
X-Ray Absorption and X-Ray Emission Spectroscopy Theory and Applications

EDITED BY Jeroen A. van Bokhoven • Carlo Lamberti

X-Ray Absorption and X-Ray Emission Spectroscopy

X-Ray Absorption and X-Ray Emission Spectroscopy

Theory and Applications

Edited by

JEROEN A. VAN BOKHOVEN

Swiss Light Source, Paul Scherrer Institute, Switzerland Institute for Chemical and Bioengineering, ETH Zurich, Switzerland

CARLO LAMBERTI

Department of Chemistry, University of Turin, Italy Southern Federal University, Rostov-on-Don, Russia

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

X-ray absorption and X-ray emission spectroscopy : theory and applications / edited by Jeroen A. van Bokhoven and Carlo Lamberti.

Includes bibliographical references and index.

ISBN 978-1-118-84423-6 (cloth)

1. X-ray spectroscopy. 2. Spectrum analysis. I. Bokhoven, Jeroen A. van, 1971– editor. II. Lamberti, Carlo, editor.

QD96.X2X1924 2015

522'.6863-dc23

2015016356

A catalogue record for this book is available from the British Library.

ISBN: 9781118844236

Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2016

Contents

VOLUME I

List	t of C	ontribu	itors	xvii
For	ewor	d		xxi
	Diek	C. Kor	ningsberger and Roel Prins	
I	INT	RODU	CTION: HISTORY, XAS, XES, AND THEIR IMPACT ON SCIENCE	
1	Intr	oductio	on: Historical Perspective on XAS	3
	Car	lo Lamb	perti and Jeroen A. van Bokhoven	
	1.1		ical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering -1971 Period	3
	1.2	About	the Book: A Few Curiosities, Some Statistics, and a Brief Overview	9
	Ack	nowled	gement	13
	Refe	erences		14
II	EXI	PERIM	ENT AND THEORY	
2	Fro	m Sync	hrotrons to FELs: How Photons Are Produced; Beamline Optics and Beam	
	Cha	racteri	stics	25
	Gior	_	rgaritondo	
	2.1		n Emission by Accelerated Charges: From the Classical Case to the Relativistic	
		Limit		25
	2.2		ators, Wigglers, and Bending Magnets	29
			Undulators	29
			Wigglers	32
			Bending magnets	33
			High flux, high brightness	35
	2.3		ime Structure of Synchrotron Radiation	36
	2.4		ents of Beamline Optics	38
		2.4.1	Focusing devices	38
			Monochromators	41
	2.5		Detectors	43
	2.5		Electron Lasers	44
			FEL optical amplification	46
			Optical amplification in an X-FEL: Details	46
		2.5.3		47
			11 1 17	48
	D-C	2.5.5	Time coherence and seeding	48
	Kefe	erences		49

3	Real-Space Multiple-Scattering Theory of X-Ray Spectra	51
	Joshua J. Kas, Kevin Jorisson and John J. Rehr	
	3.1 Introduction	51
	3.2 Theory	53
	3.2.1 Independent-particle approximation	53
	3.2.2 Real-space multiple-scattering theory	54
	3.2.3 Many body effects in x-ray spectra	57
	3.3 Applications	60
	3.3.1 XAS, EXAFS, XANES	61
	3.3.2 EELS	62
	3.3.3 XES	63
	3.3.4 XMCD	64
	3.3.5 NRIXS	64
	3.3.6 RIXS	65
	3.3.7 Compton scattering	66
	3.3.8 Optical constants	66
	3.4 Conclusion	66
	References	68
4	Theory of X-Ray Absorption Near Edge Structure	73
7	Yves Joly and Stéphane Grenier	1.
	4.1 Introduction	73
	4.2 The X-Ray Absorption Phenomena	74
	4.2.1 Probing material	74
	4.2.2 The different spectroscopies	76
	4.3 X-Ray Matter Interaction	78
	4.3.1 Interaction Hamiltonian	78
	4.3.2 Absorption cross-section for the transition between two stat	
	4.3.3 State description	80
	4.3.4 The transition matrix	81
	4.4 XANES General Formulation	83
	4.4.1 Interaction times and the multi-electronic problem	83
	4.4.2 Absorption cross-section main equation	84
	4.5 XANES Simulations in the Mono-Electronic Scheme	85
	4.5.1 From multi- to mono-electronic	85
	4.5.2 The different methods	87
	4.5.3 The multiple scattering theory	89
	4.6 Multiplet Ligand Field Theory	91
	4.6.1 Atomic multiplets	91
	4.6.2 The crystal field	92
	4.7 Current Theoretical Developments	92
	4.8 Tensorial Approaches	93
	4.9 Conclusion	94
	References	95
5	How to Start an XAS Experiment	99
	Diego Gianolio	
	5.1 Introduction	99
	5.2 Plan the Experiment	100

			Contents	vii
		5.2.1 Identify the scientific question		101
		5.2.2 Can XAS solve the problem?		103
		5.2.3 Select the best beamline and measurement mode		104
		5.2.4 Writing the proposal		111
	5.3	Preparing the Experiment		112
		5.3.1 Experimental design		112
		5.3.2 Best sample conditions for data acquisition		113
		5.3.3 Sample preparation		116
	5.4	Performing the Experiment		118
		5.4.1 Initial set-up and optimization of signal		118
	D 6	5.4.2 Data acquisition		119
	Refe	erences		122
6		d X-Ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and olications		125
		er Glatzel, Roberto Alonso-Mori, and Dimosthenis Sokaras		123
	6.1	Introduction		125
		History		126
	6.3	Basic Theory of XES		126
	0.0	6.3.1 One- and multi-electron description		128
		6.3.2 X-ray Raman scattering spectroscopy		132
	6.4	Chemical Sensitivity of X-Ray Emission		133
		6.4.1 Core-to-core transitions		133
		6.4.2 Valence-to-core transitions		134
	6.5	HERFD and RIXS		135
	6.6	Experimental X-Ray Emission Spectroscopy		137
		6.6.1 Sources for x-ray emission spectroscopy		137
		6.6.2 X-ray emission spectrometers		140
		6.6.3 Detectors		147
		Conclusion		149
	Refe	erences		149
7		XAFS: Techniques and Scientific Applications for Time-Resolved XAS		155
		arten Nachtegaal, Oliver Müller, Christian König and Ronald Frahm		
	7.1	Introduction		155
		History and Basics of QEXAFS		156
	7.3	Monochromators and Beamlines for QEXAFS		158
		7.3.1 QEXAFS with conventional monochromators7.3.2 Piezo-QEXAFS for the millisecond time range		158 161
		7.3.3 Dedicated oscillating monochromators for QEXAFS		162
	7.4	Detectors and Readout Systems		166
	7.4	7.4.1 Requirements for detectors		167
		7.4.2 Gridded ionization chambers		167
		7.4.3 Data acquisition		169
		7.4.4 Angular encoder		171
	7.5	Applications of QEXAFS in Chemistry		172
	, .5	7.5.1 Following the fate of metal contaminants at the mineral–water interface		173
		7.5.2 Identifying the catalytic active sites in gas phase reactions		174
		7.5.3 Identifying the catalytic active site in liquid phase reactions		175

