Edited by Karen Lackey and Bruce Roth

Medicinal Chemistry Approaches to Personalized Medicine

Volume 59
Series Editors: R. Mannhold, H. Kubinyi, G. Folkers
Edited by
Karen Lackey and
Bruce D. Roth

Medicinal Chemistry
Approaches to Personalized Medicine
Methods and Principles in Medicinal Chemistry
Edited by R. Mannhold, H. Kubinyi, G. Folkers
Editorial Board
H. Buschmann, H. Timmerman, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

Brown, Nathan (Ed.)
Scaffold Hopping in Medicinal Chemistry
2014
ISBN: 978-3-527-33364-6
Vol. 58

Hoffmann, Rémy D. / Gohier, Arnaud / Pospisil, Pavel (Eds.)
Data Mining in Drug Discovery
2014
ISBN: 978-3-527-32984-7
Vol. 57

Dömling, Alexander (Ed.)
Protein-Protein Interactions in Drug Discovery
2013
ISBN: 978-3-527-33107-9
Vol. 56

Kalgutkar, Amit S. / Dalvie, Deepak / Obach, R. Scott / Smith, Dennis A.
Reactive Drug Metabolites
2012
ISBN: 978-3-527-33085-0
Vol. 55

Brown, Nathan (Ed.)
Bioisosteres in Medicinal Chemistry
2012
ISBN: 978-3-527-33015-7
Vol. 54

Gohlke, Holger (Ed.)
Protein-Ligand Interactions
2012
ISBN: 978-3-527-32966-3
Vol. 53

Kappe, C. Oliver / Stadler, Alexander / Dallinger, Doris
Microwaves in Organic and Medicinal Chemistry
Second, Completely Revised and Enlarged Edition
2012
ISBN: 978-3-527-33185-7
Vol. 52

Smith, Dennis A. / Allerton, Charlotte / Kalgutkar, Amit S. / van de Waterbeemd, Han / Walker, Don K.
Pharmacokinetics and Metabolism in Drug Design
Third, Revised and Updated Edition
2012
ISBN: 978-3-527-32954-0
Vol. 51

De Clercq, Erik (Ed.)
Antiviral Drug Strategies
2011
ISBN: 978-3-527-32696-9
Vol. 50

Klebl, Bert / Müller, Gerhard / Hamacher, Michael (Eds.)
Protein Kinases as Drug Targets
2011
ISBN: 978-3-527-31790-5
Vol. 49
Contents

List of Contributors XI
Foreword XV
Preface XIX
A Personal Foreword XXI
Acronyms XXIII

1 Medicinal Chemistry Approaches to Creating Targeted Medicines 1
Bruce D. Roth and Karen Lackey
1.1 Introduction 1
1.2 Role of Medicinal Chemistry in Drug Discovery 2
1.3 Evolution of Molecular Design for Subsets of Patients 4
1.4 Combinations for Effective Therapies 6
1.5 Biomarkers in Targeting Patients 9
1.6 Emerging Field of Epigenetics 9
1.7 Systems Chemical Biology 10
1.8 Theranostics and Designing Drug Delivery Systems 12
1.9 Rapid Progress in Further Personalizing Medicine Expected 15
References 18

2 Discovery of Predictive Biomarkers for Anticancer Drugs 21
Richard M. Neve, Lisa D. Belmont, Richard Bourgon, Marie Evangelista,
Xiaodong Huang, Maike Schmidt, Robert L. Yauch, and Jeffrey Settleman
2.1 Introduction 21
2.2 “Oncogene Addiction” as a Paradigm for Clinical Implementation
of Predictive Biomarkers 24
2.3 Cancer Cell Lines as a Model System for Discovery of Predictive
Biomarkers 28
2.3.1 Historical Application of Cell Lines in Cancer Research 28
2.3.2 Biomarker Discovery Using Cell Line Models 29
2.3.3 Cell Lines as Models of Human Cancer 31
2.3.4 Challenges and Limitations of Cell Line Models 32
2.4 Modeling Drug Resistance to Discover Predictive Biomarkers 33
2.5 Discovery of Predictive Biomarkers in the Context of Treatment Combinations 38
2.6 Discovery of Predictive Biomarkers for Antiangiogenic Agents 42
2.6.1 Challenges 43
2.6.2 Pathway Activity as a Predictor of Drug Efficacy 44
2.6.3 Predicting Inherent Resistance 45
2.6.4 On-Treatment Effects as a Surrogate of Drug Efficacy 45
2.6.5 Summary 46
2.7 Gene Expression Signatures as Predictive Biomarkers 47
2.7.1 Signature Discovery: Unsupervised Clustering 47
2.7.2 Diagnostic Development: Supervised Classification 48
2.7.3 Summary 50
2.8 Current Challenges in Discovering Predictive Biomarkers 51
2.8.1 Access to Tumor Cells Is Limited during Treatment 51
2.8.2 Drivers and Passengers 53
2.8.3 Epigenetic Regulation Adds Another Layer of Complexity 54
2.8.4 Many Oncoproteins and Tumor Suppressors Undergo Regulatory Posttranslational Modifications 55
2.9 Future Perspective 56
References 57

