DRUG–DEVICE
COMBINATIONS FOR
CHRONIC DISEASES
CONTENTS

FOREWORD vii
PREFACE ix

PART I BACKGROUNDS 1

1 Addressing Medical Device Challenges with Drug–Device Combinations 3
2 Historical Survey of Drug Delivery Devices 39
3 Development of Combination Product Drug Delivery Systems 66
4 Drug–Material Interactions, Materials Selection, and Manufacturing Methods 89

PART II PRODUCTS 117

5 Steroid-Releasing Lead 119
6 Thromboresistant Vascular Graft 142
7 Device-Enabled Drug Infusion Therapies 182
8 Promus Element Plus®: A Drug-Eluting Stent 214
9 Infuse® Bone Graft 241
INDEX 261
Realization of the promise of drug–device combinations has been long in coming. Following the rapid expansion of pharmaceutical and biological research and development in the twentieth century leading to a host of new diagnostics and therapies, methods of their administration improved in tandem. Meanwhile, the effectiveness of drugs and largely mechanically based medical devices improved as the underlying mechanisms of disease were uncovered, increasingly allowing researchers to address the root cause of illness. However, the classes of drugs, devices, and biologics remained largely separate from one another until the 1970s from a commercial and regulatory perspective.

While the benefits of local administration of energy from medical devices in increasingly complex medical devices such as pacemakers, implantable defibrillators, radiation therapy, ablation devices, and diagnostics were recognized earlier, administration of drugs and biologics locally to minimize side effects resulting from systemic exposure took longer to be translated. The convergence of advances in the fields of polymer science, biochemistry, analytical chemistry, and controlled release of small and large molecules from matrices has more recently allowed for early applications of drug–device combinations to emerge as significant advances for patient care and commercial successes. Prominent examples include drug-eluting pacemaker leads, drug infusion pumps, and antirestenotic drug-eluting stents that deliver significant advances in efficacy and ease-of-use for those therapies.

While these and other advances have led to therapies that address acute needs that used to be largely fatal for patients, it has also resulted in an increasing number of patients living in the aftermath with the effects of chronic disease. The resulting shift in obvious clinical need toward chronic disease represents an opportunity for researchers in academia and industry to collaborate in new ways to address these
problems. Recent advances in regenerative medicine, including the use of stem cells, improvements in understanding of the underlying mechanism of cell–matrix interactions, genomics, and minimally invasive delivery technologies, promise to disrupt our current treatment modalities. In addition, as we uncover the mechanism and role of the nervous system in modulating the body’s response to a diverse range of disease states, the local delivery of energy and drugs by devices via neuromodulation promises to be one of the most exciting tools to address chronic disease.

We believe that we have only scratched the surface of applications in which local applications of pharmaceuticals or biologics, in combination with mechanical action or energy input, can result in significant improvement in patient outcomes. The contributions in this volume represent a cross section of the academic researchers who have devoted their lives to understanding and translating the enabling technologies, as well as the industrial leaders who have commercialized them and made them available to patients globally. Our hope is that the energy and discourse ignited by the discussion in this book, which accounts for some of the successes and challenges presented in research and development of drug–device combinations, will lead to wider understanding of the very real challenges, scientific or otherwise, for advancing this concept to new, unimagined applications.

DAVID KNAPP
Vice President, Corporate Research

TIM GIRTON
Vice President, Interventional Cardiology R&D
Boston Scientific Corporation
PREFACE

Ask not only what devices can do for drugs or what drugs can do for devices; ask also what new things that drugs and devices can do together.

Drugs treat diseases through chemical reactions. Devices treat diseases through physical actions. The differing technical challenges in developing molecules and macroscale devices are obvious. As such, drugs and medical devices have traditionally been developed and used separately. Pharmaceutical companies and device manufacturers operate in different markets and with different goals and business models. Whereas drug companies tend to focus on blockbuster products that are administered repetitively to patients, many medical devices, especially implants, involve long-term use of a single unit. Pharmaceutical companies can expect a relatively long period of profit from a successful drug, as there are few ways to “upgrade” therapy based on a particular molecule, and it is difficult to predict the success of related molecules. Generally speaking, all drugs must go through the same discovery, development, and approval process. Devices, on the other hand, either must undergo a full cycle of research, development, and approval if they are the first of their kind on the market, or they represent incremental changes to predicate products. It is a constant effort for devices to remain at the cutting edge, and many products can only maintain their market share for relatively short periods.

The regulatory paths for the two kinds of therapies have traditionally been separate, with differing sets of hurdles to overcome. Whereas any new drug must be considered on its own, and undergo an exacting and expensive set of phases of study, the path for approval of a device is somewhat less arduous if it is shown to be related to similar products that are already on the market. Original devices, especially those that could have impacts on patients’ safety, however, require thorough studies to be performed to win premarket approval. Devices often have numerous components, all of which
are subject to extensive studies in order to control and minimize possible mechanical, biocompatibility, electrical, or chemical failure modes following implantation.