		7.5.4	Synthesis of nanoparticles	176
		7.5.5	Identification of reaction intermediates: Modulation excitation XAS	177
	7.6	Concl	usion and Future Perspectives	179
			gements	180
	Refe	erences		180
8	Tim	e-Reso	lved XAS Using an Energy Dispersive Spectrometer: Techniques and	
	App	lication	ns	185
	Oliv	ier Mat	hon, Innokenty Kantor and Sakura Pascarelli	
	8.1	Introd		185
	8.2		y Dispersive X-Ray Absorption Spectroscopy	186
			Historical development of EDXAS and overview of existing facilities	186
			Principles: Source, optics, detection	186
			Dispersive versus scanning spectrometer for time-resolved experiments	188
			Description of the EDXAS beamline at ESRF	189
	8.3		the Minute Down to the Ms: Filming a Chemical Reaction in situ	191
		8.3.1	1	191
			First stages of nanoparticle formation	191
			Working for cleaner cars: Automotive exhaust catalyst	194
			Reaction mechanisms and intermediates	196
	0 1		High temperature oxidation of metallic iron	199
	8.4	8.4.1	to the μ s Regime: Matter under Extreme Conditions Technical aspects	200 200
			Melts at extreme pressure and temperature	200
		8.4.3		202
		8.4.4		205
	8.5		g with a 100 ps Single Bunch	203
	0.5	8.5.1		206
			Detection and characterization of photo-excited states in Cu ⁺ complexes	206
			Opportunities for investigating laser-shocked matter	207
			Non-synchrotron EDXAS	208
	8.6	Concl		209
	Refe	erences		209
9	X-R	av Trai	nsient Absorption Spectroscopy	213
		X. Chen		
	9.1	Introd	uction	213
	9.2	Pump-	-Probe Spectroscopy	214
		9.2.1	Background	214
		9.2.2	The basic set-up	218
	9.3	-	imental Considerations	220
		9.3.1	· · · · · · · · · · · · · · · · · · ·	220
		9.3.2	XTA at x-ray free electron laser sources	224
	9.4		ent Structural Information Investigated by XTA	225
		9.4.1	Metal center oxidation state	225
		9.4.2	Electron configuration and orbital energies of x-ray absorbing atoms	226
		943	Transient coordination geometry of the metal center	227

 9.5.1 Excited state dynamics of transition metal complexes (TMCs) 9.5.2 Interfacial charge transfer in hybrid systems 9.5.3 XTA studies of metal center active site structures in metalloproteins 9.5.4 XTA using the x-ray free electron lasers 9.5.5 Other XTA application examples 9.6 Perspective of Pump-Probe X-Ray Spectroscopy Acknowledgments References 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yusuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XAFS studies of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11.1 Ouantitative EXAFS Analysis Bruce Ravel 11.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 				Contents	ix
 9.5.2 Interfacial charge transfer in hybrid systems 9.5.3 XTA studies of metal center active site structures in metalloproteins 9.5.4 XTA using the x-ray free electron lasers 9.5.5 Other XTA application examples 9.6 Perspective of Pump-Probe X-Ray Spectroscopy Acknowledgments References 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzukt and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XAFS analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		9.5			228
 9.5.3 XTA studies of metal center active site structures in metalloproteins 9.5.5 Other XTA application examples 9.6 Perspective of Pump-Probe X-Ray Spectroscopy Acknowledgments References Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS experiments 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XAFS studies of putonium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.3. The path expansion in FEFF 11.2 The robotical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					228
9.5.4 XTA using the x-ray free electron lasers 9.5.5 Other XTA application examples 9.6 Perspective of Pump-Probe X-Ray Spectroscopy Acknowledgments References 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 The pathfinder of EXAFS scattering factors 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis					232
9.5.5 Other XTA application examples 9.6 Perspective of Pump-Probe X-Ray Spectroscopy Acknowledgments References 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3.Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.1 The n-body decomposition in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			•		235
9.6 Perspective of Pump-Probe X-Ray Spectroscopy Acknowledgments References 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2. Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			ę ,		237
Acknowledgments References 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			11 1		239
 References Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XAPS studies of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 			1 1 11		239
 10 Space-Resolved XAFS, Instrumentation and Applications Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.5 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The fitting metric 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 			C		240
 Yoshio Suzuki and Yasuko Terada 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		Refe	rences		241
 10.1 Space-Resolving Techniques for XAFS 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 	10	Spac	ce-Resolved XAFS, Instrumentation and Applications		251
 10.2 Beam-Focusing Instrumentation for Microbeam Production 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2. The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		Yosh	io Suzuki and Yasuko Terada		
 10.2.1 Total reflection mirror systems 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		10.1	Space-Resolving Techniques for XAFS		251
 10.2.2 Fresnel zone plate optics for x-ray microbeam 10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		10.2	Beam-Focusing Instrumentation for Microbeam Production		253
10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			10.2.1 Total reflection mirror systems		253
10.2.3 General issues of beam-focusing optics 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			10.2.2 Fresnel zone plate optics for x-ray microbeam		257
 10.2.4 Requirements on beam stability in microbeam XAFS experiments 10.3 Examples of Beam-Focusing Instrumentation 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					260
 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					265
 10.3.1 The total-reflection mirror system 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		10.3	• • • • • • • • • • • • • • • • • • • •		266
 10.3.2 Fresnel zone plate system 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					266
10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis					267
Environmental Science 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis		10.4			
 10.4.1 Speciation of heavy metals in willow 10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					268
10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			10.4.1 Speciation of heavy metals in willow		268
 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 			10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary		
10.4.4 Micro-XAFS studies of plutonium sorbed on tuff 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			•		270
10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell 10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis					272
10.5 Conclusion and Outlook References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis					274
References 11 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis		10.5			274
 Quantitative EXAFS Analysis Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					275
Bruce Ravel 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis		Refe	rences		278
 11.1 A brief history of EXAFS theory 11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 	11	Qua	ntitative EXAFS Analysis		281
11.1.1 The n-body decomposition in GNXAS 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis					
 11.1.2 The exact curved wave theory in EXCURVE 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 		11.1	A brief history of EXAFS theory		282
 11.1.3 The path expansion in FEFF 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					286
 11.2 Theoretical calculation of EXAFS scattering factors 11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ² 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis 					286
11.2.1 The pathfinder 11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			11.1.3 The path expansion in FEFF		287
11.2.2 The fitting metric 11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis		11.2	Theoretical calculation of EXAFS scattering factors		287
11.2.3 Constraints on parameters of the fit 11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			11.2.1 The pathfinder		288
11.2.4 Fitting statistics 11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			11.2.2 The fitting metric		289
11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			11.2.3 Constraints on parameters of the fit		290
11.2.5 Extending the evaluation of χ^2 11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis					291
11.2.6 Other analytic methods 11.3 Practical examples of EXAFS analysis			11.2.5 Extending the evaluation of χ^2		294
11.3 Practical examples of EXAFS analysis					295
		11.3	·		296
			11.3.1 Geometric constraints on bond lengths		296