3 Crizotinib 71
Jean Cui, Robert S. Kania, and Martin P. Edwards
3.1 Introduction 71
3.2 Discovery of Crizotinib (PF-02341066) [40] 74
3.3 Kinase Selectivity of Crizotinib 77
3.4 Pharmacology of Crizotinib [45,46] 78
3.5 Human Clinical Efficacies of Crizotinib 80
3.6 Summary 83
References 85

4 Discovery and Development of Vemurafenib: First-in-Class Inhibitor of Mutant BRAF for the Treatment of Cancer 91
Prabha Ibrahim, Jiazhong Zhang, Chao Zhang, James Tsai, Gaston Habets, and Gideon Bollag
4.1 Background 91
4.2 Discovery and Development of Vemurafenib (PLX4032) 92
4.3 Pharmacology 95
4.4 Clinical Efficacy and Safety 96
4.5 Companion Diagnostic (cobas 4800) Development 96
4.6 Synthesis 96
4.6.1 Discovery Route(s) 96
4.6.2 Process Route 97
4.7 Summary 98
References 98
7.6.1 Identification and Treatment Strategies for Actionable Secondary Resistance Mutations 169
7.6.2 Toward the Identification of Actionable Primary Resistance Mutations 173
7.7 Concluding Remarks and Future Perspectives 175
References 178

8 DNA Damage Repair Pathways and Synthetic Lethality 183
Simon Ward
8.1 Introduction 183
8.2 DNA Damage Response 184
8.3 Synthetic Lethality 185
8.4 Lead Case Study: PARP Inhibitors 188
8.4.1 Introduction 188
8.4.2 Discovery of PARP Inhibitors 189
8.4.3 Clinical Development of PARP Inhibitors 190
8.4.4 Future for PARP Inhibitors 192
8.5 Additional Case Studies 194
8.5.1 MLH1/MSH2 194
8.5.2 p53-ATM 197
8.5.3 Chk1-DNA Repair 197
8.5.4 DNA-PK – mTOR 197
8.5.5 DNA Ligases 198
8.5.6 WEE1 198
8.5.7 APE1 198
8.5.8 MGMT 199
8.5.9 RAD51 199
8.6 Screening for Synthetic Lethality 199
8.6.1 RAS 202
8.6.2 VHL 202
8.6.3 MRN 203
8.7 Contextual Synthetic Lethality Screening 203
8.8 Cancer Stem Cells 204
8.9 Conclusions and Future Directions 204
References 205

9 Amyloid Chemical Probes and Theranostics: Steps Toward Personalized Medicine in Neurodegenerative Diseases 211
Maria Laura Bolognesi
9.1 Introduction 211
9.2 Amyloid Plaques as the Biomarker in AD 212
9.3 Detecting Amyloid Plaques in Patients: from Alois Alzheimer to Amyvid and Beyond 214
9.4 Same Causes, Same Imaging Agents? 218
9.5 Theranostics in AD 219
10 From Human Genetics to Drug Candidates: An Industrial Perspective on LRRK2 Inhibition as a Treatment for Parkinson’s Disease
Haitao Zhu, Huifen Chen, William Cho, Anthony A. Estrada, and Zachary K. Sweeney
10.1 Introduction 227
10.2 Biochemical Studies of LRRK2 Function 229
10.3 Cellular Studies of LRRK2 Function 230
10.4 Animal Models of LRRK2 Function 233
10.5 Clinical Studies of LRRK2-Associated PD and Future Prospects 234
10.6 Small-Molecule Inhibitors of LRRK2 236
10.7 Structural Models of the LRRK2 Kinase Domain 237
10.8 Strategies Used to Identify LRRK2 Kinase Inhibitors (Overview) 238
10.9 Conclusions 246
References 247