Recently, there has been a trend toward drug–device convergence. A number of drug–device combination products have been developed to enable or enhance each other’s functions and achieve improved or even new therapies. During 2008–2012, over 1000 new applications of combination products were submitted to U.S. FDA for review, all having drug or biological delivery components. Currently, these types of products represent a market of tens of billions of dollars. However, the definition of drug–device combination products has not been clear. Typically, it refers to products containing both drug and device components that act in concert to achieve functions that otherwise are difficult or impossible to achieve by either component alone. Such synergy is needed to justify the effort in producing combination products.

Drug–device combination products are recent innovation, but drug delivery products can be tracked back to tablet, capsules, and syringes that have long been used and may be considered as early “devices.” While these products are still dominant as means for administering drugs, their utility, if not their design, is rather straightforward. Advanced drug delivery for improved efficacy, low toxicity, and convenient uses started in the 1960s. With advances in bioanalytical chemistry and the mathematical and physiological understanding of pharmacokinetics and pharmacodynamics, and the recognition of localized receptors as sites for drug action, it became clear that targeted delivery of drugs could improve therapy and reduce unwanted side effects. Of particular interest was control of the rate and locale of drug release. Rate control could smooth the concentration profile of drug in the blood over time, maintaining drug concentration within its “therapeutic window,” wherein the drug is efficacious and nontoxic. On the other hand, release rate could be modulated by need, as in the case of insulin, which should be delivered in concert with intake of carbohydrate. By controlling the location of delivery, the drug could be focused at the site of action and hopefully avoid issues associated with toxicity. Moreover, direct delivery could lessen drug degradation that occurs as it passes through the harsh environment of the gastrointestinal tract and the liver (first pass metabolism).

Based on these considerations, devices designed specifically for drug delivery were developed. Such devices include implantable and externally worn drug pumps, transdermal patches, implantable drug-loaded tubes or rods, injectable drug depots, implantable and resorbable drug-loaded polymer wafers, drug-eluting eye inserts and intrauterine devices, devices for intranasal and inhalation delivery of liquids and dry powders, and a diverse collection of pen injectors, microneedle arrays, and buccal patches. Besides these innovative methods of delivery, there has been a steady improvement in traditional drug delivery devices. For example, syringe needles are now so sharp that they are much less painful, and extended release tablets, capsules, and other oral drug delivery “devices” such as osmotic pumps have stabilized and improved the therapeutic value of drugs. IV catheters can be directed to very specific sites, such as the loci of embolisms, where local administration of streptokinase or tissue plasminogen activator can dissolve the clots.

A more recent development has been the utilization of drugs to improve the function of implanted devices. The “trivial” way to do this is to administer drugs
systemically, including antibiotics, blood thinners, and anti-inflammatories, following implantation. However, systemic administration leads to systemic effects, which are often undesirable. By localizing the drug delivery to the site of implantation, these systemic effects can often be reduced or eliminated. By incorporating the drug as a component of the device, not only can such localized delivery be achieved, but also delivery can be controlled in concert with the device’s action to achieve synergistic therapeutic outcomes. Steroid-releasing cardiac pacing leads, heparin-coated vascular grafts, drug-eluting stents, antimicrobial pouches, and so on are a few successful examples.

The aim of this book is to summarize general principles surrounding synergistic combination of drugs and devices, to improve the performance of either the drug or the device. Emphasis is placed on the recognition of unmet needs that motivate the development of combination systems, the research and development required to introduce specific products, including recognition of special issues that arise when combining drugs and devices, and in certain cases the special regulatory hurdles that need to be overcome.

An overview of the general issues surrounding the development of drug–device combinations is provided by Avula and Grainger in Chapter 1. This chapter also summarizes progress in particular classes of devices, “case studies” of which are presented in later chapters. In Chapter 2, Peppas et al. provide a historical review of drug delivery devices, with emphasis on general principles and applications. This chapter shows the remarkable progress that has been made in the past 50 years, and demonstrates the ingenuity involved in combining physics, chemistry, engineering, and understanding of anatomy and physiology to create a vast variety of devices for drug delivery. The field has seen a rapid evolution from the relatively crude devices of the 1960s to present systems whose manufacture requires advanced techniques. Many of the latter devices are described in Chapter 3 by Stevenson and Langer.

Chapter 4 by Lyu and Siegel discusses practical aspects of developing and manufacturing drug–device combination products. The chapter starts with a discussion of tests required for combination products that go beyond those needed for simple devices and pharmaceutical products, due to possible interactions between the drug and the device. Selection of materials for combination products is then considered, first in general, and then specifically for drug delivery coatings and catheters. Several physical and chemical interactions between the drug and the device, which play a major role in a products’ performance, are then identified. Finally, commonly used technologies for manufacturing combination products are reviewed, including dip coating, spray coating, impregnation, extrusion, molding, powder molding, and reservoir filling.