x Contents

	11.3.2 Constraints on the coordination environment	297
	11.3.3 Constraints and multiple data set analysis	298
	11.4 Conclusion	299
	References	299
12	XAS Spectroscopy: Related Techniques and Combination with Other Spectroscopic and	
	Scattering Methods	303
	Carlo Lamberti, Elisa Borfecchia, Jeroen A. van Bokhoven and Marcos Fernández-García	
	12.1 Introduction	303
	12.2 Atomic Pair Distribution Analysis of Total Scattering Data	304
	12.2.1 Theoretical description	307
	12.2.2 Examples of PDF analysis	311
	12.3 Diffraction Anomalous Fine Structure (DAFS)	316
	12.3.1 Theoretical description	316
	12.3.2 Examples of DAFS12.4 Inelastic Scattering Techniques	318 323
	12.4.1 Extended energy-loss fine structure (EXELFS)	323
	12.4.2 X-ray Raman scattering (XRS)	323
	12.5 β-Environmental Fine Structure (BEFS)	324
	12.6 Combined Techniques	330
	12.6.1 General considerations	330
	12.6.2 Selected examples	332
	12.7 Conclusion	337
	Acknowledgments	337
	References	337
VC	DLUME II	
List	t of Contributors	xvii
For	eword	xxi
1 01	Diek C. Koningsberger and Roel Prins	AAI
	Diek C. Homingsberger und Noer I vins	
III	APPLICATIONS: FROM CATALYSIS VIA SEMICONDUCTORS TO INDUSTRIAL APPLICATIONS	
13	X-Ray Absorption and Emission Spectroscopy for Catalysis	353
	Carlo Lamberti and Jeroen A. van Bokhoven	
	13.1 Introduction	353
	13.2 The Catalytic Process	354
	13.2.1 From vacuum and single crystals to realistic pressure and relevant samples	355
	13.2.2 From chemisorption to conversion and reaction kinetics	356
	13.2.3 Structural differences within a single catalytic reactor	358
	13.2.4 Determining the structure of the active site 13.3 Reaction Kinetics from Time-Resolved XAS	360 361
	13.3 Reaction Kinetics from Time-Resolved XAS 13.3.1 Oxygen storage materials	361
	13.3.2 Selective propene oxidation over α -MoO ₃	362
	13.3.3 Active sites of the dream reaction, the direct conversion of benzene to phenol	365
	15.5.5 Active sites of the declin reaction, the direct conversion of benzene to phenor	505

		Contents xi
	13.4 Sub-Micrometer Space Resolved Measurements	368
	13.5 Emerging Methods	369
	13.5.1 X-ray emission spectroscopy	369
	13.5.2 Pump probe methods	374
	13.6 Conclusion and Outlook	374
	Acknowledgement	375
	References	375
14	High Pressure XAS, XMCD and IXS	385
	Jean-Paul Itié, François Baudelet and Jean-Pascal Rueff	
	14.1 Introduction	385
	14.1.1 Why pressure matters	385
	14.1.2 High-pressure generation and measurements	385
	14.1.3 Specific drawbacks of a high-pressure set-up	386
	14.2 High Pressure EXAFS and XANES	386
	14.2.1 Introduction	386
	14.2.2 Local equation of state	386
	14.2.3 Pressure-induced phase transitions	387
	14.2.4 Glasses, amorphous materials, amorphization	390
	14.2.5 Extension to low and high energy edges	392
	14.3 High-Pressure Magnetism and XMCD	393
	14.3.1 Introduction	393
	14.3.2 Transition metal	394
	14.3.3 Magnetic insulator	396
	14.3.4 The rare earth system	396
	14.4 High Pressure Inelastic X-Ray Scattering	397
	14.4.1 Electronic structure	397
	14.4.2 Magnetic transitions in 3d and 4f electron systems	397
	14.4.3 Metal insulator transitions in correlated systems	398
	14.4.4 Valence transition in mixed valent rare-earth compounds	399
	14.4.5 Low-energy absorption edges: chemical bonding and orbital configuration	400
	14.5 Conclusion	401
	References	402
15	X-Ray Absorption and RIXS on Coordination Complexes	407
	Thomas Kroll, Marcus Lundberg and Edward I. Solomon	
	15.1 Introduction	407
	15.1.1 Geometric and electronic structure of coordination complexes	407
	15.1.2 X-ray probes of coordination complexes	409
	15.1.3 Extracting electronic structure from x-ray spectra	411
	15.2 Metal K-Edges	413
	15.2.1 The case of a single 3d hole: Cu(II)	414
	15.2.2 Multiple 3d holes: Fe(III) and Fe(II)	418
	15.3 Metal L-Edges	420
	15.3.1 The case of a single 3d hole: Cu(II)	421
	15.3.2 Multiple 3d holes: Fe(III) and Fe(II)	423
	15.4 Resonant Inelastic X-Ray Scattering	427
	15.4.1 Ferrous systems	429
	15.4.2 Ferric systems	431

xii Contents

	15.5 Conclusion	432
	Acknowledgments	433
	References	433
16	Semiconductors	437
	Federico Boscherini	
	16.1 Introduction	437
	16.2 XAS Instrumental Aspects	437
	16.3 Applications	439
	16.3.1 Dopants and defects	439
	16.3.2 Thin films and heterostructures	447
	16.3.3 Nanostructures	448
	16.3.4 Dilute magnetic semiconductors	451
	16.4 Conclusion	455
	References	455
17	XAS Studies on Mixed Valence Oxides	459
	Joaquín García, Gloria Subías and Javier Blasco	
	17.1 Introduction	459
	17.1.1 X-ray absorption spectroscopy (XAS)	461
	17.1.2 XES and XAS	463
	17.1.3 Resonant x-ray scattering	464
	17.2 Solid State Applications (Mixed Valence Oxides)	464
	17.2.1 High Tc superconductors	464
	17.2.2 Manganites	470
	17.2.3 Perovskite cobaltites	479
	17.3 Conclusion	480
	References	481
18	Novel XAS Techniques for Probing Fuel Cells and Batteries	485
	David E. Ramaker	
	18.1 Introduction	485
	18.2 XANES Techniques	487
	18.2.1 Data analysis	489
	18.2.2 Data collection	490
	18.2.3 Comparison of techniques by examination of O(H)/Pt and CO/Pt	493
	18.3 Operando Measurements	500
	18.3.1 Fuel cells	500
	18.3.2 Batteries	505
	18.4 Future Trends	511
	18.5 Appendix	511
	18.5.1 Details of the $\Delta \mu$ XANES analysis technique	511
	18.5.2 FEFF8 theoretical calculations	513
	References	515
19	X-Ray Spectroscopy in Studies of the Nuclear Fuel Cycle	523
	Melissa A. Denecke	F22
	19.1 Background	523
	19.1.1 Introduction	523
	19.1.2 Radioactive materials at synchrotron sources	527

