar{g}_f(T)[kJ/kgmol]$ 293

Index 295
There are books in the Aerospace Series that deal with propulsion systems for aircraft. They generally treat the engine and its control system as an integral part of the aircraft – as an installed system. The interactions between the propulsion system and the aircraft systems are described.

The power plant of an airborne vehicle is critical to its performance and its safe operation, so it is vital for engineers working in this field to understand the fundamentals of the propulsion system. This book provides a different viewpoint to that of the systems books: it is very much an analytical view of the power plant itself, and it should be read as a complement to the other propulsion books. The author introduces the reader to the principles of thrust and the gas turbine engine before providing a comprehensive mathematical treatment of the major components of the propulsion mechanism and the complex aerodynamic and thermodynamic processes within various engine types – both air-breathing and rocket. This is to provide a basis for developing an understanding of propulsion systems and the modeling tools that can be used to provide a comprehensive and practical knowledge for use in research and industry.

MATLAB® models are provided to reinforce the explanations, and exercises are also set for the diligent student to pursue.

The book covers gas turbine (aeronautical) systems and rocket propulsion (astronautic) systems and is hence of interest to engineers working in the fields of aircraft, missiles and space vehicles. Some novel propulsion systems are also described, that may be pertinent to emerging fields of aerospace transportation systems, setting out to meet environmental objectives.

This is a book for those engineers who wish to understand the fundamental principles of aerospace propulsion systems.

Peter Belobaba, Jonathan Cooper and Allan Seabridge
Aerospace propulsion devices embody some of the most advanced technologies, ranging from materials, fluid control and heat transfer and combustion. In order to maximize performance, sophisticated testing and computer simulation tools are developed and used. In undergraduate or introductory graduate courses in aerospace propulsion, we only cover the basic elements of fluid mechanics, thermodynamics, heat transfer and combustion science, so that either in industry or in research labs the students/engineers can address some of the modern design and development aspects.

Compressor aerodynamics, for example, is a dynamic process involving rotating blades that see different flows at different radial and axial locations. Cascade and transonic flow behavior can make the analyses more complex and interesting. In turbine flows, the gas temperature is high, and thus various material and heat transfer issues become quite important. Owing to the rotating nature of turbine and compressor fluids, intricate flow control between the axis and the blade section needs to be used, while allowing for cooling flow passage from the compressor to the turbine blades. Combustor flow is even more complex, since liquid-phase fuel needs to be sprayed, atomized, evaporated and burned in a compact volume. High heat release and requirements for downstream dilution and cooling again make the flow design quite difficult and challenging. All of these processes – spray atomization, phase change, combustion, heat transfer (convection and radiation) and mixing – occur in turbulent flows, and no computational tools can accurately reproduce real flows without lengthy modeling and calibration. Any one of the issues mentioned above, such as spray atomization, turbulent flow or combustion, is an unsolved problem in science and engineering, and this is the reason for industry and research labs developing expensive testing and computational analysis methods. This aspect makes aerospace propulsion an important part of engineering curricula, as it provides an interdisciplinary and “tough” training ground for aerospace engineers.

As noted above, owing to the multiple engineering topics involved, we only go into basic elements of aerospace propulsion. After some of the basics are covered, we try to expose the students to projects involving computational fluid dynamic (CFD) software, since this is frequently used in industry and in research labs. There are commercial CFD packages that can be readily made available to the students, using educational licenses. With online documentation and examples, students can learn to operate these codes, individually or in group projects. In addition, the gas-turbine lab at ASU allows the students to use actual testing data for performance analyses. These elements cannot be included in this book without stretching
the physical and mental limits, but they are essential components in an aerospace propulsion course, to link the underlying science and engineering to practical applications.

I have included discussions of both gas-turbine and rocket propulsion, for combined or separate aerospace propulsion courses. There are some good interrelations between aeronautical (gas-turbine) and astronautical (rocket) propulsion, based on the same knowledge set. In addition, many students opt to take both aeronautical and astronautical propulsion, unless a combined course is offered, since their final career choices are made many years downstream.

