Patrick F. Fox Timothy P. Guinee Timothy M. Cogan Paul L.H. McSweeney

Fundamentals of Cheese Science

Second Edition

Fundamentals of Cheese Science

Patrick F. Fox • Timothy P. Guinee Timothy M. Cogan • Paul L.H. McSweeney

Fundamentals of Cheese Science

Second Edition

Patrick F. Fox School of Food and Nutritional Sciences University College Cork, Ireland

Timothy M. Cogan Teagasc Food Research Centre Fermoy, Cork, Ireland Timothy P. Guinee Teagasc Food Research Centre Fermoy, Cork, Ireland

Paul L.H. McSweeney School of Food and Nutritional Sciences University College Cork, Ireland

ISBN 978-1-4899-7679-6 ISBN 978-1-4899-7681-9 (eBook) DOI 10.1007/978-1-4899-7681-9

Library of Congress Control Number: 2016931859

© Springer New York 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer Science+Business Media LLC New York

Contents

1	Che	ese: Historical Aspects	1
	1.1	Introduction	2
	1.2	Cheese Production and Consumption	7
	1.3	Cheese Science and Technology	9
	Refe	erences	9
	Sug	gested Reading	10
2	Ove	rview of Cheese Manufacture	11
	2.1	Selection of Milk	13
	2.2	Standardization of Milk Composition	13
	2.3	Heat Treatment of Milk	14
	2.4	Cheese Colour	15
	2.5	Conversion of Milk to Cheese Curd	17
	2.6	Ripening	23
	2.7	Processed Cheese Products	24
	2.8	Whey and Whey Products	25
3	Prin	cipal Families of Cheese	27
	3.1	Introduction	27
	3.2	Rennet-Coagulated Cheeses	34
	3.3	Acid-Coagulated Cheeses	60
	3.4	Heat/Acid-Coagulated Cheeses	60
	3.5	Concentration/Crystallization	61
	3.6	Visual Appearance of Selected Cheeses	63
	3.7	Ultrafiltration Technology in Cheesemaking	63
	Refe	erences	68
	Sug	gested Reading	69
4	Che	mistry of Milk Constituents	71
	4.1	Introduction	71
	4.2	Lactose and Other Carbohydrates	73
	4.3	Milk Lipids	79

	4.4	Milk Proteins	88
	4.5	Milk Salts	99
	4.6	pH of Milk	100
	4.7	Physico-Chemical Properties of Milk	101
	Refe	rences	102
5	Bact	eriology of Cheese Milk	105
	5.1	Introduction	105
	5.2	Sources of Microorganisms	105
	5.3	Mastitis and Other Diseases	107
	5.4	Milking Machines and Bulk Tanks	109
	5.5	Natural Inhibitors	111
	5.6	Pathogens in Raw Milk	111
	5.7	Raw Milk Cheeses	113
	5.8	Pasteurisation	113
	5.9	Alternatives to Heat Treatment	115
		Standards for Raw Milk	118
		ested Reading	119
		-	
6	Star	ter Cultures	121
	6.1	Introduction	121
	6.2	Types of Starters	122
	6.3	Adjunct Cultures	133
	6.4	Measurement of Growth	134
	6.5	Effect of Temperature	135
	6.6	Taxonomy	136
	6.7	Phylogeny	141
	6.8	Metabolism of Starters	143
	6.9	Respiration in Lactic Acid Bacteria	153
	6.10	Citrate	154
	6.11	Exopolysaccharide Production	158
	6.12	Plasmids	159
	6.13	Genome Sequences	159
	6.14	Inhibition of Acid Production	160
	6.15	Bacteriocins	175
	6.16	Production of Bulk Cultures in Cheese Plants	178
	6.17	DVS and DVI Cultures	180
		sested Reading	180
7	Enzy	vmatic Coagulation of Milk	185
	7.1	Introduction	185
	7.2	Primary Phase of Rennet Coagulation	186
	7.3	Rennet	189
	7.4	Factors that Affect the Hydrolysis of κ-Casein	/
		and the Primary Phase of Rennet Coagulation	190
			-

	7.5 Secondary (Non-enzymatic) Phase of Coagulation	
	and Gel Assembly	192
	7.6 Factors that Affect the Non-enzymatic Phase	
	of Rennet Coagulation	199
	7.7 Measurement of Rennet Coagulation Properties	201
	7.8 Factors that Affect Rennet Coagulation	210
	7.9 Rennet Substitutes	220
	7.10 Immobilized Rennets	225
	References	226
8	Post-Coagulation Treatment of the Renneted-Milk Gel	231
	8.1 Introduction	231
	8.2 Methods for Measuring Syneresis	232
	8.3 Influence of Compositional Factors on Syneresis	233
	8.4 Influence of Processing Variables on Syneresis	234
	8.5 Kinetics and Mechanism of Syneresis	239
	8.6 Textured Cheese	240
	8.7 Moulding and Pressing of Cheese Curd	246
	8.8 Packaging	248
	References	249
9	Salting of Cheese Curd	251
	9.1 Introduction	251
	9.2 Salt in Different Cheese Varieties	253
	9.3 The Major Functions of Salt in Cheese	253
	9.4 Salting Methods	256
	9.5 Brine-Salting	257
	9.6 Dry Salting of Cheese	263
	9.7 Effect of Salt on Cheese Composition	268
	9.8 Effect of NaCl on the Microbiology of Cheese	270
	9.9 Influence of NaCl on Enzymes in Cheese	273
	9.10 Effect of Salt on Cheese Quality	274
	9.11 Nutritional Aspects of NaCl in Cheese	275
	References	275
10	Cheese Yield	279
	10.1 Introduction	280
	10.2 Definition and Expression of Cheese Yield	280
	10.3 Measurement of Cheese Yield and Efficiency	283
	10.4 Prediction of Cheese Yield.	288
	10.5 Factors That Affect Cheese Yield	295
	10.6 Conclusions	324
	References	325
	Suggested Reading	331
	<i>c c</i>	