		Contents	XIII
	19.2 Application Examples		530
	19.2.1 Studies related to uranium mining		530
	19.2.2 Studies related to fuel		532
	19.2.3 Investigations of reactor components		538
	19.2.4 Studies related to recycle and lanthanide/actinide separations		540
	19.2.5 Studies concerning legacy remediation and waste disposal (waste forms,		5.0
	near-field and far-field)		544
	19.3 Conclusion and Outlook		551
	References		555
20			561
	François Farges and Max Wilke		
	20.1 Introduction		561
	20.2 Planetary and Endogenous Earth Sciences		563
	20.2.1 Planetary materials and meteorites		563
	20.2.2 Crystalline deep earth materials		566
	20.2.3 Magmatic and volcanic processes		571
	20.2.4 Element complexation in aqueous fluids at P and T		579
	20.3 Environmental Geosciences		581
	20.3.1 General trends		581
	20.3.2 Environmentally relevant minerals and phases		583
	20.3.3 Mechanisms and reactivity at the mineral-water interfaces		584
	20.3.4 Some environmental applications of x-ray absorption spectroscopy		591
	20.4 Conclusion		599
	Acknowledgments		600
	References		600
21	X-Ray Absorption Spectroscopy and Cultural Heritage: Highlights and Perspective)C	609
21	François Farges and Marine Cotte		007
	21.1 Introduction		609
	21.2 Instrumentation: Standard and Recently Developed Approaches		610
	21.2.1 From centimetric objects to micrometric cross-sections		610
	21.2.2 Improving the spectral resolution of XRF detectors		612
	21.2.2 Improving the spectral resolution of ART detectors 21.2.3 From hard x-rays to soft x-rays		612
			613
	21.2.4 Spectro-imaging in the hard x-ray domain		
	21.3 Some Applications 21.3.1 Glasses		614
	21.3.1 Glasses 21.3.2 Ceramics		614
			621
	21.3.3 Pigments and paintings		623
	21.3.4 Inks		626
	21.3.5 Woods: From historical to fossils		627
	21.3.6 Bones and ivory		628
	21.3.7 Metals		629
	21.3.8 Rock-formed monuments		632
	21.4 Conclusion		632
	Acknowledgments		633
	References		633

22	X-Ray Spectroscopy at Free Electron Lasers	637
	Wojciech Gawelda, Jakub Szlachetko and Christopher J. Milne	
	22.1 Introduction to X-Ray Free Electron Lasers in Comparison to Synchrotrons	637
	22.1.1 Overview of facilities	637
	22.1.2 X-ray properties from an XFEL	638
	22.1.3 Scanning the x-ray energy	641
	22.1.4 Comparison with existing time-resolved techniques at synchrotrons	641
	22.2 Current Implementations of X-Ray Spectroscopy Techniques at XFELs	642
	22.2.1 X-ray absorption spectroscopy	642
	22.2.2 X-ray emission spectroscopy	645
	22.3 Examples of Time-Resolved X-Ray Spectroscopy at XFELs	646
	22.3.1 Ultrafast spin-crossover excitation probed with x-ray absorption spectroscopy	647
	22.3.2 Femtosecond spin and charge state dynamics probed with x-ray emission	
	spectroscopy	649
	22.3.3 Simultaneous measurement of the structural and electronic changes in	
	Photosystem II after photoexcitation	652
	22.3.4 Investigating surface photochemistry	653
	22.3.5 Soft x-ray emission spectroscopy measurements of dilute systems	654
	22.4 Examples of Nonlinear X-Ray Spectroscopy at XFELs	656
	22.4.1 X-ray-induced transparency	656
	22.4.2 Sequential ionization and core-to-core resonances	656
	22.4.3 Hollow atoms	658
	22.4.4 Solid-density plasma	659
	22.4.5 Two-photon absorption	660
	22.5 Conclusion and Outlook	660
	Acknowledgement	662
	References	662
23	X-Ray Magnetic Circular Dichroism	671
	Andrei Rogalev, Katharina Ollefs and Fabrice Wilhelm	
	23.1 Historical Introduction	671
	23.2 Physical Content of XMCD and the Sum Rules	673
	23.3 Experimental Aspects and Data Analysis	677
	23.3.1 Sources of circularly polarized x-rays	677
	23.3.2 Sample environment	680
	23.3.3 Detection modes	682
	23.3.4 Standard analysis	683
	23.4 Examples of Recent Research	684
	23.4.1 Paramagnetism of pure metallic clusters	684
	23.4.2 Magnetism in diluted magnetic semiconductors	686
	23.4.3 Photomagnetic molecular magnets	688
	23.5 Conclusion and Outlook	689
	Acknowledgments	690
	References	690
24	Industrial Applications	695
	Simon R. Bare and Jeffrey Cutler	
	24.1 Introduction	695
	24.2 The Patent Literature	696