11 Therapeutic Potential of Kinases in Asthma
Dramane Lainé, Matthew Lucas, Francisco Lopez-Tapia, and Stephen Lynch
11.1 Introduction 255
11.2 Mitogen-Activated Protein Kinases 256
11.2.1 p38 257
11.2.2 JNK 259
11.2.3 ERK 260
11.3 Nonreceptor Protein Tyrosine Kinases 261
11.3.1 Syk 261
11.3.2 Lck 263
11.3.3 JAK 264
11.3.4 ITK 265
11.3.5 Btk 266
11.4 Receptor Tyrosine Kinases 266
11.4.1 EGFR 267
11.4.2 c-Kit 268
11.4.3 PDGFR 269
11.4.4 VEGFR 270
11.5 Phosphatidylinositol-3 Kinases 270
11.6 AGC Kinases 272
11.6.1 PKC 272
11.6.2 ROCK 273
11.7 IκB Kinase 275
11.8 Other Kinases 276
11.8.1 SphK 276
11.8.2 GSK-3β 277
11.9 Conclusions: Future Directions 278
References 279
12 Developing Targeted PET Tracers in the Era of Personalized Medicine 289
Sandra M. Sanabria Bohorquez, Nicholas van Bruggen, and Jan Marik
12.1 Imaging and Pharmacodynamics Biomarkers in Drug Development 289
12.2 General Considerations for Development of 11C- and 18F-labeled PET Tracers 292
12.3 Radiolabeling Compounds with 11C 294
12.3.1 Preparation of 11C and Basic Reactive Intermediates 294
12.3.2 11C-Methylations, Formation of 11C—X Bond (X = O, N, S) 295
12.3.3 11C-Methylations, Formation of 11C—C Bond 297
12.3.4 Reactions with 11CO$_2$ 299
12.3.5 Reactions with 11CO 301
12.3.6 Reactions with H11CN 303
12.4 Radiolabeling Compounds with 18F 304
12.4.1 Formation of C—18F Bond, Nucleophilic Substitutions 304
12.4.2 Aliphatic Nucleophilic 18F-Fluorination 306
12.4.3 Aromatic Nucleophilic 18F-Fluorination 309
12.4.4 Electrophilic 18F-Fluorination 313
12.4.5 Formation of 18F-Al, Si, B Bond 314
12.5 PET Imaging in the Clinic, Research, and Drug Development 315
12.5.1 PET in Oncology 315
12.5.2 PET Neuroimaging 317
12.5.3 PET in Cardiology 319
12.6 PET Tracer Kinetic Modeling for Quantification of Tracer Uptake 320
12.7 Concluding Remarks 325
References 325

13 Medicinal Chemistry in the Context of the Human Genome 343
Andreas Brunschweiger and Jonathan Hall
13.1 Introduction 343
13.2 Drugs Targeting Kinases 344
13.3 Drugs Targeting Phosphatases 347
13.4 In silico-Based Lead Discovery in the GPCR Family 348
13.5 Targeting Epigenetic Regulation: Histone Demethylases 350
13.6 Targeting Epigenetic Regulation: Histone Deacetylases 351
13.7 A Family-Wide Approach to Poly(ADP-Ribose) Polymerases 352
13.8 Future Drug Target Superfamilies: Ubiquitination and Deubiquitination 353
13.9 Summary and Outlook 354
References 355

Index 365
List of Contributors

Rima Al-awar
Ontario Institute for Cancer Research
MaRS Centre
101 College Street
Toronto, ON M5G 0A3
Canada

Lisa D. Belmont
Genentech Inc.
Oncology Diagnostics
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Gideon Bollag
Plexxikon Inc.
Research
91 Bolivar Drive
Berkeley, CA 94710
USA

Maria Laura Bolognesi
Dipartimento di Farmacia e Biotecnologie
Via Belmeloro, 6
40126 Bologna, Italy
Italy

Richard Bourgon
Genentech Inc.
Oncology Bioinformatics
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Andrew M.K. Brown
Ontario Institute for Cancer Research
MaRS Centre
101 College Street
Toronto, ON M5G 0A3
Canada

Andreas Brunschweiger
Technische Universität Dortmund
Fakultät Chemie
Chemische Biologie
Otto-Hahn-Strasse 6
44227 Dortmund
Germany

Huifen Chen
Genentech Inc.
Discovery Chemistry
1 DNA Way
South San Francisco, CA 94080
USA