Thank you for reading up to this point, and potentially beyond.
Introduction to Propulsion Systems

Propulsion systems include some of the most advanced technologies. The high performance requirements, at low system weight, necessitate advanced thermal-fluid design, materials and system integration. The thrust, generated through a simple-looking principle of conservation of momentum (or Newton’s second law), enables many human capabilities, such as high-speed civil transport (approximately 12 hours for trans-Pacific flights), affordable personal aircraft, advanced military aircrafts (e.g. F-22 Raptor, Sukhoi), Earth orbital operations (Space Shuttle) and numerous satellites, planetary probes and possible missions. The propulsion technology can also lead to potentially destructive uses, as in cruise missiles, intercontinental ballistic missiles and many other weapons propelled at high speeds.

A typical gas-engine shown in Figure 1.1 achieves the high exit momentum through a sequence of devices that include compressor, combustor, turbine and nozzle. The ambient air is ingested in gas-turbine engines. The compressor consists of a series of rotating blades, which aerodynamically is a set of airfoils using rotary motion to generate a pressure differential as the air traverses the blade elements. The air pressure is increased in the compressor, and sent into the combustor where the fuel is injected, mixed with the air, and burned. The air energy (enthalpy) increase is now used in the turbines to convert some of the thermal energy (enthalpy) into shaft power. This shaft power is used to power the compressor, by simply having a common axis between the turbine and the compressor in turbojet engines. However, in turbofan engines, the turbine power is used to run both the compressor and the fan. The fan adds enthalpy to the air stream in the fan section. The energy available at the end of the turbine section is converted to air kinetic energy in the nozzle. The high kinetic energy of the exhaust stream also has high momentum, which is useful in generating thrust. Ramjets are a much simpler form of turbojet engines, where “ram compression” of incoming stream at supersonic speeds is sufficient to elevate the pressure of the air. Fuel then needs to be injected into this high-pressure air stream and the resulting flame stabilized in the ramjet combustor, for sustained thrust.

Advances in practically all aspect of engineering, including propulsion technology, can be found in the Lockheed Martin F-22 Raptor (Figure 1.2) that entered service in 2005. New materials such as advanced alloys and composite materials are used in the Raptor
airframe, aerodynamic surfaces and engine components. The power plant in the F-22 consists of Pratt-Whitney afterburning turbofans (F119-PW-100) with a high efficiency, which provide supersonic cruise speeds with long range and unmatched agility with pitch-vectoring thrust nozzles. But these technological advances came with a high price tag. Many of the new technologies were researched and developed specifically as part of the F-22 project. If all the development costs are added in, the F-22 carries a price tag of over $300 million per aircraft. Table 1.1 shows some of the main specifications of the F-22, including some of the propulsion characteristics.

The Pratt-Whitney F119-PW-100 engine is another component in the F-22 that is arguably the most advanced in aircraft technology. Each of these engines generates more
thrust without the afterburner than most conventional engines with full afterburner power on, and its supersonic thrust is also about twice that of the other engines in the class. Using two of these engines to develop a total thrust of 70 000 pounds, the F-22 can travel at supersonic speeds without the afterburners for fuel-efficient high-speed cruise to the target area. This level of thrust is more than the aircraft weight, and enables the F-22 to fly vertically upward much like a rocket. The F119 is also unique in fully integrating the vector thrust nozzle into the engine/airframe combination, for a 20-degree up/down redirection of thrust for high-g turn capabilities. The thrust vectoring is designed to enhance the turn rates by up to 50% in comparison to using control surfaces alone. The F119 engine achieves all these functional characteristics with 40% fewer parts than conventional engines to furnish exceptional reliability, and maintenance and repair access.