	24.2.1. Catalyata	696
	24.2.1 Catalysts 24.2.2 Batteries	698
	24.2.3 Other applications	699
	24.3 The Open Literature	699
	24.3.1 Semiconductors, thin films, and electronic materials	700
	24.3.2 Fuel cells, batteries, and electrocatalysts	703
	24.3.3 Metallurgy and tribology	703
	24.3.4 Homogeneous and heterogeneous catalysts	710
	24.3.5 Miscellaneous applications: from sludge to thermographic films	715
	24.4 Examples of Applications from Light Sources	716
	24.4.1 Introduction	716
	24.4.2 Industrial science at the Canadian Light Source	716
	24.4.3 Use of SOLEIL beamlines by industry	719
	24.4.4 Industrial research enhancement program at NSLS	721
	24.4.5 The Swiss Light Source: cutting-edge research facilities for industry	721
	24.5 Examples of Applications from Companies	724
	24.5.1 Introduction	724
	24.5.2 Haldor Topsøe A/S	724
	24.5.3 UOP LLC, a Honeywell Company	726
	24.5.4 General Electric Company	729
	24.5.5 IBM Research Center	733
	24.6 Conducting Industrial Research at Light Sources	735
	24.7 Conclusion and Outlook	736
	Acknowledgements	737
	References	737
25	XAS in Liquid Systems	745
	Adriano Filipponi and Paola D'Angelo	
	25.1 The Liquid State of Matter	745
	25.1.1 Thermodynamic considerations	745
	25.1.2 Pair and higher order distribution functions	747
	25.2 Computer Modelling of Liquid Structures	749
	25.2.1 Molecular dynamics simulations	749
	25.2.2 Classical molecular dynamics	750
	25.2.3 Born-Oppenheimer molecular dynamics	752
	25.2.4 Car-Parrinello molecular dynamics	752
	25.2.5 Monte Carlo simulation approaches	753
	25.3 XAFS Calculations in Liquids/Disordered Systems	754
	25.3.1 XAFS sensitivity and its specific role	754
	25.3.2 XAFS signal decomposition	755
	25.3.3 XAFS signal from the pair distribution	757
	25.3.4 The triplet distribution case in elemental systems	758
	25.4 Experimental and Data-Analysis Approaches	759
	25.4.1 Sample confinement strategies and detection techniques	759
	25.4.2 High pressure, temperature control, and XAS sensitivity to phase transitions	761
	25.4.3 Traditional versus atomistic data-analysis approaches	761
	25.5 Examples of Data Analysis Applications	763
	25.5.1 Elemental systems: Icosahedral order in metals	763

Contents xv

	25.5.2 Aqueous solutions: Structure of the hydration shells	763
	25.5.3 Transition metal aqua ions	765
	25.5.4 Lanthanide aqua ions	766
	25.5.5 Halide aqua ions: The bromide case	767
	References	768
26	Surface Metal Complexes and Their Applications	773
	Joseph D. Kistler, Pedro Serna, Kiyotaka Asakura and Bruce C. Gates	
	26.1 Introduction	773
	26.1.1 Ligands other than supports	774
	26.1.2 Supports	774
	26.1.3 Techniques complementing x-ray absorption spectroscopy	775
	26.1.4 Data-fitting techniques	775
	26.2 Aim of the Chapter	776
	26.3 Mononuclear Iridium Complexes Supported on Zeolite HSSZ-53: Illustration of EXAFS Data Fitting and Model Discrimination	776
	26.4 Iridium Complexes Supported on MgO and on Zeolites: Precisely Synthesized	770
	Isostructural Metal Complexes on Supports with Contrasting Properties as Ligands	782
	26.5 Supported Chromium Complex Catalysts for Ethylene Polymerization: Characterization	702
	of Samples Resembling Industrial Catalysts	785
	26.6 Copper Complexes on Titania: Insights Gained from Samples Incorporating	, 52
	Single-Crystal Supports	787
	26.7 Gold Complexes Supported on Zeolite NaY: Determining Crystallographic Locations of	
	Metal Complexes on a Support by Combining EXAFS Spectroscopy and STEM	790
	26.8 Gold Supported on CeO ₂ : Conversion of Gold Complexes into Clusters in a CO	
	Oxidation Catalyst Characterized by Transient XAFS Spectroscopy	792
	26.9 Mononuclear Rhodium Complexes and Dimers on MgO: Discovery of a Catalyst for	
	Selective Hydrogenation of 1,3-Butadiene	797
	26.10 Osmium Complexes Supported on MgO: Determining Structure of the Metal–Support	
	Interface, and the Importance of Support Surface Defect Sites	800
	26.11 Conclusion	805
	Acknowledgments	805
	References	805
27	Nanostructured Materials	809
	Alexander V. Soldatov and Kirill A. Lomachenko	
	27.1 Introduction	809
	27.2 Small Nanoclusters	811
	27.3 Nanoparticles	814
	27.4 Nanostructures and Defects in Solids	819
	27.5 Conclusion and Outlook	824
	Acknowledgments	824
	References	824
Ind	lex	829

List of Contributors

Roberto Alonso-Mori LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Kiyotaka Asakura Catalysis Research Center, Hokkaido University, Sapporo, Japan

Simon R. Bare UOP LLC, Des Plaines, IL, USA

François Baudelet Synchrotron SOLEIL, St Aubin, France

Javier Blasco Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain

Elisa Borfecchia Department of Chemistry and INSTM Reference Center, University of Turin, Italy; NIS Centre, University of Turin, Italy

Federico Boscherini Department of Physics and Astronomy, University of Bologna, Bologna, Italy

Lin X. Chen Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL, USA

Marine Cotte European Synchrotron Radiation Laboratory, Grenoble, France; Laboratoire d'archéologie Moléculaire et Structurale, LAMS, Paris, France

Jeffrey Cutler Canadian Light Source Inc., Saskatoon, Canada

Paola D'Angelo Department of Chemistry, University of Rome "La Sapienza", Rome, Italy

Melissa A. Denecke Dalton Nuclear Institute, The University of Manchester, Manchester, UK

François Farges Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum national d'Histoire naturelle and UMR CNRS 7590, Paris, France

Marcos Fernández-García Instituto de Catálisis y Petroleoquímica (CSIC), Madrid, Spain

Adriano Filipponi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy

Ronald Frahm Department of Physics, University of Wuppertal, Wuppertal, Germany

Joaquín García Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain

Bruce C. Gates Department of Chemical Engineering and Materials Science, University of California, Davis, CA, USA

Wojciech Gawelda European XFEL GmbH, Hamburg, Germany

Diego Gianolio Diamond Light Source Ltd, Didcot, UK

Pieter Glatzel European Synchrotron Radiation Facility, Grenoble, France

Stéphane Grenier Univ Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France; CNRS, Inst NEEL, F-38042 Grenoble, France

Jean-Paul Itié Synchrotron SOLEIL, St Aubin, France

Yves Joly Univ Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France; CNRS, Inst NEEL, F-38042 Grenoble. France

Kevin Jorissen Department of Physics, University of Washington, Seattle, WA, USA

Innokenty Kantor European Synchrotron Radiation Facility, Grenoble, France

Joshua J. Kas Department of Physics, University of Washington, Seattle, WA, USA

Joseph D. Kistler Department of Chemical Engineering and Materials Science, University of California, Davis, CA, USA

Christian König General Energy Department, Paul Scherrer Institute, Villigen, Switzerland

Thomas Kroll SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA

Carlo Lamberti Department of Chemistry, University of Turin, Italy; Southern Federal University, Rostovon-Don, Russia

Kirill A. Lomachenko Southern Federal University, Rostov-on-Don, Russia; Department of Chemistry, University of Turin, Turin, Italy