William Cho
Genentech Inc.
Early Clinical Development
1 DNA Way
South San Francisco, CA 94080
USA
Jean Cui
Pfizer Worldwide Research and Development
La Jolla Laboratories
Cancer Chemistry
10770 Science Center Drive
San Diego, CA 92121
USA

Janet Dancey
Ontario Institute for Cancer Research
MaRS Centre
101 College Street
Toronto, ON M5G 0A3
Canada

Martin P. Edwards
Pfizer Worldwide Research and Development
La Jolla Laboratories
Cancer Chemistry
10770 Science Center Drive
San Diego, CA 92121
USA

Anthony A. Estrada
Genentech Inc.
Discovery Chemistry
1 DNA Way
South San Francisco, CA 94080
USA

Marie Evangelista
Genentech Inc.
Oncology Diagnostics
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Gaston Habets
Plexxikon Inc.
Assay & Screening
91 Bolivar Drive
Berkeley, CA 94710
USA

Jonathan Hall
ETH Zürich
Institute of Pharmaceutical Sciences
Wolfgang-Pauli-Str. 10
8093 Zürich
Switzerland

Xiaodong Huang
Genentech Inc.
Oncology Diagnostics
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Prabha Ibrahim
Plexxikon Inc.
Non-Clinical Development
91 Bolivar Drive
Berkeley, CA 94710
USA

Robert S. Kania
Pfizer Worldwide Research and Development
La Jolla Laboratories
Cancer Chemistry
10770 Science Center Drive
San Diego, CA 92121
USA

Karen Lackey
JanAush LLC
Charleston, SC 29425
USA

Dramane Lainé
Hoffmann-La Roche, Inc.
340 Kingsland Street
Nutley, NJ 07110
USA
Francisco Lopez-Tapia
Hoffmann-La Roche, Inc.
340 Kingsland Street
Nutley, NJ 07110
USA

Matthew Lucas
Hoffmann-La Roche, Inc.
340 Kingsland Street
Nutley, NJ 07110
USA

Stephen Lynch
Hoffmann-La Roche, Inc.
340 Kingsland Street
Nutley, NJ 07110
USA

Jan Marik
Genentech, Inc.
Biomedical Imaging
1 DNA Way
South San Francisco, CA 94080
USA

James C. Marsters Jr.
Genentech Inc.
PM & O
1 DNA Way, MS 16a
South San Francisco, CA 94080
USA

John McPherson
Ontario Institute for Cancer Research
MaRS Centre
101 College Street
Toronto, ON M5G 0A3
Canada

Stephen Neidle
University College London
School of Pharmacy
29-39 Brunswick Square
London WC1N 1AX
UK

Richard M. Neve
Genentech Inc.
Discovery Oncology
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Bruce D. Roth
Genentech Inc.
Discovery Chemistry
1 DNA Way
South San Francisco, CA 94080
USA

Sandra M. Sanabria Bohorquez
Genentech, Inc.
Clinical Imaging Group
1 DNA Way
South San Francisco, CA 94080
USA

Maike Schmidt
Genentech Inc.
Oncology Diagnostics
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Jeffrey Settleman
Genentech Inc.
Discovery Oncology
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

Zachary K. Sweeney
Novartis
Global Discovery Chemistry
4560 Horton St.
Emeryville, CA 94608-2916
USA
List of Contributors

James Tsai
Plexxikon Inc.
Pharmacology
91 Bolivar Drive
Berkeley, CA 94710
USA

Robert L. Yauch
Genentech Inc.
Oncology Diagnostics
MS 411A, 1 DNA Way
South San Francisco, CA 94080
USA

David Uehling
Ontario Institute for Cancer Research
MaRS Centre
101 College Street
Toronto, ON M5G 0A3
Canada

Chao Zhang
Plexxikon Inc.
Informatics & Structural Chemistry
91 Bolivar Drive
Berkeley, CA 94710
USA

Nicholas van Bruggen
Genentech, Inc.
Biomedical Imaging
1 DNA Way
South San Francisco, CA 94080
USA

Jiazhong Zhang
Plexxikon Inc.
Chemistry
91 Bolivar Drive
Berkeley, CA 94710
USA

Simon Ward
Translational Drug Discovery Group,
University of Sussex, Brighton,
BN1 9QJ, UK

Haitao Zhu
Genentech Inc.
Neuroscience
1 DNA Way
South San Francisco, CA 94080
USA

Harvey Wong
Genentech Inc.
Drug Metabolism and
Pharmacokinetics
1 DNA Way, MS 16a
South San Francisco, CA 94080
USA
Foreword

Over the past decade, major advances have been made in elucidating the pathophysiological processes involved in many human diseases, including solid and hematological malignancies, hepatitis C, asthma, Alzheimer’s disease, Parkinson’s disease, age-related macular edema, and even diabetes. We know more about the biology of human disease than ever before, yet most diseases are still classified by their clinical presentation, associated physical exam, imaging data, and laboratory abnormalities. Only a few diseases are defined by the molecular pathways that cause the disease.