In a design method called integrated product development, inputs from assembly line workers and air force mechanics were incorporated to streamline the entire sequence of engine production, maintenance and repairs. These design innovations are expected to reduce the support equipment, labor and spare parts in demand by approximately half. Similar to the mid-fuselage airframe, the turbine stage, consisting of the disk and blades, is constructed in a single integrated metal piece for high integrity at lower weight, better performance and thermal insulation for the turbine disk cavity. The fan and compressor blade designs went through extensive permutations and modifications using computational fluid dynamic (CFD) simulations, resulting in unprecedented efficiency in both sections. Hardware cut-and-try of different designs would have cost way too much time and money. High-strength and degradation-resistant Alloy C was used in key components such as the compressors, turbines and nozzles to allow the engine to run at higher temperatures, one of the important contributing factors to the increased thrust and durability of F119 engines. The combustor – the hottest component in the engine – uses oxidation-resistant, thermally insulating cobalt coatings. A digital electronic engine control device called FADEC (FADEC is generally meant to signify ‘Full Authority Digital Engine Control’ the level of redundancy is at the discretion of the engine manufacturer) not only fine tunes the

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>F-22 specifications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>62.1 ft (18.9 m)</td>
</tr>
<tr>
<td>Wingspan</td>
<td>44.5 ft (13.56 m)</td>
</tr>
<tr>
<td>Height</td>
<td>16.8 ft (5.08 m)</td>
</tr>
<tr>
<td>Maximum take-off weight</td>
<td>80 000 lb (36 288 kg)</td>
</tr>
<tr>
<td>Power plant</td>
<td>Two Pratt-Whitney F119-PW-100 pitch-vectoring turbofans with afterburners</td>
</tr>
<tr>
<td>Total thrust</td>
<td>70 000 lb</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>High altitude: Mach 2.42 or 1600 mph (2570 km/h)</td>
</tr>
<tr>
<td></td>
<td>Low altitude: Mach 1.72 or 1140 mph (1826 km/h)</td>
</tr>
<tr>
<td>Ceiling</td>
<td>65 000 ft (20 000 m)</td>
</tr>
<tr>
<td>Range</td>
<td>2000 miles (5600 km)</td>
</tr>
<tr>
<td>Rate of climb</td>
<td>N/A (classified)</td>
</tr>
<tr>
<td>Thrust-to-weight ratio</td>
<td>1.26</td>
</tr>
<tr>
<td>Maximum g-load</td>
<td>$-3/+9.5$</td>
</tr>
</tbody>
</table>
engine operating parameters to deliver the highest performance at the maximum efficiency, but also establishes responsive and precise engine operating parameters with inputs from the pilot control of the throttle and the engine/flight sensors.

As is well known, the F-22 has unique stealth capabilities, in spite of its size. In addition to the external geometry and surfaces, the jet-engine exhaust is a critical component in minimizing infrared signatures that can be detected by forward-looking infrared (FLIR) or IR sensors in heat-seeking missiles. The exhaust of the F-22 is designed to absorb the heat by using ceramic components, rather than conduct heat to the outside surface. Also, the horizontal stabilizers are placed to shield the thermal emission as much as possible.

The F-35 Lightning II Joint Strike Fighter (JSF) Program represents the effort to provide a capable, multi-mission aircraft while containing the budget. The F-35’s price tag is about half that of the F-22 Raptor. The argument for wide adoption of this scaled-back aircraft is that the F-22’s capabilities are best directed against opponents with similar technological capabilities, and with the changed geo-political environment the United States forces are less likely to be involved in such encounters. A unique variant of the F-35 (Figure 1.3) is the marine STOVL version, F-35B, also planned for adoption by the British Royal Navy to replace the Sea Harrier. The short take-off is facilitated by a number of auxiliary nozzles to divert the thrust. In a normal engine, the jet exhaust is pushed out of the nozzle at the rear of the engine to provide only forward thrust. In engines with thrust reversers, the fan stream is redirected to the forward direction to generate negative thrust. The same concept can be used to redirect the thrust to other directions by using auxiliary nozzles. For the F-35B, there is a lift nozzle that takes the fan exhaust and directs it vertically downward. Also, the pitch nozzle at the main nozzle can be turned to add a vertical component to the thrust. For control of the aircraft during this tricky maneuver, there are four additional nozzles. Two roll nozzles control the roll angle by sending a small fraction of the main exhaust at off-horizontal angles, while two yaw nozzles generate thrust in the forward and backward offset angles.

Rockets, on the other hand, carry all the working fluid (both fuel and oxidizers) on board. The main reason for carrying both the fuel and oxidizer is so that rockets can operate in an

![Figure 1.3](image)

Figure 1.3 F-35 Joint Strike Fighter. Courtesy of US Department of Defence.
air-less environment (e.g. underwater or in outer space), but this also means zero incoming momentum. In addition, some rocket devices can be quite simple in design. Solid-propellant rockets, for example, only require the propellant and a nozzle (Figure 1.4).