Chapter 5 by McVenes and Stokes reviews steroid-releasing cardiac pacing leads, which lower the pacing threshold, increasing the safety margin and the battery life of the pacemaker devices. The first such product received FDA approval in 1983. A historical trail describing how engineers and scientists learned that inflammatory reactions result in pacing threshold increase, and how they solved the problem, is presented, including a description of a large animal study to screen drugs for reducing pacing threshold. The chapter also presents the results of studies of steroid release
over 7 years. These studies are important since the long-term release of steroid is necessary for certain patient populations.

Chapter 6 by Begovac et al. describes the development of the PROPATEN® Vascular Graft, which is composed of an expanded PTFE vascular graft functionalized with a heparin surface coating. The heparin coating improves blood compatibility of the ePTFE graft, particularly thromboresistance. The chapter starts with a discussion of the recognized needs for thromboresistant vascular grafts, and then presents the steps taken in developing PROPATEN®. The mechanism of action of heparin is discussed, along with the strategy of chemically grafting heparin to a layer-by-layer composite structure formed by cationic and anionic polymers. Product development is discussed in detail, including design requirements, prototyping, manufacturing, quality control, packaging, sterilization, and regulatory standards and pathways. The results of clinical studies are then presented. Challenges as well as potential side effects such as thrombocytopenia (HIT) are identified at the end of the chapter.

Chapter 7 by Hildebrand focuses on pump-based infusion systems and therapies. These systems can be transcutaneous, such as the most currently available insulin delivery pumps, or implantable, such as those used to deliver neurally active drugs such as baclofen and morphine sulfate to the intrathecal space. Pump-based systems can infuse therapeutic agents over days to years. The chapter reviews the basic components, including a pump, a catheter, the therapeutic agent, and accessories such as a digital pump controller, and analyzes the clinical uses of pump-based therapies. Bypass of GI tract and programmable delivery of continuous and bolus doses are shown to provide great advantages over conventional drug administration methods. Potential interactions among pump components, the drugs, and the patient, which impinge on product safety, are also discussed.

Chapter 8 by Chen and Roberson reviews the research and development that was undertaken for the PROMUS Element Plus® drug-eluting stent. The chapter describes the stent, the drug coating, and the delivery technology. Why certain things worked and others did not is discussed in detail from the standpoint of mechanical, medical, and deployment objectives. Of particular interest is the mathematical modeling that was performed to understand drug release kinetics in vitro and in vivo, distribution into proximal and distal tissues, and pharmacokinetics in the systemic circulation. Pharmacodynamics is also described with emphasis on stent coverage by neointima as a function of time after deployment of the stents. The chapter concludes by describing the results of clinical studies. Safety and efficacy of the PROMUS Element were demonstrated in terms of the 12-month target lesion failure rate.

Chapter 9 by Peckham et al. describes the development of the INFUSE® Bone Graft product, which consists of a pack of recombinant human bone morphogenic protein 2 (hrBMP2) and a sheet of absorbable collagen sponge (ACS) as the drug carrier. A solution of hrBMP2 is reconstituted and loaded into the ACS onsite in the operating room, and the combination is implanted. The chapter reviews the historical and biological background, manufacturing, pharmacological tests, preclinical tests, postclinical studies, and regulatory path. The authors emphasize on how key questions were identified through extensive conversation between the manufacturer
and the regulatory agents during the precombination product era, when neither the manufacturer nor the regulatory agent had experience. Insightful discussions are presented to describe how studies were designed and performed to address the scientific and clinical questions.

The research and development pathways for drugs and medical devices are “mature” in the sense that those who wish to develop new products have a clear path. A broad range of manufacturing technologies are available, and the regulatory pathways are well laid out. Drug–device combination, however, is a relatively new area considering almost the entire path from research, development, clinical study, and regulatory approval through postmarket surveillance. The complexity involved is both additive and multiplicative. The establishment of the Office of Combination Products at FDA allows regulators to consider such complexities.

There are several basic questions that presently have no general answers or even methods for study. For example, what is the best information that can be gathered regarding the effect and toxicity of a drug that is released locally? How does one characterize or at least predict local and systemic drug disposition in humans in a way that can be predictive of success or failure? How does the response of tissues to the device affect the drug’s pharmacokinetics and pharmacodynamics? Does the drug affect tissue behavior such that its response to the device changes? These questions are specific and fundamental to drug–device combination products. Efforts to addressing these questions and those related to product development path should represent a significant part of academic and industrial efforts to drive maturation of the technologies in the years to come.

The advent of advanced drug–device combination products is relatively recent. As often occurs with new technologies in the biomedical arena, initial fervor is supplanted by a latent period in which unanswered (and sometimes unanticipated) questions need to be explored. Recent examples of this phenomenon include genetically engineered protein drugs, gene therapies, and stem cell-based therapies. Compared to the number of devices and drugs that are on the market, there are relatively few drug–device combinations. However, where drugs and devices can be combined so that one component enables or enhances the function of the other, we expect that there will be continued motivation to advance the science and technological development to further develop such combination products.