11	Micro	biology of Cheese Ripening	333
	11.1	Introduction	333
	11.2	Microbial Activity During Ripening	334
	11.3	Water and Water Activity	334
	11.4	Salt	336
	11.5	Oxidation-Reduction Potential	339
	11.6	pH and Organic Acids	340
	11.7	Nitrate	340
	11.8	Temperature	341
	11.9	Growth of Starter Bacteria in Cheese	342
	11.10	Growth of Non-Starter Lactic Acid Bacteria in Cheese	344
	11.11	Spatial Development of Bacteria in Cheese	347
	11.12	Non-Starter Lactic Acid Bacteria as Adjunct Cultures	348
	11.13	Enterococci	349
	11.14		351
	11.15	Molecular Methods of Identification	351
	11.16		352
	11.17		373
	11.18	Probiotics	375
	11.19	Non-Lactic Genera of Bacteria Found in Cheese	376
	11.20	Yeast and Moulds	381
		ested Reading	386
		ences	386
12		emistry of Cheese Ripening	391
	12.1	Introduction	391
	12.2	Ripening Agents in Cheese	392
	12.3	Contribution of Individual Agents to Ripening	393
	12.4		
		Metabolism of Residual Lactose and of Lactate and Citrate	395
	12.5	Metabolism of Residual Lactose and of Lactate and Citrate Citrate Metabolism	395 405
		Citrate Metabolism	405
	12.6	Citrate Metabolism Lipolysis and Related Events	405 406
	12.6 12.7	Citrate Metabolism Lipolysis and Related Events Proteolysis	405 406 414
	12.6 12.7 12.8	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese	405 406 414 428
	12.6 12.7 12.8 12.9	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events	405 406 414 428 436
	12.6 12.7 12.8 12.9 12.10	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese	405 406 414 428
13	12.6 12.7 12.8 12.9 12.10 Referen	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions	405 406 414 428 436 438
13	12.6 12.7 12.8 12.9 12.10 Reference	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences Se Flavour	405 406 414 428 436 438 439
13	12.6 12.7 12.8 12.9 12.10 Reference Kiera	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley	405 406 414 428 436 438 439 443
13	12.6 12.7 12.8 12.9 12.10 Reference Kieraa 13.1	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction	405 406 414 428 436 438 439 443 444
13	12.6 12.7 12.8 12.9 12.10 Reference Kierar 13.1 13.2	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction Sensory Analysis	405 406 414 428 436 438 439 443 444 444
13	12.6 12.7 12.8 12.9 12.10 Reference Kieran 13.1 13.2 13.3	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction Sensory Analysis Characteristics of Cheese Flavour	405 406 414 428 436 438 439 443 444 444 452
13	12.6 12.7 12.8 12.9 12.10 Reference Kieraa 13.1 13.2 13.3 13.4	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction Sensory Analysis Characteristics of Cheese Flavour Analysis of Cheese Flavour	405 406 414 428 436 438 439 443 444 444 452 452
13	12.6 12.7 12.8 12.9 12.10 Reference Kieran 13.1 13.2 13.3 13.4 13.5	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction Sensory Analysis Characteristics of Cheese Flavour Analysis of Cheese Flavour Analysis of Volatile Compounds	405 406 414 428 436 438 439 443 444 452 452 452 456
13	12.6 12.7 12.8 12.9 12.10 Reference Kierar 13.1 13.2 13.3 13.4 13.5 13.6	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction Sensory Analysis Characteristics of Cheese Flavour Analysis of Cheese Flavour Analysis of Volatile Compounds Aroma Compounds in Specific Cheeses	405 406 414 428 436 438 439 443 444 444 452 452 456 468
13	12.6 12.7 12.8 12.9 12.10 Reference Kierar 13.1 13.2 13.3 13.4 13.5 13.6 13.7	Citrate Metabolism Lipolysis and Related Events Proteolysis Characterization of Proteolysis in Cheese Catabolism of Amino Acids and Related Events Conclusions ences se Flavour n N. Kilcawley Introduction Sensory Analysis Characteristics of Cheese Flavour Analysis of Cheese Flavour Analysis of Volatile Compounds	405 406 414 428 436 438 439 443 444 452 452 452 456

14	Chee	se: Structure, Rheology and Texture	475
	14.1	Introduction to Cheese Rheology	476
	14.2	Relationship Between Cheese Rheology and Texture	477
	14.3	Cheese Structure	480
	14.4	Rheological Concepts	484
	14.5	Model of Cheese Rheology Based on Creep and Recovery	
		Experiments	490
	14.6	Measurement of the Rheological Behaviour of Cheese	494
	14.7	Factors That Influence the Rheological Characteristics of Cheese	
		as Measured Using Large Strain Uniaxial Compression	507
	14.8	Cheese Texture	522
	Refer	ences	527
	Sugg	ested Reading	532
15	Facto	ors that Affect Cheese Quality	533
10	15.1	Introduction	533
	15.2	Milk Supply	534
	15.3	Coagulant (Rennet)	536
	15.4	Starter	537
	15.5	Non-starter Lactic Acid Bacteria (NSLAB)	537
	15.6	Cheese Composition	538
	15.7	Ripening Temperature	541
	15.8	Conclusions	541
	Refer	ences	542
16	Freek	Chasse Products, Principals of Manufasture	
16		1 Cheese Products: Principals of Manufacture Overview of Different Varieties	543
	16.1	Introduction	543
	16.2	Overview of the Manufacturing Process for Fresh	545
	10.2	Acid-Curd Cheese Products	546
	16.3	Principles and Mechanism of Acid-Induced	540
	10.5	Gelation of Milk	546
	16.4	Gel Syneresis	557
	16.5	Factors that Influence the Rheology and Syneresis	551
	10.0	of Acid-Induced Milk Gels	560
	16.6	Treatments of the Concentrated Gel after Whey Separation	568
	16.7	Major Fresh Acid-Curd Cheese Varieties	571
	16.8	Whey Cheeses	583
		rences	584
		ested Reading	588
17	00		500
17		essed Cheese and Substitute/Imitation Cheese Products	589
	17.1 17.2	Introduction Pasteurized Processed Cheese Products	590
	17.2	Imitation and Substitute Cheese Products, and Tofu	590 614
		ences	623
		ested Reading	623 626
	Sugg	court reading	020