The documented use of rocketry dates back to 900 AD in China, where “black powder” was used as crude flame throwers (“fire lance”), grenades, siege weapons and other devices that delivered shock effects against the Mongols in the 10th century. Black powder consists of readily available ingredients – charcoal, sulfur and saltpeter (potassium nitrate), and was probably discovered by accident and perfected through trial-and-error. Combustion of black powder goes roughly as

\[
\text{2 parts saltpeter + sulfur + 3 parts charcoal} \rightarrow \text{combustion products + nitrogen + heat}
\]

This technology was quickly adopted by the Mongols, and spread to Europe and other parts of the world. Rockets using liquid propellants are, in comparison, relatively new technologies, having been developed in the early 1900s. At the other extreme, modern liquid-propellant rockets contain some of the most advanced technologies (Figure 1.5), due to the high operating pressure and temperatures, in addition to the use of cryogenic propellants such as liquid oxygen and liquid hydrogen. The high operating pressure requires sophisticated pumping devices, while high temperature necessitates advanced combustion control and cooling technologies.
A large altitude change during a rocket flight requires modified designs for each of the stages. At launch, the ambient pressure is roughly equal to the sea level atmospheric pressure, while the pressure decreases with increasing altitude. This results in larger pressure thrust; however, at higher altitudes the nozzle exit pressure becomes greater than the ambient pressure and the nozzle operates in an under-expanded mode. This operation is less than optimum, and the gas expansion continues downstream, creating diamond-shaped shock waves. Upper stages are designed with this aspect in mind, where a larger expansion ratio in the nozzle is used. The first stage of a Delta II launch vehicle, for example, has a nozzle expansion ratio of 12. The propellant is liquid oxygen and RP-1 (a kerosene-based hydrocarbon), which is burned in the combustion chamber at a mixture ratio (O/F) of 2.25 and pressure of 4800 kPa. This combination results in a specific impulse of 255 s. The next stage, on the other hand, has a nozzle expansion ratio of 65. The propellant combination of nitrogen tetroxide and Aerozine 50 (hydrazine/unsymmetrical dimethyl hydrazine) is used at a mixture ratio of 1.90 and chamber pressure of 5700 kPa (830 psia), which provides a specific impulse of 320 s. The space shuttle main engine (SSME) has an even larger nozzle expansion ratio of 77.5.

Figure 1.5 Liquid-propellant rocket engine (space shuttle main engine). Courtesy of NASA.
Liquid oxygen and liquid hydrogen used in the SSME generates a high combustion chamber temperature, and also produces combustion product gases with a low molecular weight. These factors are optimum for producing large exit velocity and thus thrust. For this reason, a liquid hydrogen/oxygen combination is also used in the Atlas Centaur upper stage, the Ariane-4 third stage and the Ariane-5 core stage.

In addition to the boost, rockets are used for various orbit maneuvers, such as station-keeping and attitude adjustments. Various factors can contribute to deviations from the target orbit. Gravitational forces of the sun and moon, for example, can cause the orbital inclination to change by approximately one degree per year. The velocity increment that needs to be expended to compensate for this drift is roughly 50 m/s. Other smaller factors that lead to orbit deviations are the elliptical shape of the Earth’s equator and the “solar wind” which is the radiation pressure due to the sun’s radiation. Attitude adjustments are performed with a relatively large number of small thrusters, since all three degrees of freedom need to be accessed in addition to start/stop maneuvers. For example, the Ford Aerospace Intelsat V satellite had an array of four 0.44 N (0.1 lbf) thrusters for roll control, ten 2.0 N (0.45 lbf) thrusters for pitch and yaw control and station-keeping, and two 22.2 N (5.0 lbf) thrusters for repositioning and reorientation.