SuPing Lyu
Medtronic plc., Minneapolis, MN, USA

Ronald A. Siegel
University of Minnesota, Minneapolis, MN, USA
PART I

BACKGROUND AND CONTEXT
1

ADDRESSING MEDICAL DEVICE CHALLENGES WITH DRUG–DEVICE COMBINATIONS

MAHENDER N. AVULA\(^1\) AND DAVID W. GRAINGER\(^{1,2}\)

\(^1\)Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
\(^2\)Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112-5820, USA

1.1 INTRODUCTION

Implanted medical devices (IMDs) comprising synthetic biomaterials have seen exponential growth in their applications and clinical use over the past five decades [1]. The scope and fields of use for IMDs have increased multifold with the advent of new technologies, innovation, and improved understanding of human physiology and its underlying problems. Increasing rates of medical device adoption can be attributed to various factors, including aging median populations worldwide [2], innovations in design and function that increase performance and reliability, rising standards of living among patients in developing nations, and noted improvements in patient quality of life offered by the devices. New IMDs continue to offer improved treatment alternatives for cardiovascular, orthopedic, oncologic, and many other diseases [3]. Given these factors, the global medical device market is expected to continue growing, reaching approximately US$302 billion in 2017 with an annual growth rate of \(-6\%\) over the next 6 years (2011–2017) [4]. Tens of millions of people in the United States alone have some kind of IMD in their body. Despite enhanced safety and efficacy, new device design strategies are required to understand and address complex human factors affecting device performance in vivo. Innovations in design,
biomaterials, surface modifications and biocompatible coatings, and device-based onboard drug delivery mechanisms are among strategies employed to improve clinical IMD performance.

1.1.1 Combination Medical Devices

Drug–device combination medical products are innovative biomedical implants with enhancements to device function provided by the onboard formulation and local pharmacology of selected drugs at the implant site [5]. Combination devices couple a drug loading and releasing mechanism onto an approved prosthetic implant. Together, these seek to provide several improvements to the in vivo performance and lifetime of implantable medical devices in various classes and capacities, including cardiovascular, ophthalmic, orthopedic, diabetes, and cancer applications. Drug–device combination products represent relatively new device class among implantable medical devices, one that is drawing increasing attention from both the pharmaceutical and device manufacturing industries and the clinicians to address several long-standing problems associated with IMDs. In 2003, the Food and Drug Administration (FDA) approved a coronary drug-eluting stent (DES) (Cordis CYPHERTM, Johnson and Johnson, USA) opening the market to similar officially designated “drug–device combination products” in the United States [6]. Several notable medical devices with locally delivered drugs had earlier precedent, namely, steroid-releasing pacemaker leads, hormone-releasing intrauterine devices, antibiotic-impregnated catheters, aerosolized drug inhalers, drug-infused condoms, and several other precedents. Additionally, several combination products also existed earlier in Europe than elsewhere, for example, antibiotic-releasing bone cements, drug-eluting stents, heparin-coated catheters, and others (approved with the CE mark). FDA’s Office of Combination Products (OCP) was established in 2002 to provide a pathway for assigning principal FDA oversite and review policies to drug–biologic–device combinations that could otherwise be confused or compromised by traditional FDA review file assignments [7]. The objective was to provide a streamlined and consistent process for assigning these new products to FDA Centers based on claimed primary modes of action (i.e., device or drug). The OCP defines a “combination device” under 21 CFR 3.2(e) as “A product comprised of two or more regulated components, i.e., drug/device, biologic/device, drug/biologic, or drug/device/biologic, that are physically, chemically, or otherwise combined or mixed and produced as a single entity; or two or more separate products packaged together in a single package or as a unit and comprised of drug and device products, device and biological products, or biological and drug products.” Table 1.1 summarizes this classification system. Most combination devices add a drug bioactivity adjunct to an already-approved implanted device to counteract challenges faced by the device in the context of the local host tissue environment. This can include inflammation, fibrosis, coagulation, and infection, improving performance in several conditions. One prominent example is the use of the drug-eluting stent, where local release of micrograms of drug to the vascular bed has reduced the need for surgical intervention by 40–70% over bare metal stents [8–10]. However, combination products are often optimized into an integrated
system from separate drug and device products: They were never designed de novo to complement each other in structure and function, that is, controlled drug delivery is often an add-on feature to an existing FDA-approved medical device design that is suboptimally adapted to the structural, mechanical, or electronic function of the device [6]. New strategies and new technologies that combine drugs, devices, and biologics de novo as coordinated, unified new designs are expected to provide a new generation of combination products, more intelligently incorporating and merging new technologies, changes, and refinements of both existing drug delivery mechanisms and medical device functions, shifts from traditional devices and drugs, while remaining compliant with regulations [6].