18	Chee	se as an Ingredient	629
	18.1	Introduction and Definitions	630
	18.2	Overview of Functional Requirements of Cheese	
		as an Ingredient	636
	18.3	Basis of Functional Properties in Cheese	638
	18.4	Evaluation of the Rheological-Related Functional	
		Properties of Cheese	646
	18.5	Effects of Different Factors on the Functionality	
		of Unheated Cheese	652
	18.6	Effects of Different Factors on the Functionality	
		of Heated Cheese	654
	18.7	Dried Cheese Products	667
	18.8	Conclusions	676
	Refer	ences	677
	Sugg	ested Reading	679
19	Path	ogens in Cheese and Foodborne Illnesses	681
17	19.1	Pathogens in Cheese	688
	19.1	Growth of Pathogens in Cheese During Manufacture	694
	19.2	Growth of Pathogens in Cheese During Ripening	699
	19.3	Raw Milk Cheeses	705
	19.4	Control of Growth of Pathogens	705
	19.5	Stresses and Survival of Pathogens	708
	19.0	Biogenic Amines	708
		ences	708
		ested Reading	712
•			
20		itional Aspects of Cheese	715
		O'Callaghan, T.P. O'Connor, and N.M. O'Brien	-16
	20.1	Introduction	716
	20.2	Fat and Cholesterol	716
	20.3	Protein and Carbohydrate	718
	20.4	Vitamins and Minerals	719
	20.5	Additives in Cheese	723
	20.6	Cheese and Dental Caries	723
	20.7	Mycotoxins	724
	20.8	Biogenic Amines in Cheese	728
	Refer	ences	729
21		ent Legislation on Cheese	731
		ael Hickey	
	21.1	Background	732
	21.2	International Standards for Cheese Developed by the Codex	
		Alimentarius Commission	736
	21.3	European Legislation Pertaining to Cheese	738
	21.4	EU Food Additive Legislation	741

	21.5	EU Food Labelling Legislation	742
	21.6	Cheese Legislation in the United Kingdom	743
	21.7	Ireland	745
	21.8	US Legislation on Cheese	746
	21.9	Cheese Legislation in a Selection of Other Countries	749
	21.10	Summary	749
		nces	751
22	Whey	and Whey Products	755
	22.1	Introduction	755
	22.2	Clarification of Whey	757
	22.3	Whey Beverages	758
	22.4	Concentrated and Dried Whey Products	758
	22.5	Lactose	759
	22.6	Whey Proteins	765
	22.7	Whey Cheese	767
	22.8	Conclusions	767
	Refere	ences and Suggested Reading	768
Inde	ex		771

Preface to Second Edition

Since the publication of the first edition of this book in 2000, the importance and popularity of cheese have increased further. Approximately 19×10^6 tonnes were produced in 2014, representing 35–40 % of milk production. The second edition covers mainly the same topics as the first edition. Two chapters, "Acceleration of Cheese Ripening" and "Analytical Methods for Cheese," have been omitted; the former has been incorporated in "Biochemistry of Cheese Ripening." One new chapter, "Legislation on Cheese" has been introduced, and a specialist has been recruited to write the chapter "Cheese Flavour."

Cheese remains an active subject of research, and considerable progress has been made on the cheese that is summarized here. Advances have been made in aspects of cheese sciences during the past 15 years, but some areas are quite "mature," and consequently new knowledge is limited. Significant advances have been made on the physico-chemical aspects of cheese, e.g. mechanism of the gelation of rennet-altered casein micelles, the rheology of rennet-induced milk gels, syneresis of rennet- or acid-induced milk gels and the functional properties of cheese. Advances are probably most noticeable, however, in the microbiology of cheese, made possible by advances in molecular biology techniques. Most cheese is consumed as "Table Cheese," but the importance of cheese as an ingredient in composite foods, e.g., pizza, sauces, etc., is increasing, and the functionality of cheese in such applications has attracted much attention.

Fundamentals of Cheese Science provides comprehensive coverage of the scientific aspects of cheese, appropriate for anybody working with cheese, from lecturers, researchers and technologists to undergraduate and postgraduate students in food science and technology. The book assumes familiarity with biochemistry, microbiology and dairy chemistry, and it emphasizes fundamental principles rather than technological aspects. The book is extensively referenced. References are divided into "Suggested Reading," comprised mainly of textbooks and reviews, and "References", i.e., primary references to support claims made.

Cork, Ireland

Patrick F. Fox Timothy P. Guinee Timothy M. Cogan Paul L.H. McSweeney

About the Authors

Patrick F. Fox, PhD DSc, Professor Emeritus of Food Chemistry at University College, Cork, Ireland. His research over the last 55 years has focussed on dairy chemistry and biochemistry with emphasis on milk proteins and enzymes. He is the editor or author of a large number of publications which have become highly cited.

Timothy P. Guinee, PhD, Principal Research Officer in Food Chemistry and Technology at Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland, and adjunct professor at University College Cork. His interests include study of the rheology and functional properties of composite high-protein food matrices and the exploitation of these properties in food manufacture and assembly/formulation, with particular emphasis on gels and cheese-based systems.

Timothy M. Cogan, PhD, Emeritus Senior Principal Research Officer at Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland, and Emeritus Professor in the Department of Food Microbiology, University College Cork. His main research interests during his research career were starters and the microbiology of cheese and butter, particularly lactic butter.

Paul L.H. McSweeney, PhD DSc, Professor of Food Chemistry at University College, Cork, Ireland. The overall theme of his research is dairy biochemistry with particular reference to factors affecting cheese flavour and texture. He is the co-author or coeditor of a number of books on dairy chemistry and cheese science in addition and research papers and reviews.