Since the thrust required for orbit maneuvers is small, simpler rocket boosters such as solid propellant or monopropellants can be used. For example, typical satellites in geosynchronous orbits launched during the 1980s were equipped with solid-propellant boosters for apogee maneuver and monopropellant hydrazine thrusters for station-keeping and attitude control. The solid propellant consisted of HTPB (fuel/binder) and ammonium perchlorate (oxidizer). Hydrazine is a monopropellant containing both fuel and oxidizer components in its chemical structure, and only requires a catalytic grid for decomposition. An interesting combination of electric and thermal thrust is the use of electrical heat for the hydrazine monopropellant, which increases the specific thrust.

For more recent satellites, electric or electromagnetic thrusters with high specific thrust are used for low propellant mass requirements and therefore longer mission durations. Arcjets, for example, use an electric arc to superheat propellants such as hydrazine, which nearly doubles the specific impulse to over 500 s with typical thrust levels of 0.20 N. Arcjet thrusters are used on Intelsat VIII and Lockheed Martin A2100 satellites, and Iridium satellites. Another type of electric propulsion system with even higher specific impulse (2000–4000 s) is the ion thruster (Figure 1.6), using xenon as propellant, which produces a typical thrust of less than 0.1 N. Xenon is an inert monatomic gas with a high atomic weight (131 kg/kmol). Xenon atoms are ionized by high-speed electrons, and then these positively charged ions are accelerated to a speed of some 34 000 m/s in an electric field of 750 V in thousands of ion beams. The momentum of these ion beams produces a thrust in the order of 10 mN.

A combination of electric and magnetic fields can also be used in so-called Hall thrusters. Other exotic space propulsion devices include solar sails and nuclear propulsion, still at the experimental stage (Figure 1.7).

1.1 Conservation of Momentum

We can see from the above examples that all propulsion devices generate some high-speed exhaust stream, through a variety of means. Thus, we can say that the objective of
propulsion devices, in general, is to obtain excess momentum (higher exit momentum than incoming) by generating high-speed exhaust jets. A simple version (a more precise description is provided in Chapter 2) of the conservation equation of momentum (Newton’s second law) can be used to illustrate how this process will work in producing positive thrust.

\[
\text{(time rate of change of momentum)} = \text{(force)} \tag{1.1}
\]
Or in mathematical form,

\[M \frac{dU}{dt} = F \]

(1.2)

\[M = \text{vehicle mass} \]
\[U = \text{vehicle velocity} \]
\[F = \text{thrust force} \]

In a propulsion system, the momentum of some fluid with mass \(\Delta m \) will go from \(\Delta m U_{in} \) at the inlet to \(\Delta m U_{out} \) at the exit in time \(\Delta t \). So we can approximate the left-hand side in Eq. (1.2) as \(\frac{\Delta m(U_{out} - U_{in})}{\Delta t} \). Here, we can factor out the \(\Delta m \) since we are dealing with the same fluid mass. Moreover, the fluid mass divided by the transit time, \(\Delta m/\Delta t \), is the mass flow rate. Thus, we can rewrite Eq. (1.2) as follows.

\[\dot{m}(U_{out} - U_{in}) = F \]

(1.3)

Figure 1.7 Some novel propulsion concepts. Courtesy of NASA.
Equation (1.3) shows that the higher the exiting momentum with respect to the incoming momentum, the higher the thrust will be, which is the objective of a propulsion device. We may also note that high exiting momentum can be achieved by high exit velocity, large mass flow rate, or both.

1.2 Conservation of Energy (the First Law of Thermodynamics) and Other Thermodynamic Relationships

In this book, we mostly focus on the thermal-fluid aspect of propulsion systems, starting from thermodynamics, fluid dynamics, heat transfer and combustion (chemical reaction). Let us set down some baseline thermodynamic relationships that we will be using in this book. The most important element of thermodynamics is the first law, or the conservation of energy, which simply states that the energy contained in the control volume \(E_{cv} \) changes at the rate determined by the heat input \((\dot{Q}) \) minus the power output \((\dot{W}) \) and the net energy input consisting of the enthalpy and the kinetic energy.

\[
\frac{dE_{cv}}{dt} = \dot{Q} - \dot{W} + \dot{m}_i \left(h_i + \frac{U_i^2}{2} \right) - \dot{m}_e \left(h_e + \frac{U_e^2}{2} \right)
\] \hspace{1cm} (1.4)

For steady state, the left-hand side is set to zero, so that in compressors, turbines, combustors, nozzles and other propulsion components the heat, power and net energy flow rates are all balanced according to Eq. (1.4). And this equation can also be used to define the stagnation enthalpy, which is the total energy of the fluid including the enthalpy and kinetic energy.

\[
h^o = h + \frac{U^2}{2}
\] \hspace{1cm} (1.5)

Equation (1.4) states that in the absence of heat transfer and power, the stagnation enthalpy will remain the same during a flow process.