Diverse classes of drugs are used in combination devices to enhance medical device and implant performance. Anti-inflammatory, antifibrotic, antiproliferative, antithrombotic, and antibiotic drugs are primary classes of pharmaceutical agents often combined with a controlled delivery mechanism suited to the application. Site- and implant-specific drug interventions before, during, and after medical device implantation can be used to alleviate several adverse host responses, providing a local therapeutic strategy when a device design or systemic drug delivery alone is insufficient. For example, anticoagulants are applied to cardiovascular and intravascular implants to reduce device-based thrombosis, while antifibrotic, anti-inflammatory, and antiproliferative drugs are used for soft tissue implants and endovascular stents susceptible to fibrous tissue in-growth and smooth muscle proliferation. Antibiotics are released from orthopedic implants, shunts, and percutaneous and urinary catheters that exhibit high infection incidence.

Conventional therapeutics are administered in different ways, including nasal, oral, parenteral (intravascular, intramuscular, subcutaneous, and intraperitoneal), topical, transdermal, and other administrative routes [11]. Although systemic administration has its merits, local drug administration can in some cases provide comparable results with significantly lower doses of drugs while limiting the drug efficacy and toxicity to the tissue surrounding the implant site. Drugs are combined with delivery technologies to control rates and local dosing of therapeutics to tissue beds surrounding implanted devices. Typically, drugs are released systematically from the device
surface using impregnated resins or rate-controlling polymer films. Occasionally, drugs are eluted from the bulk device as in the case of antibiotic-loaded bone cement. Local drug release limits drug dosing to low quantities, reduces systemic toxicity, increases duration of release, and limits the area of release to the tissue bed surrounding the implant [6]. Local drug release mechanisms offer several advantages over conventional systemic drug administration. An ideal drug delivery system with a combination device should provide continuous and effective drug doses to the site of implantation while also offering possibilities to continue drug release for prolonged periods [12]. Rates and durations of drug delivery depend on several factors such as the implant size, local tissue physiology and morbidity, drug pharmacology and potency in therapy, duration and location of drug release, its kinetics, drug and local clearance, and toxicity.

Due to the widespread development and use of combination products, a comprehensive understanding of drug delivery mechanisms and device functional improvements in the drug’s presence is necessary to improve their efficacy and scope of medical applications. Mechanisms involved in drug delivery should be exploited to better match release to the local needs of each specific combination product. The major challenges faced by IMDs in clinical applications are shown in Figure 1.1: (1) nonspecific host response–foreign body reaction; (2) device thrombosis, and (3) biomaterial-associated infections. These all share some interrelated failure mechanisms that may amplify tissue-site adverse reactions and host responses. For example, the link between thrombosis and infection is increasingly identified to be synergistic, as is the relationship between the host foreign body response (FBR) and implant-centered infection. These increasingly complex host response relationships can be difficult to solve using a single device design or biomaterials-based approach alone. Use of local pharmaceutics with the device provides options to exploit device strengths and also drug targeting against multiple challenges in the implant site. The remainder of this chapter serves to describe combination device
approaches in the context of the current medical device and implant challenges in host tissue sites.

1.2 THE HOST FOREIGN BODY REACTION

The host’s acute and chronic FBR remains an unsolved challenge for many IMDs. As the implantation of almost every medical device creates a wound (e.g., knee arthroplasty and pacemaker), or local disturbance of a tissue bed (e.g., contact lens), a normal host tissue wounding response is spontaneously initiated. This reaction is primarily an abnormal tissue healing response that alters normal wound site healing in the presence of a foreign body (IMD), yielding a chronic unresolved tissue response, often resulting in excessive fibrosis. Extending the functional clinical lifetime of IMDs while reducing their adverse events in vivo remains an important goal. Nonetheless, despite many device improvements and design changes, this goal remains elusive. For example, the host’s acute and chronic FBR is well known to limit the lifetime of implanted sensors (i.e., glucose real-time monitoring devices) [13–15]. Lack of tissue mechanisms preclude rational implant improvements and other more direct therapeutic approaches. IMDs spontaneously adsorb a diverse array of plasma proteins within the first few seconds of implantation [16]. Neither the types and amounts nor orientations of these proteins on the implant can be controlled in vivo, but despite many assertions otherwise, this might not have much significance to the final tissue reaction. Surface properties of the implanted biomaterial certainly govern aspect of protein adsorption, but exactly how this then modulates the host reaction to the implant is less certain. Many biomaterials of distinctly different bulk chemical and surface composition result in very similar endpoints in vivo in soft tissue, encased by fibrous overgrowth and an avascular capsule. The IMD as a foreign body destabilizes homeostasis and hemostasis in host tissue and results in a modified “healing response” that adversely affects both the implant’s performance and host tissue surrounding it.