Chapter 1 Cheese: Historical Aspects

Summary Agriculture dates from about 6000 BC, when certain plants and animals were domesticated in Mesopotamia. Among the domesticated animals were goats, sheep and cattle, the milk of which was consumed by Man as a high-quality nutrient. Milk is also a very good growth substrate for bacteria, some of which produce lactic acid, which causes the milk to gel. The acidified milk was consumed as cultured milk or converted to acid-curd cheese. It was also discovered that milk could be coagulated by certain proteolytic enzymes, e.g., chymosin from the stomach of neonatal mammals; the coagulum was converted to rennet-curd cheese. Cheese has been produced since the earliest civilizations, e.g., Sumer and Egypt and was well established in Classical Rome. Cheese production spread throughout Europe and the Middle East and later to North and South America and Oceania and evolved as at least 1000 varieties. Cheese production was a farm-based operation until the midnineteenth century, and much cheese is still produced at an artisanal level. However, the principal varieties are now produced in very large highly mechanized factories by highly developed technology.

Current production of cheese is about 19×10^6 tonnes per annum, predominantly in Europe, North and South America and Oceania. Approximately 35 % of all milk is used for cheese production.

The objectives of this chapter are to provide a brief history of cheese production and identify the principal areas of production and consumption.

Keywords Discovery and spread of cheese • Production and consumption of cheese

1.1 Introduction

Cheese is the generic name for a group of fermented milk-based food products, produced throughout the world in a great diversity of flavours, textures and forms. Sandine and Elliker (1970) suggest that there are more than 1000 varieties of cheese. Walter and Hargrove (1972) described about 400 varieties and listed the names of a further 400, Burkhalter (1981) classified 510 varieties and Harbutt (2009) includes photographs and descriptions of about 750 varieties.

It is believed that cheese evolved in the 'Fertile Crescent' between the Tigris and Euphratres rivers, in Iraq, some 8000 years ago during the "Agricultural Revolution", when certain plants and animals were domesticated. Among the earliest animals domesticated were goats and sheep; being small, gregarious and easily herded, these were used to supply meat, milk, hides and wool. Cattle were more difficult to domesticate; wild cattle were much larger and more ferocious than modern cattle and were also less well suited to the arid Middle East than goats and sheep. Apparently, cattle were used initially mainly as work animals and were not used as a major source of milk until relatively recently. The nutritive value of milk produced by domesticated animals was soon recognised and milk and dairy products became important components of the human diet.

Milk is also a rich source of nutrients for bacteria which contaminate the milk and grow well under ambient conditions. Some contaminating bacteria utilize milk sugar, lactose, as a source of energy, producing lactic acid as a by-product; these bacteria, now known as lactic acid bacteria (LAB), include the genera Lactococcus, Lactobacillus, Streptococcus, Enterococcus, Leuconostoc, Pediococcus and Wiessla. LAB are used in the production of a wide range of fermented milk, meat and vegetable products. They are generally considered to be beneficial to human health and have been studied extensively (see Chap. 6). Bacterial growth and acid production would have occurred in milk during storage or during attempts to dry milk in the prevailing warm, dry climate to produce a more stable product; airdrying of meat, and probably fruits and vegetables, appears to have been practiced as a primitive form of food preservation at this period in Man's evolution. When sufficient acid is produced, the principal proteins in milk, the caseins, coagulate at ambient temperature (21 °C) in the region of their isoelectric points (~pH 4.6) to form a gel in which the fat and aqueous phases of milk are entrapped. Thus, the first fermented dairy foods were probably produced accidentally. Numerous basically similar products are still produced in various regions of the world by artisanal methods, which are probably little different from those used several thousand years ago. Some "descendants" of these ancient fermented milks are now produced by scientifically based technology.

Fermented dairy foods were produced by a fortuitous combination of events, i.e., the ability of LAB to grow in milk and to produce just enough acid to reduce its pH to the isoelectric point of the caseins. Neither the lactic acid bacteria nor the caseins were designed for this function. The caseins were "designed" to be coagulated enzymatically in the stomach of neonatal mammals, the gastric pH of which is around 6, i.e., much higher than the isoelectric point of the caseins. The ability of LAB to ferment lactose, a sugar specific to milk, is frequently encoded on plasmids, suggesting that this characteristic was acquired relatively recently in the evolution of these bacteria. Their natural habitats are vegetation, from which they presumably colonized the teats of mammals which had been contaminated with lactose-containing milk.

An acid-induced milk gel is quite stable if left undisturbed but, if broken, either accidentally (e.g., by movement of the storage vessels) or intentionally, it separates into curds and whey. Acid whey is a pleasant, refreshing drink for immediate consumption while the curds could be consumed fresh or stored for future use. The shelf-life of the curds can be greatly extended by dehydration and/or by adding salt; heavily salted cheese varieties (e.g., Feta and Domiati) are still widespread throughout the Middle East and the Balkans where the ambient temperature is high. Air/sun-dried varieties of fermented milk and cheese are not common today but numerous varieties survive throughout the hot dry areas of North Africa and the Middle East. Today, acid-coagulated cheeses, which include Cottage cheese, Cream cheese, Quarg, *Fromage frais* and some varieties of Quesco Blanco, represent ~22 % of total cheese production and in some countries are the principal varieties. They are consumed fresh (not ripened) and are widely used in other products, e.g., cheesecake, cheese-based dips and sauces.

Some proteolytic enzymes can modify the milk protein system, causing it to coagulate under certain circumstances, offering an alternative mechanism for coagulating milk; this mechanism was also recognized at an early date. Enzymes capable of causing this transformation are widespread and are found in bacteria, moulds, plant and animal tissues, but the most obvious source would have been animal stomachs. It would have been observed that the stomachs of slaughtered young animals frequently contained curds, especially if the animals had suckled shortly before slaughter; curds would also have been observed in the vomit of human infants. Before the development of pottery (~5000 BC), storage of milk in bags made from animal skins was probably common (it is still practiced in many regions of the world). Stomachs from slaughtered animals provided ready-made, easily-sealed containers; if stored in such containers, milk would extract coagulating enzymes (referred to as rennets) from the stomach tissue, leading to its coagulation during storage. The properties of rennet-coagulated milk curds are very different from those of acid-produced curds, e.g., they have better syneretic properties (ability to exude whey) which make it possible to produce low-moisture cheese curd without hardening. Rennet-coagulated curds can, therefore, be converted to more stable, low-moisture products and rennet coagulation has become the principal mechanism for milk coagulation in cheese manufacture; most modern cheese varieties and \sim 75 % of total world production of cheese are produced by this mechanism.