Marcus Lundberg Department of Chemistry, Uppsala University, Uppsala, Sweden

Giorgio Margaritondo Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Olivier Mathon European Synchrotron Radiation Facility, Grenoble, France

Christopher J. Milne SwissFEL, Paul Scherrer Institute, Villigen, Switzerland

Oliver Müller Department of Physics, University of Wuppertal, Wuppertal, Germany

Maarten Nachtegaal General Energy Department, Paul Scherrer Institute, Villigen, Switzerland

Katharina Ollefs European Synchrotron Radiation Facility, Grenoble, France

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

David E. Ramaker Department of Chemistry, George Washington University, Washington, USA

Bruce Ravel National Institute of Standards and Technology, Gaithersburg, MD, USA

John J. Rehr Department of Physics, University of Washington, Seattle, WA, USA

Andrei Rogalev European Synchrotron Radiation Facility, Grenoble, France

Jean-Pascal Rueff Synchrotron SOLEIL, St Aubin, France

Pedro Serna Instituto de Tecnología Química, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones Científicas, Valencia, Spain

Dimosthenis Sokaras SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Alexander V. Soldatov Southern Federal University, Rostov-on-Don, Russia

Edward I. Solomon Department of Chemistry, Stanford University, Stanford, CA, USA

Gloria Subías Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain

Yoshio Suzuki Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo, Japan

Jakub Szlachetko SwissFEL, Paul Scherrer Institute, Villigen, Switzerland; Institute of Physics, Jan Kochanowski University, Kielce, Poland

Yasuko Terada Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo, Japan

Jeroen A. van Bokhoven Swiss Light Source, Paul Scherrer Institute, Switzerland; Institute for Chemical and Bioengineering, ETH Zurich, Switzerland

Fabrice Wilhelm European Synchrotron Radiation Facility, Grenoble, France

Max Wilke Deutsches GeoForschungsZentrum, GFZ, Potsdam, Germany

Foreword

With pleasure we accepted the invitation of the editors to write a Foreword for the book *XAS and XES: Theory and Applications*. This book is a follow-up to *X-Ray Absorption: Principles, Applications and Techniques of EXAFS, SEXAFS and XANES*, Wiley, 1987, which we edited.

X-ray absorption spectroscopy has changed considerably since the 1980s when EXAFS and XANES were relatively new techniques, synchrotrons were not dedicated and almost no user facilities were available. Night-time collection of data during a parasitic mode at the Stanford synchrotron was an adventure, to say the least. We survived it by listening to Bach's cantatas, as rendered by one of our PhD students.

When we began working with EXAFS spectroscopy in the 1980s, adsorbate-induced structural changes and metal-support interactions were hot topics in catalytic research. At that time we were interested in the change in morphology that CO adsorption induced on a γ -Al₂O₃-supported Rh catalyst and in the structure of the interface between rhodium metal particles and the catalyst support. To study the morphology change and metal-support interface in situ, we applied EXAFS, but at that time it was necessary to make the long trip to the Stanford Synchrotron in the USA where we were grateful for the measuring time allotted to us by our American colleagues Dale Sayers and Jim Katzer. Our first results were published in 1983 [1] and 1985 [2]. These studies demonstrated the exciting potential of EXAFS. We were, of course, not the only scientists interested in EXAFS. There was a need in the scientific community for a basic tutorial on X-Ray Absorption Fine structure present in the near edge region (XANES) and beyond (EXAFS). Inspired by stimulating contacts with scientific colleagues from around the world and the constant but positive pressure of the publisher (Wiley), we decided to edit a book that would provide information to students and scientists as a reference book to conduct XAS studies and, more advanced, to measure and interpret data. Information about a visit to a synchrotron was even more important in those days of parasitic measuring than today, so the physics of a synchrotron was included. We were fortunate enough to receive contributions from the most qualified and renowned scientists. Since then, the book has been used by many researchers, and more than 1,400 copies have been sold.

The field of x-ray absorption has developed considerably since 1987. On average, about 2000 papers on XAS are published yearly in scientific journals. More sophisticated instrumentation with extremely high resolution has enabled the development of new tools and techniques, such as x-ray emission spectroscopy. Promising applications of this technique have been developed in the past 20 years, making this book an essential reference work in this field.

It is a great pleasure that our student and collaborator, Jeroen A. van Bokhoven, and his colleague, Carlo Lamberti, have taken the initiative to edit a new volume, with Wiley as the enthusiastic publisher. Twenty-eight years after the appearance of our book, we are pleased that highly qualified scientists have made contributions to *XAS and XES: Theory and Applications*, which also includes x-ray emission spectroscopy. These contributions and the work of the enthusiastic and well-known editors have resulted in a book, which not only provides an essential introduction to the field of XAS and XES, but also demonstrates the enormous potential of these techniques for the study of structural and electronic properties of many types of matter.

The book has 27 chapters, divided into two volumes. The 12 chapters in Volume I describe the experimental and theoretical aspects of XAS and XES. The 15 chapters in Volume II focus on the enormous potential of both spectroscopic techniques with many important applications. The first volume contains an introduction by the editors. They start with a detailed historical overview of the past 100 years of x-ray absorption, mentioning

many important scientific contributions. At this point we would like to refer to the monumental papers in 1971 [3] and in 1974 [4] by our friends Dale Sayers, Ed Stern and Farrel Lytle. Their contributions were crucial in developing EXAFS from a scientific curiosity to an extremely important analytical tool. Both Ed Stern and Dale Sayers made important contributions to our book, published in 1987.

Jeroen A. van Bokhoven and Carlo Lamberti have performed a heroic task in completing the new book in such a short time. Experts in the various subfields reviewed the chapters. The book will be of great importance for beginners in the fields of XAS and XES. They will find all the information necessary to become experts. Also experienced users active in particular subfields of both spectroscopies will learn in this book about the enormous potential of both XAS and XES for other applications. This will lead to more and better experiments and thus to better science. We are confident that the new book will find at least as great a readership as our book.

Diek C. Koningsberger (Professor emeritus) Group of Inorganic Chemistry and Catalysis Utrecht University, The Netherlands

> Roel Prins Professor emeritus Catalysis ETH Zurich, Switzerland

References

- [1] H. F. J. van 't Blik, J. B. D. A. van Zon, T. Huizinga, J. C. Vis, D. C. Koningsberger, R. Prins (1983) An extended x-ray absorption fine structure spectroscopy study of a highly dispersed rhodium/aluminum oxide catalyst: the influence of carbon monoxide chemisorption on the topology of rhodium, *J. Phys. Chem.*, **87**, 2264–2267.
- [2] J. B. D. A. van Zon, D. C. Koningsberger, H. F. J. van 't Blik, R. Prins, D. E. Sayers (1984) On the detection with EXAFS of metal-support oxygen bonds in a highly dispersed rhodium on alumina catalyst, *J. Chem. Phys.*, **80**, 3914–3915.
- [3] D.E. Sayers, E.A. Stern, and F.W. Lytle (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray absorption fine structure, *Phys. Rev. Lett.*, **27**, 1204–1207.
- [4] E.A. Stern, D.E. Sayers, and F.W. Lytle (1975) Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters, *Phys. Rev. B*, **11**, 4836–4846.