For a closed system, there is no energy flux into or out of the volume, and the first law can be written in a differential form.

\[
de = dq - dw
\] \hspace{1cm} (1.6)

Equation (1.6) states that the internal energy in the system changes as a function of the heat input and work output. Changes in internal energy or enthalpy can be calculated using the specific heats of the fluid.

\[
c_v = \left(\frac{de}{dT} \right)_v \rightarrow e_2 - e_1 = \int_{T_1}^{T_2} c_v dT \approx c_v(T_2 - T_1)
\] \hspace{1cm} (1.7)

\[
c_p = \left(\frac{dh}{dT} \right)_p \rightarrow h_2 - h_1 = \int_{T_1}^{T_2} c_p dT \approx c_p(T_2 - T_1)
\] \hspace{1cm} (1.8)

For ideal gases, the pressure \((p) \), density \((\rho) \) and temperature \((T) \) are related by the ideal gas equation of state.

\[
p = \rho RT
\] \hspace{1cm} (1.9)
For ideal gases, the relationship between c_p, c_v, and the specific gas constant R follows from the definition of enthalpy.

$$h = e + pv = e + RT \rightarrow dh = de + RdT \quad (1.10)$$

$$\frac{dh}{dT} = \frac{de}{dT} + R \rightarrow c_p = c_v + R \quad (1.11)$$

Using $\gamma = \frac{c_p}{c_v}$,

$$c_p = \frac{\gamma R}{\gamma - 1} \quad (1.12)$$

$$c_v = \frac{R}{\gamma - 1} \quad (1.13)$$

For isentropic processes, involving ideal gases and constant specific heats, we have the following relationships between the state variables.

$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma - 1}} \quad (1.14)$$
\[
\frac{p_2}{p_1} = \left(\frac{\rho_2}{\rho_1}\right)^\gamma \tag{1.15}
\]

Stagnation properties are defined as the condition reached when the flow decelerates to zero speed, isentropically. Using Eq. (1.5), with constant \(c_p\),

\[
\frac{1}{2} U^2 + c_p T = c_p T^o \rightarrow \frac{T^o}{T} = 1 + \frac{\gamma - 1}{2} M^2 \tag{1.16}
\]

We have used Eq. (1.12) and \(a = \sqrt{\gamma RT}\) for ideal gases. Equation (1.15) shows that the stagnation temperature increases as the square of the Mach number, \(U/a\). Using isentropic relationship, we also have

\[
\frac{p^o}{p} = \left(\frac{T^o}{T}\right)^{\frac{\gamma - 1}{\gamma}} = \left[1 + \frac{\gamma - 1}{2} M^2\right]^{\frac{\gamma - 1}{\gamma}} \tag{1.17}
\]

Example 1.2 Stagnation temperature

For \(T_o = 411.8^\circ R\), the stagnation temperature is

\[
T^o = T \left(1 + \frac{\gamma - 1}{2} M^2\right) = 464.5^\circ R \text{ for } M_o = 0.8; \; 741.3^\circ R \text{ for } M_o = 2; \; 2470.8^\circ R \text{ for } M_o = 5.
\]

Example 1.3 Isentropic work

For an isentropic compression ratio of 10 and \(T^o_2 = 300\) K, we have

\[
\frac{T^o_3}{T^o_2} = \left(\frac{p^o_2}{p^o_3}\right)^{\frac{\gamma - 1}{\gamma}} = (10)^{0.3571} = 1.93
\]

Here, we use the customary value of \(\gamma = 1.4\) for air and \(c_p = 1004.76\) J/(kg \cdot K).