During the storage of rennet-coagulated curds, various bacteria may grow in the curd and the enzymes in rennet continue to act. Thus, the flavour and texture of the cheese curds change during storage. When controlled, this process is referred to as ripening (maturation), during which a great diversity of characteristics flavours and textures develop. Although animal rennets were probably the first enzyme coagulants

used, rennets produced from a range of plant species, e.g., figs and thistle, appear to have been common in Roman times. However, plant rennets are not suitable for the manufacture of long-ripened cheese varieties and gastric proteinases from young animals became the standard rennets until a shortage of supply made it necessary to introduce "rennet substitutes", which are discussed in Chap. 7.

While the coagulation of milk by in situ production of lactic acid was, presumably, accidental, the use of rennets to coagulate milk was intentional. It was, in fact, quite an ingenious development—if the conversion of milk to cheese by the use of rennets was discovered today, it would be hailed as a major biotechnological discovery! The use of rennets in cheese manufacture is probably the oldest, and is still one of the principal, industrial applications of enzymes.

The advantages accruing from the ability to convert the principal constituents of milk to cheese would have been apparent from the viewpoints of storage stability, ease of transport and, eventually, as a means of diversifying the human diet. Cheese manufacture accompanied the spread of civilization throughout the Middle East, Egypt, Greece and Rome. There are several references in the Old Testament to cheese, e.g. Job (1520 BC) and Samuel (1170-1017 BC), on the walls of tombs of Ancient Egypt and in classical Greek literature, e.g. Homer (1184 BC), Herodotus (484–408 BC) and Aristotle (384–322 BC). Cheese manufacture was well established in Classical Rome and cheese was included in the rations of Roman soldiers. The demand for cheese in Rome must have exceeded supply since the Emperor Diocletian (284-305 AD) fixed a maximum price for cheese. Many Roman writers, e.g., Cato the Elder (234–149 BC), Varro (116–27 BC), Columella (4-70 AD), Pliny the Elder (23-79 AD) and Palladius (c 400-470 AD) described the manufacture, quality attributes and culinary uses of cheese; Columella, in particular, gave a detailed account of cheese manufacture in his treatise on agriculture, De Re Rustica.

Movements of Roman armies and administrators contributed to the spread of cheese throughout the then known world. Cheesemaking practice appears to have changed little from the time of Columella and Palladius until the nineteenth century. The great migrations of peoples throughout Europe after the fall of the Roman Empire promoted the spread of cheese manufacture, as did the Crusaders and pilgrims of the Middle Ages. However, the most important contributors to the development of cheese 'technology' and to the evolution of cheese varieties during the Middle Ages were the monasteries and feudal estates. In addition to their roles in the spread of Christianity and in the preservation and expansion of knowledge during the Dark Ages, the monasteries were major contributors to the advancement of agriculture in Europe and to the development and improvement of food commodities, notably wine, beer and cheese. Many current cheese varieties were developed in monasteries, e.g., Wenslydale (Rievaulx Abbey, Yorkshire), Port du Salut or Saint Paulin (Monastery de Notre Dame du Port du Salut, Laval, France), Fromage de Tamie (Abbey of Tamie, Lac d'Annecy, France), Maroilles (Abbey Moroilles, Avesnes, France); Trappist (Maria Stern Monastery, Banja Luka, Bosnia). The inter-monastery movement of monks probably contributed to the spread of cheese varieties and to the development of new cheeses.

The great feudal estates of the Middle Ages were self-contained communities which, in the absence of an effective transport system, relied on a supply of locally produced foods. Surplus food was produced in summer and preserved to meet the requirements of the community throughout the year. Especially in cool, wet Europe, fermentation and salting were the most effective principles for food preservation; well-known examples of such products include fermented and salted meat, salted fish, beer, wine, fermented vegetables and cheese, the manufacture of which exploits both fermentation and salting. Cheese probably represented an item of trade when amounts surplus to local requirements were available. Within large estates, individuals acquired special skills which were passed on to succeeding generations. The feudal estates evolved into villages and some into larger communities. Because monasteries and feudal estates were essentially self-contained communities with limited inter-community travel, it is readily apparent how several hundred distinct varieties of cheese could have evolved from essentially the same raw material. Traditionally, many cheese varieties were produced in quite limited geographical regions, especially in mountainous areas. The localized production of certain varieties is still apparent and indeed is preserved for those varieties with a Protected Designation of Origin (PDO). Regionalization of certain cheese varieties is still particularly marked in Spain, Italy, France and Greece, where the production of many varieties is restricted to very limited, sometimes legally-defined, regions. Almost certainly, most cheese varieties evolved by accident because of particular local circumstances, e.g., species or breed of dairy animal, a peculiarity of the local milk supply with respect to chemical composition or microflora, or an 'accident' during the manufacture or storage of the cheese, e.g., growth of moulds or other microorganisms. Presumably, those accidents that led to desirable changes in the quality of the cheese were incorporated into the manufacturing protocol; thus each variety has undergone a series of evolutionary changes and refinements.

The final chapter in the spread of cheese throughout the world resulted from the colonization of North and South America, Oceania and Africa by European settlers who carried their cheesemaking skills with them. Cheese has become an item of major economic importance in some of these "new" countries, notably the USA, Canada, Australia, New Zealand and Argentina, but the varieties produced are mainly of European origin, modified in some cases to meet local conditions and requirements. There is no evidence that cheese was produced in the Americas or Oceania prior to colonization; in fact, animals had not been domesticated for milk production in these countries.