Using a “clinically” oriented approach to medicine results in profound heterogeneity in the molecular underpinnings of a given disease. Compounding this problem is that this heterogeneity has traditionally not been taken into account when studies were designed to evaluate a new molecular entity in a given disease. As an example, in 2005, Peagram et al. performed a Medline literature search using the keyword “epidermal growth factor receptor” (EGFR) and found 13,569 citations. Despite this intense level of scientific investigation into the EGFR, it was not until 2004 that important mutations in the kinase domain of the EGFR that identifies patients who are particularly sensitive to the effects of small-molecule tyrosine kinase inhibitors such as gefitinib or erlotinib were first reported. This lack of insight contributed to the numerous failed studies in the frontline non-small cell lung cancer setting when these inhibitors were given to an all-comers population. The authors of this paper also performed simulations to model the impact of including patients in a clinical trial whose disease is not sensitive to a given drug’s treatment effect. They simulated administering a highly effective treatment to women with newly diagnosed metastatic breast cancer and found that when a diagnostic was used to select those patients most likely to benefit, the clinical trial was robustly positive. When the percentage of patients who would not benefit was increased, the treatment effect waned. Importantly, if only 25% of patients benefited (as is roughly the case with Herceptin for women with Her2 overexpressing breast cancer), studying an unselected population in a clinical trial (i.e., where 75% are unlikely to benefit) would result in survival curves that are essentially overlapping. In other words,
without appreciating this heterogeneity in disease biology, a clinical trial evaluating a potentially important new therapy would be negative without a diagnostic to identify those most likely to benefit.

The pharmaceutical industry is under intense pressure to improve R&D productivity. This is in large part driven by increasing costs associated with conducting clinical trials compounded by very low success rates once a drug enters clinical testing. One cannot help but wonder how many of the over 90% of drugs that fail during clinical development would have succeeded had more attention been given to identifying the population most likely to benefit.

Fortunately, over the past decade and in particular the last several years, there has been a marked shift in the discovery and development process to incorporate these concepts. Advances in cellular and molecular biology, human genetics, translational medicine (including biomarkers and diagnostics), and innovative clinical trials designs have enabled us to enter the era of so-called personalized health care (PHC). This is leading to some of the most promising new therapies ever developed in the history of medicine. In oncology alone, this new era of medicine has resulted in numerous new drugs for patients. As of 2013, the NCI website has identified over 40 “targeted therapies,” although not all of these new medicines would meet the strict definition described above.

For some of these new therapies, we have observed treatment effects of almost unparalleled nature, a shorter time in clinical development, and although it is still in early days, it appears that the success rates are also likely to exceed industry averages.

It should also be pointed out that while the advances in personalized health care have been extremely impressive in oncology drug development, a similar targeted strategy is being embraced in the fields of immunology, neuroscience, and other areas of medicine. It should also be highlighted that while for most areas of medicine PHC is only recently being embraced, the field of infectious disease has adopted this concept for decades. The idea that all cases of “pneumonia” are not the same is today taken for granted. The technology for understanding the pathophysiology of this disease required much less sophisticated tools (i.e., the microscope and Petri dishes). This leads to subclassification of pneumonia by the causal agent with different treatments being prescribed based on the presumed organism responsible for the disease.

With the sequencing of the human genome over a decade ago and an increasingly sophisticated understanding of the pathophysiology of human disease-based metabolomics, proteomics, and other tools, we have clearly ushered in a new era in drug discovery and development. The end result is likely to have a very meaningful and lasting impact on academia, biotechnology and pharmaceutical companies, payers, health care providers, and most importantly patients.

Surprisingly, despite the importance of personalized health care in so many recent advances in drug therapy, there have been few attempts to collect the
success stories across industry and academia that have advanced research toward new, targeted therapies. This book, therefore, fills this gap in the literature and thus should be a useful resource for pharmaceutical and biopharmaceutical researchers for years to come.