Part I

Introduction: History, XAS, XES, and Their Impact on Science

1

Introduction: Historical Perspective on XAS

Carlo Lamberti^{1,2} and Jeroen A. van Bokhoven^{3,4}

¹Department of Chemistry, University of Turin, Italy
²Southern Federal University, Rostov-on-Don, Russia
³Swiss Light Source, Paul Scherrer Institute, Switzerland
⁴Institute for Chemical and Bioengineering, ETH Zurich, Switzerland

1.1 Historical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering 1913–1971 Period

The x-ray absorption spectroscopy (XAS) adventure started about one hundred years ago and has come a long way since. The technique remained a curiosity for much of this time, representing a minor branch of science, developed by only a few highly motivated and enthusiastic scientists. without any apparent possibility of practical application and without a solid and comprehensive theory able to describe and predict the experimental observations done, on gases, liquids and solid (crystalline and amorphous) systems. In 1971, Sayers, Stern and Lytle made ground-breaking progress when they applied Fourier analysis to the point-scattering theory of x-ray absorption fine structure, so as to formally invert the experimental data (primarily collected in the photoelectron wave-vector space) into a radial distribution function. For the first time, they were able to quantitatively determine structural parameters, such as the bond distance, coordination number, as well as the thermal and disorder parameters [1]. In the 44 years following that key publication, the field developed exponentially. Nowadays it is impossible to imagine frontier research in materials science, solid state physics and chemistry, catalysis, chemistry, biology, medicine, earth science, environmental science, cultural heritage, nanoscience, etc. without the contribution of XAS and related techniques. In this introductory chapter we provide a brief sketch of the main events that have established XAS and related techniques as leading scientific characterization tools.

After the discovery of x-rays in 1895 by Röntgen [2, 3], it took a while before the first x-ray absorption spectrum was observed by de Broglie in 1913 [4]. De Broglie mounted a single crystal on the cylinder of a recording barometer, using a clockwork mechanism to rotate the crystal around its vertical axis at a constant

angular speed. As the crystal rotated, the x-rays scattered at all angles between the incident beam and the diffraction planes hence, according to the Bragg law $(2d_{hkl}\sin\theta = \lambda = hc/E)$, with c being the speed of light, $c = 2.9979 \ 10^{+8}$ m/s, and h being the Planck constant, $h = 6.626 \times 10^{-34}$ J s [5], so that $hc = 12.3984 \ Å \ keV$) [6–8], changing the x-ray energy E. X-rays of varying intensities were recorded on a photographic plate. Two distinct discontinuities were observed on the film, which were found to be independent of the setting of the x-ray tube. These proved to be the K-edge absorption spectra of silver and bromine atoms contained in the photographic emulsion. As the spectrographic dispersion was poor at these short wavelengths, the spectra were of low energy resolution and the fine structure was not resolved. Successive work by de Broglie in this field proved remarkable [9,10]. A posteriori, it is curious to note that de Broglie's famous intuition concerning the association of a wavelength (λ) to any massive particle with momentum (p): $\lambda = h/p$ [11], is actually the key to understanding the phenomenon related to the fine structure of the x-ray absorption spectra.

In 1913, Moseley published his empirical law describing the frequencies (energies, $E = h\nu$) of certain characteristic x-rays emitted from pure elements, named K_{α} and L_{α} lines according to the successive Siegbahn notation. Emission energies were found to be approximately proportional to the square of the element atomic number Z [12]. This finding supported Bohr's model of the atom [13–15] in which the atomic number corresponds to the positive charge of the nucleus of the atom measured in lel units: lel =1.602 10^{-19} C. Almost 50 years after Mendeleev's milestone work, Moseley's findings suggested that the atomic weight A was not a deciding player in the periodicity of physical and chemical properties of the elements within the periodic table. In contrast, the properties of the elements varied periodically with the atomic number Z. This x-ray emission study is historically important because it quantitatively justifies the nuclear model of the atom, where the atom's positive charge is located in the nucleus and associated on an integer basis with the atomic number. Until Moseley's work, the term "atomic number" was merely a label to identify the place of each element in the periodic table, and it was not known to be associated with any measurable physical quantity.

In 1916, in Lund in Sweden, Siegbahn and Stenström [16–18] developed the first vacuum x-ray spectrometer [19,20] (Figure 1.1(a)), thereby taking a fundamental technological step in the progress of x-ray spectroscopy. With this kind of innovative technology, the fine structure beyond the absorption edges of selected atoms was – for the first time – experimentally observed by Fricke in 1920 [21] and by Hertz in 1921 [22]. Fricke detected the K-edges for the elements from magnesium (Z = 12, E_0 = 1.3 keV) up to chromium (Z = 24, E_0 = 6.0 keV) [21], whereas Hertz canvassed the L-edges of cesium (Z = 55, E_0 = 5.0 keV) up to neodymium (Z = 60, E_0 = 6.2 keV) [22]. In the period before World War II, other authors reported analogous behavior on several different absorption edges [20, 23–37].

Hanawalt made remarkable observations in 1931 [20], observing that the chemical and physical state of the sample affects the fine structure of the corresponding XAS spectra. Using the experimental set-up reported in Figure 1.1(a), consisting of a quartz cell allowing the XAFS spectra of different molecules sublimated in the vapor phase to be acquired, and collecting XAFS spectra on a photographic plate (Figure 1.1(b)), he was able to make two empirical observations of fundamental importance. First, he proved that substances sublimating in the molecular form, such as arsenic $(4As_{solid} \rightarrow (As_4)_{gas})$ and $AsCl_3$ (Figure 1.1(c)), are characterized by XAFS spectra exhibiting different fine structures above the edge when measured in the solid or in the vapor phase. Second, he observed that the monatomic vapors of zinc (Figure 1.1(d)), mercury, xenon and krypton elements exhibit no secondary structure. These incredibly advanced experiments already at this stage captured the main messages of EXAFS spectroscopy, but it took several years for the correct interpretation and decades before quantitative data could be extracted and the full potential of EXAFS exploited [1].