The FBR is a consequence of aborted wound healing and the complex interplay between the complement and coagulation cascades with the host immune system. The complement system comprises cascades of blood and cell surface proteins triggered by pathogens and other “foreign” substances, including implanted biomaterials [17]. Blood’s potent intrinsic and extrinsic protease cascades are triggered by procoagulant stimulus [18]. In both systems, procoagulant and complement proteins are zymogen proteases activated by the foreign body interacting with the precursor zymogens through proteolytic cleavage [19], and each acting to amplify host cell-signaling and cell-recruiting capacities. FBR results from continuous host exposure to combinations of specific (activating) and nonspecific (activating) proteins on the foreign body and their protease activation. Subsequent chemotaxis and reactions from host immune and inflammatory cells lead to unresolved chronic healing responses, sustained inflammation, recruitment of fibroblasts and fibrotic encapsulation, and foreign body giant cell presence as a terminal response to the implanted device. In this dynamic wound site response, normal wound site acute cell infiltrates comprising neutrophils and other leukocytes, and later monocyte and macrophage invasion stimulate release of
inflammatory cytokines such as IL-6, TNF-alpha, IL-4, and IL-13 (i.e., from mast cells) to accelerate recruitment of inflammatory and immune cells to the site of implant [15]. In normal wounds, these abate, but a foreign body provides continuous inflammatory stimulus for sustained, abnormal cell signaling. Fibroblasts then arrive at the implant site and mediate the formation of an avascular fibrous tissue via exuberant collagen production around the implant that can act as a physical barrier blocking access to essential components of the tissue surrounding the implants, an area of local hypoxia and poor perfusion to create an infection niche, and also a physical impediment of prosthetic motion if required (i.e., joint arthroplasty) or adjacent tissue-on-tissue motion (e.g., surgical adhesions) that are highly painful. Chronically, the excess connective tissue remodels into a dense fibrous capsule (fibrosis) that “walls off” the implant, separating the IMD from its physiological surroundings. This foreign body capsule is the hallmark of the FBR, and adversely affects the general performance of IMDs, limiting their reliability and long-term success. Reactions of both the host on the implant and the implant on the host/blood/tissue need to be understood to enhance IMD performance. Figure 1.2 illustrates the sequence of host-materials events following the implantation of a biomaterial/medical device into host tissue.

While some implants remain unaffected functionally by the FBR, certain types of IMDs are highly compromised. In particular, sensor implants such as continuous
glucose monitoring (CGM) sensors [20–22], pacemaker electrical leads [23], and neural deep brain stimulation arrays [24] undergo fibrosis that hinders function. The avascular fibrous tissue surrounding the implant impedes the implant’s electrical [25] and chemical contact with the surrounding tissue while also depriving it of essential analytes [26–28] and nutrients, rendering implants less efficient. Pacemaker leads underwent early drug modification, with steroid reservoirs and elution from their porous electrode tips enhancing their impedance and conductance properties with tissue and their functioning lifetime, enhancing battery life and reducing fibrous tissue encapsulation [29,30]. Many CGM sensors are placed subcutaneously where normal sensor fouling, including protein adsorption on or infiltrated into the implanted sensors, as well as inflammatory wound site cellular reactions eventually limit analyte diffusion (mostly glucose and oxygen) into the sensing element, and contribute to the observed continual decreased analyte sensitivity with prolonged implantation [14,21,31]. In addition to ubiquitous sensor fouling and encapsulation, the host’s acute inflammatory response to the implanted foreign body produces an immediate, sustained cascade of local tissue cellular reactions that alter the local environment around the implant, substantially modifying local metabolism and homeostasis. This triggers a departure from normal tissue analyte levels and causes the sensors to produce highly altered analyte levels from acute inflammation—an acute reporting phenomenon called “break-in” [32].

As the host foreign body response in soft and hard tissue sites typically produces device-based challenges associated with excess or unresolved inflammation, fibrosis, and infection, combination device strategies seeking to address this issue have used drugs with known pharmacological actions against these specific problems.

1.2.1 Anti-Inflammatory Drug Candidates to Inhibit the Foreign Body Response

Anti-inflammatory steroidal drugs (e.g., dexamethasone) are clinically familiar and used to reduce inflammation and the host FBR in tissues surrounding implant sites [33,34]. Dexamethasone, a glucocorticoid agonist, crosses cell membranes and binds to glucocorticoid receptors controlling different inflammatory pathways with high affinity by inhibiting leukocyte infiltration at sites of inflammation, suppressing humoral immune responses, and reducing edema and scar tissue. Molecular basis for dexamethasone’s anti-inflammatory actions are thought to involve the inhibition of cyclooxygenase enzyme [35] that regulates arachidonic acid metabolism responsible for production of inflammatory prostaglandins.

Local controlled release systems containing the steroid, dexamethasone, have been used in intraocular application postsurgery in cataract treatments [36–40]. Local dexamethasone release [41] has also been used to reduce neointimal formation in the arterial wall after balloon angioplasty [42,43] and to prevent restenosis in intravascular drug-eluting stents [44]. Dexamethasone has also been used to improve the performance of pacemaker leads [45]. Dexamethasone release from PLGA microspheres coated onto a cotton suture implant has shown to decrease the acute inflammatory reaction around the implanted suture material [46]. Dexamethasone
has also been used in combination with angiogenesis factors such as vascular endothelial growth factor (VEGF) to promote new blood vessel growth while reducing inflammation in the tissue surrounding a hydrogel (PVA) scaffold implant [47]. Sequential or simultaneous release of dexamethasone and VEGF has been shown to improve the performance of implanted biosensors [47–51].