Executive Vice President, Global Product Development Hal Barron, MD
Chief Medical Officer F. Hoffmann-La Roche Ltd.
Genentech Inc.,
1 DNA Way
South San Francisco, CA 94080
Preface

The notion of personalized medicine, in both the laity and the scientific community, is very often associated with screening, genetic profiling, and risk stratification. While it is unquestioned that genomics is the starting point of future “targeted medicine,” personal genomics and individual genetic testing for risk stratification are still under public debate, because of their ethical and legal implications. Therefore, an account of how all this collected genetic information translates into therapeutic practice and how it may do so in the near future is of highest importance not only for the public dialogue but also for the experts in drug design and development.

This book provides such an account. Edited by Karen Lackey and Bruce D. Roth, both fundamentally involved in this topic, the book convenes experts from the medicinal chemistry field in the private sector and the academia to provide their perspectives on personalized medicine. Naturally, the scope is broad. The book consisting of 13 chapters covers a more general content on feasibility of medchem approaches and contrasted by those that describe case studies of successful implementations and also others that open up new field to explore. In addition to cancer—the therapeutic area one would expect to have been mainly covered, neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as asthma have also been studied in this book. Methodological approaches and targets besides “chemistry” range from molecular profiling, G-quadruplexes, amyloid probes, and PET to histones, plaques in the brain, kinases, ubiquination as a future target superfamily, and DNA repair pathways.

Of course, any book on this broad topic cannot be comprehensive or even encyclopedic. The translational process of personalized medicine is in full swing and many economical questions either for the private sector or for patients and social security systems remain to be solved.

The book parallels success stories—that have been long overdue to be reported—with recent and future developments in the field.

In this respect, it is not only at cutting edge in the field but also fulfills in an excellent way the requirement of this series to serve as a handbook for bench chemists, developers, and the academic realm of research and teaching. Especially teachers may feel encouraged to use the eminent expert information collected, to
challenge their students with this extension in medicinal chemistry to a medicine of the future.

The series editors are indebted to the authors and the editors who made it possible to cover this very essential issue.

We are also very much indebted to Heike Nöthe and Frank Weinreich, both at Wiley-VCH. Their support and ongoing engagement not only for this book but also for the whole series Methods and Principles in Medicinal Chemistry greatly contribute to the success of this excellent collection related to drug research.

Düsseldorf
Weisenheim am Sand
Zürich
October 2013

Raimund Mannhold
Hugo Kubinyi
Gerd Folkers
A Personal Foreword

Personalized medicine and personalized healthcare have become virtual buzzwords used by the lay press and the pharmaceutical and biopharmaceutical industries in describing their current approaches to drug discovery and development aimed at providing patients with individualized therapies. Many established and emerging companies have even suggested that this is the foundation for their business strategy. Fundamentally, creating personalized medicine requires the integration of multiple disciplines, including medicinal chemistry, genetics, diagnostics, biochemistry, cellular biology, pharmacology, formulations, and clinical sciences, in order to ensure that patients have access to and are prescribed medicines with the highest likelihood of effectively treating their specific disease – and that patients unlikely to respond are not given drugs from which they will likely not receive benefit. The ultimate goal of the medical field is to have drugs that treat the underlying causes of the disease pathology. This approach has many benefits: to the companies, lower costs and higher success rates; for the patients, more effective therapies with better risk/benefit ratios. In fact, over the last several decades, many drugs, both small molecules and biologics, have been discovered and developed that would fall under this umbrella, especially in the treatment of cancer, where the emphasis on personalized medicine has led to greatly improved success rates in bringing new medicines to the market. Despite this emphasis on personalized medicine in the last decade, there has been no comprehensive treatment of this subject focusing specifically on the role of the medicinal chemist in this process, despite the fact that virtually all small-molecule drugs originate in the mind of the medicinal chemist.

In this book, we have attempted to bring together the collective experience of the pharmaceutical industry and academia, across multiple therapeutic areas and disciplines, in an attempt to capture the full spectrum of activities in implementing personalized medicine. Thus, we have chapters providing case studies of several recently approved “targeted therapies” in oncology where personalized medicine is most mature, but there are also chapters that cover developments in other therapeutic areas, development of diagnostics, imaging, and several on different aspects of new target discovery. Our hope is that this book will not only be a useful review of past practices in the discovery and development of personalized medicine but will also lay the foundation for future advances in
bringing life-changing, transformative medicines to patients. Ultimately, the goal of all of those who have committed their lives and energies to medicinal sciences is to bring benefit to the patients who are desperately waiting for the drugs that arise from the incredible scientific discoveries emanating from the work of these dedicated researchers.