The first theoretical attempt to explain the fine structure in the XAS spectra was proposed in 1931 and 1932 by Kronig [39, 40], who developed a model based on the presence of long-range order in the probed system. The Kronig long-range order theory can be summarized in the following equation:

$$W_{n} = h^{2}(\alpha^{2} + \beta^{2} + \gamma^{2})/[8md^{2}\cos^{2}(\theta)]$$
 (1.1)

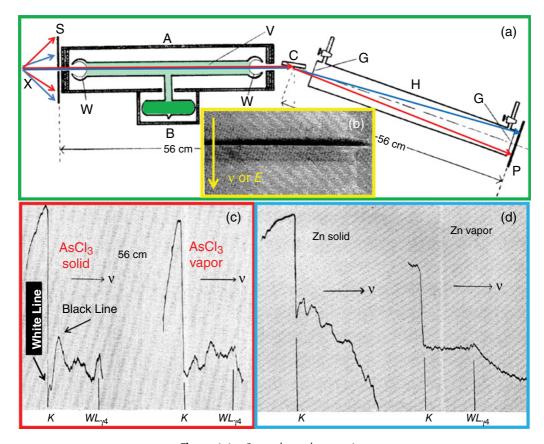


Figure 1.1 See colour plate section.

where W_n are the energy positions corresponding to the zone boundaries (i.e., not the absorption maxima or minima, but the first rise in each fine structure maximum); h is the Planck's constant; m is the electron mass $(m = 9.1094 \ 10^{-31} \ \text{kg}); \alpha, \beta, \gamma \text{ are the Miller indices}; d \text{ is the lattice parameter and } \theta \text{ is the angle between}$ the electron direction and the reciprocal lattice direction. The Kronig long-range order equation (1.1) was fundamentally simple to apply and interpret, and experimental spectra presented an approximate agreement with the theory. For any observed absorption features, there was always some (α, β, γ) triplet able to match the experiment with the prediction of the Kronig's model. However, the stronger Bragg reflections of the lattice did not always correlate with the most intense absorption features of the EXAFS spectra, as intuitively expected. However, agreement was tantalizingly close and the equation was uniformly implemented as a check for measured data to obtain a "Kronig structure."

As we now know, this theory is intrinsically incorrect owing to its baseline assumptions, which do not accurately explain the EXAFS signals observed in gases, liquids, solutions and amorphous solids. Stimulated by the experiments of Hanawalt [20] (see Figure 1.1), Kronig himself presented a new theory in 1932 based on the fundamental role of short-range order to explain the fine structure observed in the spectra of diatomic molecules in the gas phase [41]. The new approach explained the XAFS features in terms of modulation of the wave function of the final state of a photoelectron upon its scattering from the potentials of neighboring atoms. Implemented successively by Petersen [42-44] and by many other authors in the 1930s through to the 1960s [45–61], this approach represents the basis of the modern concept of XAFS, though it was still unable to provide quantitative information on the local structure of the absorbing atom in the investigated samples. At that stage, XAFS was still just a spectroscopic curiosity and not yet a powerful characterization tool. In most reported cases [20,21,25,30,34,50,60,62], the discussion was limited to a table containing a list of the observed maxima and minima of the fine structure of a given material, and a comparison of these values alongside those predicted by the other theories of the time, *vide supra*. No quantitative information was extracted and only qualitative conclusions could be reached: (1) several authors observed that the amplitude of the XAFS oscillations decreases with increasing temperature [31, 57, 59, 61]; (2) it was observed that metals with the same crystal structure had similar fine structures [24, 30, 33,34]; and (3) in 1957, Shiraiwa *et al.* [54] measured the x-ray absorption spectra of crystalline and amorphous germanium, observing that the shape of the fine structure was the same on the two materials though oscillations were less intense and disappeared at lower energies in the amorphous phase than in the crystalline phase. Similar conclusions were reached in 1962 by Nelson *et al.* [58] who measured germanium (IV) oxide in the amorphous state and in both hexagonal and tetragonal crystalline forms.

From an experimental point of view, a fundamental improvement in the instrumentation was achieved in the 1960s when commercial diffractometers were modified so that absorption spectra of much better quality could be obtained, though still using conventional x-ray tubes as a source [62–64]. A silicon crystal, acting as a single-crystal monochromator, was positioned on a goniometer configured to allow step scaling. Diffraction experiments carried out using this assembly allowed scientists to scan the energy through the desired absorption edge. By mounting and dismounting the sample in the beam path, both I_1 and I_0 could be detected, thereby allowing a precise determination of the absorption coefficient $\mu(E) = (1/x) \ln[I_0(E)/I_1(E)]$, being x the sample thickness. With this experimental set-up, Van Nordstrand [63,64] performed a systematic study on many transition metal compounds and classified their XANES spectra according to the atomic structure and valence of the metal element in the compound, also noting the chemical shift with valence. This fingerprint classification was used to identify the structural/valence form of elements of interest in catalysts, which are usually so highly dispersed that their diffraction patterns cannot be measured. This work by Van Nordstrand was the first example of the application of XANES in catalysis.

The crucial advance in the interpretation of the post-edge oscillations (now referred to as EXAFS) occurred in 1971 [1], when it was shown by Sayers, Stern and Lytle that a Fourier transform of the background-subtracted oscillations (Figure 1.2(a)) gives a pattern in R-space close to the function of radial distribution of atomic density (Figure 1.2(b)). From the EXAFS spectra collected on crystalline and amorphous germanium, they were able to extract the following quantitative structural information: (1) the crystalline distance to first and second neighbors in amorphous germanium within 1% accuracy; and (2) by comparing the relative second-shell-peak intensities of the crystalline and amorphous samples, the authors were able to conclude that the Debye-Waller factor is six times larger in the amorphous phase; from this they deduced that the tetrahedral bonds are distorted by about 5° in the amorphous phase [1]. To achieve these insights must have been extremely exciting. It is remarkable that such accurate conclusions were obtained while working with experimental spectra collected using an x-ray tube as a source.

This work represented the milestone for EXAFS spectroscopy and was supported and further implemented in more formal derivations based on Green's function and generalization to muffin-tin scattering potentials. This development was performed through successive works by Sayers, Stern and Lytle and their co-authors [65–69] and by other independent groups [70–74].

Starting in the 1970s, the cumulative availability of several and progressively more brilliant and broadband synchrotron radiation sources [75–79] established EXAFS and XANES spectroscopies (and successively XES) as a reliable tool to determine and understand the structural and electronic configuration of unknown systems. During the 1980s and 1990s in particular, the development and the distribution of codes for data analysis saw a rapid expansion of EXAFS and XANES spectroscopies into the broader scientific community for the purposes of structural characterization of materials. Among the many data processing packages available, we only mention: GNXAS [80–84], developed by Natoli, Filipponi, and Di Cicco; EXCURVE [85–88] by Binsted *et al.*, and FEFF [89–101] developed by Rehr *et al.* A plethora of codes developed in