Cheesemaking remained a craft until relatively recently. With the gradual acquisition of knowledge on the chemistry and microbiology of milk and cheese, it became possible to direct the changes involved in cheesemaking in a more controlled fashion. Although few new varieties have evolved as a result of this improved knowledge, existing varieties have become better defined and their quality more consistent. Although the names of many current varieties were introduced several hundred years ago (Table 1.1), it is very likely that those cheeses were not very comparable to their modern counterparts. Cheesemaking was not standardized until relatively recently; for example, the first attempt to standardize the well-known English varieties, Cheddar and Cheshire, was made by Joseph Harding in the mid-nineteenth

Gorgonzola	897	Cheddar	1500
Schabzieger	1000	Parmesan	1579
Roquefort	1070	Gouda	1697
Maroilles	1174	Gloucester	1783
Schwangenkase	1178	Stilton	1785
Grana	1200	Camembert	1791
Taleggio	1282	St. Paulin	1816

Table 1.1 First recorded date for some major cheese varieties^a

^aFrom Scott (1986)

century. Prior to that, 'Cheddar cheese' was that produced around the village of Cheddar, in Somerset, England, and probably varied considerably depending on the cheesemaker and other factors. Cheese manufacture was a farmstead enterprise until the mid-nineteenth century—the first cheese factory in the US was established near Rome, New York, in 1851 and the first in Britain at Longford, Derbyshire, in 1870. Thus, there were thousands of small-scale cheese manufacturers and there must have been great variation within any one type. When one considers the very considerable inter-factory, and indeed intra-factory, variation in quality and characteristics which still occur today in well-defined varieties, e.g., Cheddar, in spite of the very considerable scientific and technological advances, one can readily appreciate the variations that must have existed in earlier times.

Some major new varieties, e.g., Jarlsberg, Maasdamer, Regato and Dubliner have been developed recently as a consequence of scientific research. Many other varieties have evolved very considerably, even to the extent of becoming new varieties, as a consequence of scientific research and the development of new technology—notable examples are Quesco Blanco as produced in the USA, Feta-type cheese produced from ultrafiltered milk and various forms of Quarg. There has been a marked resurgence of farmhouse cheesemaking in recent years; many of the cheeses being produced on farms are not standard varieties and it will be interesting to see if some of these evolve to become new varieties.

A major cause of variation in the characteristics of cheese is the species from which the milk is produced. Although milk from several species is used commercially, the cow is by far the principal producer; worldwide, 85 % of commercial milk is bovine, with 11 %, 2 % and 1.5 % being produced by water buffalo, sheep and goats. However these species are major producers of milk in certain regions, e.g., the Mediterranean basin and India; goats and sheep are especially important in cheese production since the milk of these species is used mainly for the production of fermented milks and cheese. Many world-famous cheeses are produced from sheep's milk, e.g., Roquefort, Feta, Romano and Manchego; traditional Mozzarella is made from the milk of the water buffalo. As will be discussed in Chap. 4, there are very significant interspecies differences in the composition of milk which are reflected in the characteristics of the cheeses produced from them. There are also significant differences in milk composition between breeds of cattle and these influence cheese quality, as do variations due to seasonal, lactational and nutritional factors and of course the methods of milk production, storage and collection.

Brief histories of the history of cheese are provided by several authors, especially by Scott (1986). Kindstedt (2013) gives a very interesting account of the history of cheese and its place in Western culture.

1.2 Cheese Production and Consumption

World production of cheese is $\sim 19 \times 10^6$ tonnes per annum ($\sim 35\%$ of total milk production) and has increased at an average annual rate of $\sim 4\%$ over the past 30 years. Europe, with a production of $\sim 11 \times 10^6$ tonnes per annum, is the largest producing block (Table 1.2). Thus, while cheese manufacture is practiced worldwide, it is apparent from Table 1.2 that cheese is primarily a product of European countries and those populated by European immigrants.

Cheese consumption varies widely between countries, even within Europe (Table 1.2). Cheese consumption in most countries for which data are available has

	Cheese production	Cheese consumption
Country	(1000 tonnes)	(kg per caput)
World	18,833	
Africa	678	
Egypt	620	10.1
South Africa	47	1.0
Nigeria	9	
Zimbabwe	2	
Oceania	606	
Australia	349	11.7
New Zealand	257	3.5
Asia	981	
Turkey	519	6.7
Iran	260	4.6
Israel	125	16.1
Japan	45	1.9
China	20	0.2
India	8	
South Korea	4	2.0
North & Central America	5412	
United States	4807	15.1
Canada	330	12.3
Mexico	275	3.1
South America	1388	
Brazil	675	3.6
Argentina	521	11.5

 Table 1.2
 Production and consumption of cheese, 2011 (IDF 2012)

(continued)

	Cheese production	Cheese consumption
Country	(1000 tonnes)	(kg per caput)
Chile	90	7.2
Uruguay	61	6.3
Colombia	41	0.9
European Union	8634	17.1
Germany	2196	22.9
France	1930	26.3
Italy	1094	21.8
Netherlands	750	19.4
Poland	650	11.4
United Kingdom	359	10.9
Denmark	276	16.4
Greece	190	23.4
Ireland	180	6.7
Austria	160	19.9
Spain	130	9.6
Czech Republic	110	16.3
Lithuania	104	14.2
Sweden	103	19.9
Finland	101	22.5
Belgium	76	15.3
Hungary	69	11.0
Romania	62	4.3
Estonia	41	19.6
Slovakia	32	10.3
Latvia	28	13.5
Cyprus	14	17.9
Luxembourg	_	24.1
Others	138	12.0
Other European	1132	
Russia	425	5.8
Ukraine	255	4.1
Switzerland	182	21.8
Belarus	149	_
Norway	84	17.4
Croatia	30	7.7
Iceland	7	24.1

Table 1.2 (continued)

increased consistently over many years; along with fermented milks, cheese is the principal growth product within the dairy sector. There are many reasons for the increased consumption of cheese, including a positive dietary image, convenience and flexibility in use and the great diversity of flavours and textures. Cheese can be regarded as the quintessential convenience food: it can be used as a major

component of a meal, as a dessert, as a component of other foods or as a food ingredient; it can be consumed without preparation or subjected to various cooking processes. The most rapid growth in cheese consumption has occurred in its use as a food component or ingredient; these applications will be discussed in Chap. 19.