Finally, we would like to thank all of the more than 40 authors and contributors to this book as well as the support and encouragement of Dr Heike Nöthe and Dr Frank Weinreich of Wiley-VCH. We are also greatly indebted to Ms Christine Cumberton for the finalization and compilation of chapters for submission to the publisher.

Nutley, NJ
South San Francisco, CA
June 2013

Karen Lackey
Bruce D. Roth
Acronyms

AChE(I) acetylcholine esterase (inhibitor)
AD Alzheimer’s disease
ADC antibody drug conjugates
ADME absorption, distribution, metabolism, and excretion
AE adverse events
AGC protein kinase A, G, and C families
AHR airway hyperresponsiveness
ALCL anaplastic large-cell lymphoma
ALK anaplastic lymphoma kinase
AP-1 activating protein 1
APC adenomatous polyposis coli gene
APP amyloid precursor protein
ATP adenosine triphosphate
AUC area under the curve
BBB blood–brain barrier
BCC basal-cell carcinoma
BCRP breast cancer resistance protein
BER base excision repair
BID bis in die (Latin) meaning twice a day
BP binding protein
CAD coronary artery disease
CBD corticobasal degeneration
CETP cholesteryl ester transfer protein
CHMP Committee for Medicinal Products for Human Use
CIA collagen-induced arthritis
CI confidence interval
CLR clearance rate
CML chronic myelogenous leukemia
CNS central nervous system
CNV copy number variations
COPD chronic obstructive pulmonary disorder
CR complete response
CRC colorectal cancer
CSF cerebral spinal fluid
CTC circulating tumor cells
CUP carcinoma of unknown primary
CDK cyclin-dependent kinase
COMT catechol-O-methyl transferase
DAG diacylglycerol
DAT dopamine transporter
dCR disease control rate
DDR DNA damage response
DECP diethyl cyanophosphonate
DLB dementia with Lewy bodies
DMF dimethylformamide
DMSO dimethylsulfoxide
DNA deoxyribonucleic acid
dR direct repair
DUPA (dicarboxypropyl)ureidopentanedioic acid
ER estrogen receptor
ErbB2 erythroblastic leukemia oncogene homolog 2, also known as HER2/Neu
ERK extracellular regulating kinase
FAM 6-carboxyfluorescein
FBDD fragment-based drug discovery
FBLD fragment-based ligand discovery
FDA Food and Drug Administration
FDG fluoro-deoxy-D-glucose
FFPET formalin fixed paraffin embedded tissue
FISH fluorescence in situ hybridization
FRET fluorescence resonance energy transfer
FTD frontotemporal dementia
GEMM genetically engineered mouse model
GIM genetic interaction mapping
GIST gastrointestinal stromal tumors
GLUT glucose transport proteins
GSK glycogen synthase kinase
GTPase guanine triphosphatase
GWAS genome-wide association studies
HDAC histone deacetylases
HDM histone demethylases
HER2 human epidermal growth factor receptor 2
hERG human ether-a-go-go related gene
HGF(R) hepatocyte growth factor (receptor)
Hh hedgehog
HIF hypoxia inducible factor
HR homologous recombinations
HSP heat shock protein
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS</td>
<td>high-throughput screening</td>
</tr>
<tr>
<td>IC_{50}</td>
<td>concentration at 50% inhibition</td>
</tr>
<tr>
<td>ICGC</td>
<td>International Cancer Genome Consortium</td>
</tr>
<tr>
<td>ICS</td>
<td>inhaled corticosteroids</td>
</tr>
<tr>
<td>IGF(R)</td>
<td>insulin growth factor (receptor)</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>IL-1</td>
<td>interleukin-1</td>
</tr>
<tr>
<td>IMT</td>
<td>inflammatory myofibroblastic tumors</td>
</tr>
<tr>
<td>INDEL</td>
<td>insertions or deletions of a short coding region</td>
</tr>
<tr>
<td>ITK</td>
<td>interleukin-2-inducible T-cell kinase</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>LABA</td>
<td>long acting beta-2 agonists</td>
</tr>
<tr>
<td>LE</td>
<td>ligand efficiency</td>
</tr>
<tr>
<td>LipE</td>
<td>lipophilic efficiency</td>
</tr>
<tr>
<td>LN</td>
<td>lymph node</td>
</tr>
<tr>
<td>MAO</td>