The corresponding isentropic work is

\[
w_{c,s} = c_p (T^o_3 - T^o_2) = c_p T^o_3 \left(\frac{T^o_3}{T^o_2} - 1\right) = 280.3 \text{ kJ/kg}
\]
1.3 One-Dimensional Gas Dynamics

For propulsion systems operating in supersonic flows, some elements of gas dynamics are useful. In adiabatic flows, the stagnation enthalpy is conserved, so that the use of Eq. (1.16) results in a relationship between the static temperatures between two points (1 and 2) in the flow.

\[
\frac{T_2}{T_1} = 1 + \frac{\gamma - 1}{2} M_1^2 \\
1 + \frac{\gamma - 1}{2} M_2^2
\]

(1.18)

Using ideal gas equation of state, and using the fact that for steady-state one-dimensional (area \(A = \text{const}\)) flows \(\rho U = \rho Ma = \rho M \sqrt{\gamma R T} = \text{const}\), we have

\[
\frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{\rho_1}{\rho_2} \quad \text{and} \quad \frac{p_1}{p_2} = \frac{M_2}{M_1} \sqrt{\frac{T_2}{T_1}}
\]

(1.19)

Combining Eqs. (1.18) and (1.19) and solving for the pressure ratio, we get

\[
\frac{p_2}{p_1} = \frac{M_1}{M_2} \left[1 + \frac{\gamma - 1}{2} M_1^2 \right]^{\frac{1}{\gamma}}
\]

(1.20)

Conservation of momentum in one-dimensional flows can be written as

\[
\rho UdU = -dp \rightarrow p_1 + \rho_1 U_1^2 = p_2 + \rho_2 U_2^2
\]

(1.21)

Using \(\rho U^2 = \gamma p M^2\), we can rewrite Eq. (1.21) as

\[
\frac{p_2}{p_1} = 1 + \gamma M_1^2
\]

(1.22)

Eliminating pressure from Eqs. (1.20) and (1.22) gives us the relationship between upstream and downstream Mach numbers across, for example, a normal shock.

\[
M_2^2 = \frac{(\gamma - 2)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}
\]

(1.23)

Then, the ratio of other parameters can also be written as a function of the upstream Mach number.

\[
\frac{p_2}{p_1} = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1}
\]

(1.24)

\[
\frac{T_2}{T_1} = \frac{[(\gamma - 1)M_1^2 + 2][2\gamma M_1^2 - (\gamma - 1)]}{(\gamma + 1)^2 M_1^2}
\]

(1.25)
Equations (Equations (1.23)–(1.25) are referred to as the normal shock relationships and are tabulated in the Appendix C.

For isentropic flows in ducts, the local Mach number is a function of the cross-sectional area.

\[
\frac{A}{A^*} = \frac{1}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \quad (1.26)
\]

\(A^* = \text{throat area} \) \((M^* = 1) \)

1.4 Heat Transfer

Due to the high temperatures in some components, heat transfer is an important element of propulsion science. There are three modes of heat transfer: conduction, convection and radiation. Each is a subject in itself, but here we briefly state the basic laws of these heat transfer modes. Conduction is due to the molecule-to-molecule transfer of thermal energy, and is described by Fourier’s law of conduction.

\[
q_{\text{cond}} = -kA \frac{dT}{dx} \quad [\text{W}] \quad (1.27)
\]

\(k = \text{thermal conductivity} \ [\text{W/(mK)}] \)

The heat is transferred “down” (from hot to cold) the temperature gradient – hence the negative sign. In solids, conduction occurs due to lattice vibration and movement of energy carriers such as electrons in conductors. The latter is the reason why most good electrical conductors are also good thermal conductors. The difference in transfer of heat with electrons is also the basis for devices to measure temperature, thermocouples.