1.3 Cheese Science and Technology

Cheese is the most diverse group of dairy products and is, arguably, the most academically interesting and challenging. While many dairy products, if properly manufactured and stored, are biologically, biochemically and chemically very stable, cheeses are, in contrast, biologically and biochemically active, and, consequently, undergo changes in flavour, texture and functionality, to a degree which is varietydependent, during storage. Throughout manufacture and ripening, cheese production represents a finely orchestrated series of consecutive and concomitant biochemical events which, if synchronized and balanced, lead to products with highly desirable aromas and flavours but when unbalanced, result in off-flavours and odours. Considering that, in general terms, a basically similar raw material (milk from a very limited number of species) is subjected to a manufacturing protocol, the general principles of which are common to most cheese varieties, it is fascinating that such a diverse range of products can be produced. No two batches of the same variety are identical.

A further important facet of cheese is the range of scientific disciplines involved: study of cheese manufacture and ripening involves the chemistry and biochemistry of milk constituents, chemical characterization of cheese constituents, microbiology, enzymology, molecular genetics, flavour chemistry, rheology and chemical engineering. It is not surprising, therefore, that many scientists have become involved in the study of cheese manufacture and ripening. A voluminous scientific and technological literature has accumulated, including several textbooks (see suggested reading list) and chapters in many others. Many of these textbooks deal mainly with cheese technology or assume an overall knowledge of cheese. The present book is intended to provide a fairly comprehensive treatment of the scientific aspects of cheese.

References

Burkhalter G (1981) Catalogue of Cheese, Bulletin 141. International Dairy Federation, Brussels Harbutt J (ed) (2009) World Cheese Book. Dorling Kindersley, London

IDF (2012) Bulletin 485. International Dairy Federation, Brussels

Kindstedt PS (2013) Cheese and Culture. Chelsea Green Publishing, White River Junction

Sandine WE, Elliker PR (1970) Microbially induced flavors and fermented foods: flavor in fermented dairy products. J Agric Food Chem 18:557–566

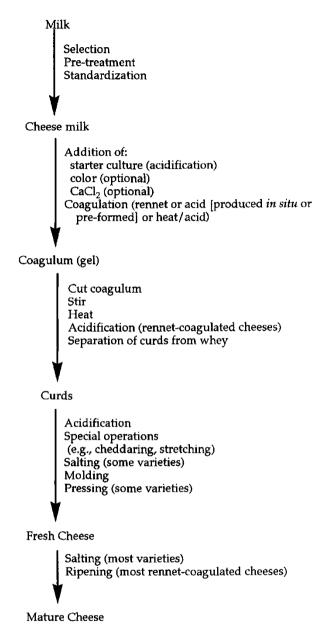
Scott R (1986) Cheesemaking Practice, 2nd edn. Elsevier Applied Science Publishers, London Walter HE, Hargrove RC (1972) Cheeses of the World. Dover Publications Inc., New York

Suggested Reading

- Andrews AT, Varley J (1994) Biochemistry of Milk and Milk Products. Royal Society of Chemistry, Cambridge
- Anifantakis EM (1991) Greek Cheeses: A Tradition of Centuries. The National Dairy Committee of Greece, Athens
- Anon (1992) DOC Cheeses of Italy: A Great Heritage. Franco Angeli, Milan
- Berger W, Klostermeyer H, Merkenich K et al (1989) Die Schmelzkäselerstellung. Benckiser-Knapsack GmbH, Ledenburg
- Cantin C (1976) Guide Pratique des Fromages. Solar Editeur, Paris
- Cheke V (1959) The Story of Cheesemaking in Britain. Routledge & Kegan Paul, London
- Cheke V, Sheppard A (1956) Butter and Cheesemaking. Alpha Books, Dorset
- Davis JG (1965) Cheese, Volume 1, Basic Technology; Volume 2, Bibliography. Churchill Livingstone, London.
- Davis JG (1967) Cheese, Vol. III, Manufacturing Methods; Volume IV, Bibliography. Churchill Livingstone, London
- Eck A (1984) Le Fromage. Technique et Documentation (Lavoisier), Paris
- Eck A, Gilles JC (1997) Le Fromage. Technique et Documentation (Lavoisier), Paris
- Eekhof-Stork N (1976) World Atlas of Cheese. Paddington Press Ltd., London
- Fox PF (1993) Cheese: Chemistry, Physics and Microbiology, vols 1, 2, 2nd edn. Chapman & Hall, London
- Gonzalez MA, del Cerro CG (1988) Quesos de Espana. Espasa-Calpe, Madrid
- Harris S (1984) Glynn Christian's World Guide to Cheese (English translation). Ebury Press, London
- Kosikowski FV, Mistry VV (1997) Cheese and Fermented Milks, 3rd edn, vols 1, 2. F.V. Kosikowski LLC, Westport
- Kosikowski FV, Mocquot G (1958) Advances in Cheese Technology. FAO Studies 38, FAO, Rome
- Law BA (1997) Microbiology and Biochemistry of Cheese and Fermented Milks, 2nd edn. Chapman & Hall, London
- Layton JA (1973) The Cheese Handbook. Dover Publications Inc., New York
- Lembo P, Spedicato E (1992) I Prodotti Caseari del Mezzogiorno. Consiglio Nazionale delle Ricerche, Rome
- Mair-Waldburg H (1974) Handbook of Cheese; Cheeses of the World A to Z. Volkwertschaftlecher Verlag GmbH, Kempten
- Malin EL, Tunick MH (1995) Chemistry of Structure-Function Relationships in Cheese. Plenum Press, New York
- Masui K, Yamada T (1996) French Cheeses. Dorling Kindersley, London
- Meyer A (1973) Processed Cheese Manufacture. Food Trade Press Ltd., London
- Robinson RK (1993) Modern Dairy Technology, vol 2, 2nd edn. Elsevier Applied Science, London
- Robinson RK (1995) A Colour Guide to Cheese and Fermented Milks. Chapman & Hall, London
- Robinson RK, Tamime AY (1991) Feta and Related Cheeses. Ellis Horwood, London
- Sammis JL (1948) Cheesemaking. Cheesemaker Book Co., Madison
- Robinson RK, Wilbey RA (1998) Cheesemaking Practice, R. Scott, 3rd edn. Aspen Publishers, Inc., Gaithersburg
- Simon AL (1956) Cheeses of the World. Faber & Faber, London
- Squire EH (1937) Cheddar Gorge: A Book of English Cheeses. Collins, London
- van Slyke LL, Price WV (1949) Cheese. Orange Judd, New York