<td>monoamine oxidase</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MBC</td>
<td>metastatic breast cancer</td>
</tr>
<tr>
<td>MBP</td>
<td>microprecipitated bulk powder</td>
</tr>
<tr>
<td>MCI</td>
<td>mild cognitive impairment</td>
</tr>
<tr>
<td>MCT</td>
<td>methylcellulose Tween</td>
</tr>
<tr>
<td>MGMT</td>
<td>O-(6)-methylguanine-DNA methyltransferase</td>
</tr>
<tr>
<td>MK</td>
<td>midkine</td>
</tr>
<tr>
<td>MLC</td>
<td>myosin light chain</td>
</tr>
<tr>
<td>MLK</td>
<td>mixed lineage kinase</td>
</tr>
<tr>
<td>MMR</td>
<td>mismatch repair</td>
</tr>
<tr>
<td>MMSE</td>
<td>minimental state examination</td>
</tr>
<tr>
<td>MOM</td>
<td>methoxymethyl</td>
</tr>
<tr>
<td>MP</td>
<td>molecular profiling</td>
</tr>
<tr>
<td>MPI</td>
<td>myocardial perfusion imaging</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MRT</td>
<td>mean residence time</td>
</tr>
<tr>
<td>MTD</td>
<td>maximum tolerated dose</td>
</tr>
<tr>
<td>MTEB</td>
<td>metabotropic glutamate receptor type</td>
</tr>
<tr>
<td>mTOR</td>
<td>mammalian target of rapamycin</td>
</tr>
<tr>
<td>NA</td>
<td>not applicable</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NER</td>
<td>nucleotide excision repair</td>
</tr>
<tr>
<td>NET</td>
<td>norepinephrine transporter</td>
</tr>
<tr>
<td>NFT</td>
<td>neurofibrillary tangles</td>
</tr>
<tr>
<td>NGS</td>
<td>next-generation sequencers</td>
</tr>
<tr>
<td>NHEJ</td>
<td>nonhomologous end joining</td>
</tr>
<tr>
<td>NHL</td>
<td>non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
</tbody>
</table>
NME new molecular entity
NMR nuclear magnetic resonance
NOAEL no adverse effect level
NPM nucleophosmin
NRTK nonreceptor tyrosine kinase
NSCLC non-small cell lung cancer
OICR Ontario Institute for Cancer Research
ORR overall response rate
OS overall survival
PARP poly-ADP-ribose polymerase
PAS peripheral anionic site
PBCA poly(butyl-2-cyanoacrylate)
PCR polymerase chain reaction
PD pharmacodynamic or progressive disease or Parkinson’s disease
PDAC pancreatic cancer-ductal adenocarcinoma
PDB Protein Data Bank
PDGF(R) platelet-derived growth factor (receptor)
PEG polyethyleneglycol
PET positron emission tomography
PFS progression free survival
PI3K phosphoinositol 3 kinase
PiB Pittsburgh compound-B
PK pharmacokinetics
PLGA poly(DL-lactide-co-glycolide)
PMD protein misfolding diseases
PSMA prostate-specific membrane antigen
PSP progressive supranuclear palsy
PTM posttranslational modifications
PTN pleiotrophin
QSAR quantitative structure-activity relationship
RECISTs response evaluation criteria in solid tumors
RGD arginine glycine asparagine
ROC Ras/GTPase domain in complex proteins
ROCK Rho-associated coiled coil containing protein kinase
RPLN retroperitoneal lymph node
RTK receptor tyrosine kinase
SAR structure–activity relationship
SBS sequencing by synthesis
SD standard deviation
SF scatter factor
SGA synthetic genetic array
SGC Structural Genomics Consortium
SiFA silicon-based fluoride acceptors
siRNA small interfering ribonucleic acid
SLAM synthetic lethal analysis by microarray
SMI small-molecule inhibitor
SMO smoothened receptor
SNP single-nucleotide polymorphism
SPECT single-photon emission computed tomography
SphK sphingosine kinase
SPR surface plasmon resonance
STK serine threonine kinase
Syk spleen tyrosine kinase
TAC time activity curve
TAMRA 6-carboxytetramethylrhodamine
TBAF tetrabutylammonium fluoride
TBI traumatic brain injury
TERRA telomeric repeat-containing RNA
TET ten-eleven translocation
ThT thioflavin-T
TKI tyrosine kinase inhibitor
TKL tyrosine kinase-like
TNF tumor necrosis factor
US United States
UV ultraviolet
VEGF(R) vascular endothelial growth factor (receptor)
VMAT vesicular monoamine transporter
W3C World Wide Web Consortium
WES whole-exome sequencing