1.2.2 Antiproliferative Drug Candidates to Inhibit the Foreign Body Response

Sirolimus, also called rapamycin, is a potent immunosuppressive drug used in combination with medical devices. As a potent inhibitor of cytokine and growth factor-mediated cell proliferation, sirolimus acts by inhibiting activation of the intracellular protein enzyme, mTOR (mammalian target of rapamycin) [52], a downstream mediator of the PI3K/Akt phosphorylation signaling pathway regulating several key cell functions. Receptor-based inhibition of mTOR results in the blockage of cell cycle proliferation in the late G1 to S phase, causing antiproliferative and antithyperplastic actions [53,54]. Over 70 related “limus” derivatives are known drug candidates. Everolimus, temsirolimus, deforolimus, tacrolimus, and ABT-578 are also used as potent antiproliferative drugs. Paclitaxel is another commonly used antiproliferative drug used with medical devices such as drug-eluting stents. Paclitaxel inhibits cell proliferation, cell motility, shape, and transport between organelles [55]. Both rapamycin and paclitaxel have substantial clinical records as approved therapeutics for a number of indications independent of devices.

1.3 DEVICE-BASED THROMBOSIS

Under normal, steady-state circulation conditions (hemostasis), blood continuously contacts host endothelium with an intrinsic, active anticoagulant and antithrombotic system. Injury to blood vessels exposes subendothelial components, releases procoagulant stimulants, and disrupts hemostasis. Natural host response to this disruption involves blood platelet adhesion, activation, and aggregation in combination with activation of intrinsic and extrinsic coagulation cascades terminating in the formation of a crosslinked fibrin clot. These natural coagulation cascades are depicted in Figure 1.2. The combination of platelet and procoagulant cascade activation rapidly produces a thrombus/clot that stabilizes the injury and prevents further blood loss. Thrombus formation plays an important role in the maintenance of hemostasis. Thrombin-mediated fibrin polymer traps and stabilizes clusters of activated platelets to yield a stable thrombus critical for survival and also contribute powerfully to local wound healing.

Endothelial cells (ECs) lining the walls of the endothelium continuously synthesize and regulate several key molecules necessary for the maintenance of host hemostasis and the intrinsic blood compatibility of vasculature. The EC surface is a dense, brush-like layer of hydrated proteoglycans, called the glycocalyx. Glycocalyx glycoproteins enzyme-grafted with glycosaminoglycans (GAG) side chains [56], including heparan,
dextran, and chondroitin sulfate proteoglycans and hyaluronic acid, are negatively charged and highly hydrated, acting as a barrier and a lubricant between the ECs and blood components [57]. ECs also actively produce and release nitric oxide and prostacyclin (PGI₂) that actively prevent platelet adhesion and activation [58,59]. Heparan sulfate proteoglycan synthesized by the ECs inhibits platelet adhesion and activation [60] while also functioning as a catalytic cofactor for binding antithrombin-III and thrombin together to facilitate thrombin inhibition and anticoagulation [61,62]. ECs also produce tissue-type plasminogen activator (t-PA) and urokinase that act to initiate fibrin degradation and aid in clot dissolution [63,64]. This t-PA activity is tightly regulated by the EC-produced plasminogen activator inhibitor type-I [65–67].

Cardiovascular medical devices are placed into contact with patient’s blood for varying periods of time, ranging from minutes (e.g., vascular access devices) to many hours (blood pumps, dialysis filters, and central lines), to years (e.g., stents, heart valves, vascular grafts, and pacemaker leads). The blood-contacting surfaces on these devices are critical to their performance, seeking to minimize activation of both platelets and the coagulation cascades. However, no materials chemistry or coatings used on these devices have proven clinically reliable in limiting risks of device-based thrombosis to date. Some blood-contacting biomaterials are grafted with heparin-like coatings, or polymers mimicking the EC glyocalyx [68]. Figure 1.5 shows one example of this device-based surface modification approach using heparin. Other approaches are designed to release anticoagulant and antiplatelet drugs for short durations [69]. No materials yet provide all the passive, active, and functional aspects of ECs in maintaining hemostasis, and, therefore, all induce thrombosis in contact with blood to varying degrees. Device-induced thrombosis is a major cause of failure in blood-contacting biomaterials, mainly cardiovascular implants, which constitute a major class of chronic disease-related IMDs. Implantation of a medical device lacking the properties of a healthy endothelium constitutes the introduction of a foreign object into circulation. Blood–material interactions after implantation spontaneously and immediately trigger a series of complex reactions involving protein and platelet absorption on the biomaterial surface, formation of clots and emboli, and activation of the host’s immune system.