Chapter 2 Overview of Cheese Manufacture

Summary The objective of this chapter is to present a very brief description of the principal operations of cheese production so that the operations described in the following chapters can be seen in an overall context


Introduction

The production of all varieties of cheese involves a generally similar protocol (Fig. 2.1), various steps of which are modified to give a product with the desired characteristics. The principal general steps are

- 1. Selection, standardization and, in most cases, pasteurization of the milk.
- 2. Acidification, usually via the in situ production of lactic acid by selected bacteria.
- 3. Coagulation of the milk by acidification or limited proteolysis.
- 4. Dehydration of the coagulum to yield cheese curd, by a range of techniques, some of which are variety-specific.
- 5. Forming the curds into characteristic shapes.
- 6. For most varieties, ripening (maturation) of the curd during which the characteristic flavour and texture of the cheese develop.

The objective of this chapter is to present a very brief description of the principal operations so that the operations described in the following chapters can be seen in an overall context.

Keywords Selection and treatment of cheesemilk • Annato • Coagulation • Salting • Ripening • Processed cheese

2.1 Selection of Milk

The composition of cheese is strongly influenced by the composition of the cheese milk, especially the content of fat, protein, calcium and pH. The constituents of milk, which are described in Chap. 4, are influenced by several factors, including species, breed, individuality, nutritional status, health and stage of lactation of the producing animal. Owing to major compositional abnormalities, milk from cows in the very early or late stages of lactation and those suffering from mastitis should be excluded. Somatic cell (leucocyte) count is a useful index of quality. Some genetic polymorphs of the milk proteins have a significant effect on cheese yield and quality and there is increasing interest in breeding for certain polymorphs. The milk should be free of chemical taints and free fatty acids, which cause off-flavours in the cheese, and antibiotics which inhibit bacterial cultures.

The milk should be of good microbiological quality, as contaminating bacteria will be concentrated in the cheese curd and may cause defects or public health problems. This subject will be discussed in Chap. 5.

2.2 Standardization of Milk Composition

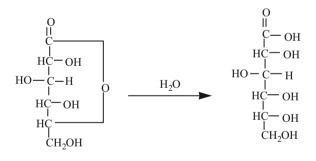
Milk for cheese is subjected to a number of pre-treatments, with various objectives.

Different cheese varieties have a characteristic fat-in-dry matter content, in effect, a certain fat-to-protein ratio and this situation has legal status in the "Standards of Identity" for many cheese varieties. While the moisture content of cheese, and hence the level of fat plus protein, is determined mainly by the manufacturing protocol, the fat:protein ratio is determined mainly by the fat:casein ratio in the cheese milk. Depending on the ratio required, it can be modified by:

- removing some fat by natural creaming, as in the manufacture of Parmigiano Reggiano, or centrifugation
- · adding skim milk
- · adding cream
- adding micellar casein (prepared by ultrafiltration)
- adding milk powder, evaporated milk or ultrafiltration retentate. Such additions also increase the total solids content of the milk and hence cheese yield and will be discussed in Chap. 10.

Calcium plays a major role in the coagulation of milk by rennet and subsequent processing of the coagulum and hence it is common practice to add $CaCl_2$ (e.g., 0.01 %) to cheese milk.

The pH of milk is a critical factor in cheesemaking. The pH is inadvertently adjusted by the addition of 1.5-2 % starter culture which reduces the pH of the milk immediately by about 0.1 unit. Starter concentrates (sometimes called direct-to-vat starters), which are now used widely, have no immediate acidifying effect.


Previously, it was standard practice to add the starter to the cheese milk 30–60 min before rennet addition. During this period, the starter microorganisms began to grow and produce acid, a process referred to as "ripening". Ripening served a number of functions:

- it allowed the starter bacteria to enter their exponential growth phase and hence to be highly active during cheesemaking; this is not necessary with modern highquality starters.
- the lower pH was more favourable for rennet action and gel formation.

However, the practice increases the risk of bacteriophage infection of the starter as phage become distributed throughout the liquid milk but is reduced after the milk has coagulated (see Chap. 6). Although ripening is still practiced for some varieties, it has been discontinued for most varieties.

The pH of milk on reception at the dairy is higher today than it was previously owing to improved hygiene during milking and the more widespread use of refrigeration at the farm and factory. In the absence of acid production by contaminating bacteria, the pH of milk increases slightly during storage due to the loss of CO_2 to the atmosphere. The natural pH of milk is ~6.6–6.7 but varies somewhat (e.g., it increases in late lactation and during mastitic infection).

To offset these variations and to reduce the pH as an alternative to ripening, the pre-acidification of milk by 0.1–0.2 pH units is recommended, either through the use of the acidogen, gluconic acid- δ -lactone, or by limited growth of a lactic acid starter, followed by pasteurization (referred to as pre-maturation).

Gluconic acid-δ-lactone

Gluconic acid

2.3 Heat Treatment of Milk

Traditionally, all cheese was made from raw milk, a practice which remained widespread until the 1940s. Even today, significant amounts of cheese are made in Europe from raw milk. The use of raw milk may be undesirable due to:

- Public health safety
- The presence of undesirable microorganisms which may cause defects or variability in flavour and/or texture.