Although heat is also transferred through conduction in fluids, larger amounts of heat can be moved through the motion of the fluid mass itself. Mass times the specific heat is the energy content of the fluid, and if this mass is moved through fluid motion then heat transfer results. This mode of heat transfer is called convection, and is approximated through Newton’s law of cooling.

\[
q_{\text{conv}} = hA(T_\infty - T_s) \quad [\text{W}] \quad (1.28)
\]

\(h = \text{heat transfer coefficient} \ [\text{W/(m}^2\text{K)}] \)

The heat transfer coefficient, \(h \), is expressed through correlations of Nusselt numbers (\(Nu \)).

\[
Nu = \frac{hL}{k} = Nu(Re, Pr; \text{geometry}) \quad (1.29)
\]

\(L \) is the characteristic length of the object. Dimensional arguments show that the Nusselt number is a function of the Reynolds number (flow effects), Prandtl number (fluid properties)
and flow geometry. For example, for turbulent flow over a flat plate, the average Nusselt number is given by

\[\text{Nu}_L = \frac{\bar{h}L}{k} = 0.037 \frac{\text{Re}^{4/5}_L}{\text{Pr}^{1/3}} \] (1.30)

Radiation heat transfer occurs due to photon energy, and is determined by the Planck distribution multiplied by the spectral emissivity, \(\varepsilon_\lambda \).

\[q_{\text{rad},\lambda} = \varepsilon_\lambda A \frac{C_1}{\lambda^5 \left[\exp \left(\frac{C_2}{T} \right) - 1 \right]} \text{ [W/\mu m]} \] (1.31)

\(\lambda \) = wavelength [\(\mu m \)]

\(C_1 = 2 \pi hc_o^2 = 3.742 \times 10^8 \text{ W mm}^4 / \text{m}^2 \)

\(C_2 = hc_o/k = 1.439 \times 10^4 \text{ mm} \cdot \text{K} \)

The Planck distribution in Eq. (1.31) can be integrated over the wavelength range, to yield the Stafan–Boltzmann law.

\[q_{\text{rad}} = \varepsilon A \sigma T^4 \text{ [W]} \] (1.32)

\(\sigma = 5.67 \times 10^{-8} \text{ W m}^2 / \text{K}^4 \)

Since surfaces typically both emit and receive radiation energy, and the emissivity and absorptivity are approximately (exactly at spectral, directional level) equal, the net radiation energy can be written as

\[q = \varepsilon \sigma A (T_\infty^4 - T_s^4) \] (1.33)

1.5 Standard Atmospheric Air Properties

At sea level (zero altitude), the standard atmosphere air properties are as follows.

\[p_{REF} = 101325 \text{ N/m}^2 = 2116 \text{ lbf/ft}^2 = \text{pressure} \] (1.34a)

\[T_{REF} = 288.15 \text{K} = 518.7^\circ \text{R} = \text{temperature} \] (1.34b)

\[\rho_{REF} = 1.225 \text{ kg/m}^3 = 0.07647 \text{ lbm/ft}^3 = \text{density} \] (1.34c)

\[a_{REF} = 340.294 \text{ m/s} = 1116 \text{ ft/s} = \text{speed of sound} \] (1.34d)

\[R_{\text{air}} = 287 \text{ J/kg} \cdot \text{K} = 53.34 \text{ ft} \cdot \text{lb} = \text{specific gas constant} \] (1.34e)

As the altitude increases from sea level, the atmospheric pressure decreases according to hydrostatics, that is, the weight of the air above. The variations of pressure and other air
properties are tabulated in Appendix A. A simplified model can also be used to approximate the air pressure.

\[
p = p_{\text{REF}} \left(1 - 0.0065 \frac{h}{T_{\text{REF}}} \right)^{5.2561} \quad \text{for } h < h_{TP} = 11,000 \text{ m} \tag{1.35a}
\]

\[
p = p_{TP} e^{-\frac{g}{R_{TP}}(h-h_{TP})} \quad \text{for } h > 11,000 \text{ m} \tag{1.35b}
\]

\[
p_{TP} = 22573 \text{ Pa}; \quad T_{TP} = 216.65 \text{ K}; \quad g = \text{gravitational acceleration} = 9.80665 \text{ m/s}^2
\]

The temperature profile is somewhat more complex, as shown in Figure 1.8. In the troposphere \((h = 1 \text{ to } 11000 \text{ m})\), the temperature decreases linearly as a function of altitude.

Figure 1.8 The temperature profile in the Earth’s atmosphere. Courtesy of NASA.