1.3.1 Platelet Activation in Device-Based Thrombosis

Platelets are anuclear cytoplasmic fragments present in blood essential for rapid, reliable blood clotting and wound healing [70]. Platelets play an essential role in controlling blood loss and maintaining hemostasis. One common platelet mode of action is the formation of a stable platelet plug when the blood vessel wall is damaged and the endothelial cell layer is disrupted, exposing the underlying basement membrane and extracellular matrix. With every surgical device implantation, blood vessels in the tissue surrounding an implant are injured, exposing collagen IV in the subendothelial layers to blood that results in the activation of circulating platelets. Additionally, platelets also get activated when they undergo shear stress caused by flow disturbances common to implanted devices. Platelet activation is followed by platelet degranulation and then by aggregation and adhesion to each other and to the
implanted material. Degranulation serves to release a broad array of potent platelet-derived biochemicals that potentiate local thrombosis by accelerating both local coagulation cascade reactions and platelet activation by release of highly procoagulant stimulants, enzyme substrates, and cofactors. The aggregated platelets are stabilized into a thrombus/clot by the newly formed fibrin polymer. Circulating platelets get activated under three major circumstances: (a) by contacting the basal lamina of the endothelial vessel wall, (b) by contacting with a biomaterial surface, and (c) due to flow disturbances caused in the presence of a biomaterial. Platelet adhesion, activation, and aggregation are combined with simultaneous thrombin-mediated fibrin polymerization that together result in thrombus formation.

1.3.2 Extrinsic and Intrinsic Coagulation Cascades

A biomaterial surface exposed to blood is coated with thousands of plasma proteins within seconds [71]. This adsorption activates some plasma proteins by inducing conformational changes or cleaving small fragments that trigger coagulation and inflammatory responses to the implanted device [72–74]. The coagulation cascade comprises two main branches: the intrinsic pathway (activated by contact with a biomaterial surface) and the extrinsic pathway (induced by EC injury). Both pathways converge at the proteolytic formation of thrombin from its prothrombin zymogen, the penultimate cascade step to converting soluble plasma- and platelet-derived fibrinogen to fibrin polymer. Fibrin polymer is a major protein component of the natural clot. Activation of intrinsic and extrinsic proteolytic reactions following blood contact with biomaterials actively and consistently produces thrombin-mediated fibrin clots unless pharmacological treatments attenuate these natural responses, typically by inhibiting key enzymes. The series of coagulant events triggered by the activation of intrinsic or extrinsic pathways following the implantation of a medical device into blood are shown in Figure 1.3. Adherent platelets—both on the biomaterial and trapped by the clot—activate to release numerous potent thrombotic promoters and catalysts by degranulation. They also recruit more circulating platelets to the device surface. Subsequent device-based thrombosis and thromboemboli formations produce many clinical complications, causing failure in small-diameter grafts, stents, valves, pumps, catheters, and other cardiovascular implants. Furthermore, causal links between device thrombosis and device-centered infection are increasing.

1.4 BIOMATERIALS-ASSOCIATED INFECTION

All implantable devices—from short-term devices, such as contact lens, glucose sensors, urinary catheters, and endotracheal tubes, to long-term surgically implanted devices, such as pacemakers, cardiac valves, endothelial grafts, and orthopedic implants, suffer commonly from varying risks of biomaterials-associated infections (BAIs) or implant-associated infections [41]. BAIs remain a major cause of IMD failure despite years of device innovation, improved quality of care, and surgical techniques [75]. In the United States, approximately 2 million nosocomial infections
FIGURE 1.3 Extrinsic and intrinsic cascades for the zymogens, active proteins, and clotting factors mediating clot formation after procoagulant stimulus.

costing $11 billion occur annually [76]. A majority of nosocomial infections (60–70%) are biomaterial-associated infections caused from the increasing use of urinary and venous catheters, orthopedic implants, shunts, and other implants [77], and involving significant mortality and economic costs. Infection mitigation is a common problem with IMDs and a primary focus of surgical antibiotic prophylaxis in device placement. BAIs most often result from bacterial contamination of implants intraoperatively during the implantation procedure. They are able to colonize implants using the implant-adherent protein layer and thrombus, proliferating at rates that outpace host wound healing. Bacterial adhesion leading to the formation of mature biofilms on the surface of a biomaterial is shown in Figure 1.4. Bacteria and other pathogens have multiple sources during surgery: no surgical suites, surgical personnel, or patients are sterile, Pathogen seeding of implants and surgical sites is likely, although only small fractions of implants actually colonize and lead to clinically symptomatic infections as BAIs. Nonetheless, BAIs can result in difficult-to-treat systemic infections with costly adverse complications and mortality. BAIs are most prevalent in orthopedic [78,79], dental [80], cardiovascular [81–83], neural, and ophthalmological implants [84,85] and involve a broad spectrum of pathogens, many in polymicrobial implant infections. Rates of infection at the site of implantation postsurgery increase with the severity of the vascular and tissue injury [86]. Upon detection, BAIs often fail systemic administration of antibiotics. Therefore, common treatment most often involves immediate implant removal followed by long-term parenteral administration of antibiotics and then replacement with a second new implant. This often comes with associated morbidity and high treatment costs. Little change in BAI incidence has resulted from changes in surgical practice, device design, or antibiotic usage, prompting re-examination of the entire medical device infection scenario [87]. Since systemic antibiotic therapies have failed to bring down implant