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Preface

You are responsible for managing your company’s foreign exchange positions. Your boss, or your
boss’s boss, has been reading about derivatives losses suffered by other companies, and wants to
know if the same thing could happen to his company. That is, he wants to know just how much
market risk the company is taking. What do you say?

You could start by listing and describing the company’s positions, but this isn’t likely to be
helpful unless there are only a handful. Even then, it helps only if your superiors understand all of
the positions and instruments, and the risks inherent in each. Or you could talk about the portfolio’s
sensitivities, i.e., how much the value of the portfolio changes when various underlying market
rates or prices change, and perhaps option delta’s and gamma’s. However, you are unlikely to win
favour with your superiors by putting them to sleep. Even if you are confident in your ability
to explain these in English, you still have no natural way to net the risk of your short position
in Deutsche marks against the long position in Dutch guilders. . . . You could simply assure your
superiors that you never speculate but rather use derivatives only to hedge, but they understand
that this statement is vacuous. They know that the word ‘hedge’ is so ill-defined and flexible that
virtually any transaction can be characterized as a hedge. So what do you say? (Linsmeier and
Pearson (1996, p.1))

The obvious answer, ‘The most we can lose is . . . ’ is also clearly unsatisfactory, because the
most we can possibly lose is everything, and we would hope that the board already knows that.
Consequently, Linsmeier and Pearson continue, “Perhaps the best answer starts: ‘The value at
risk is . . . ’”.

So what is value at risk? Value at risk (VaR) is our maximum likely loss over some target
period — the most we expect to lose over that period, at a specified probability level. It says
that on 95 days out of 100, say, the most we can expect to lose is $10 million or whatever. This
is a good answer to the problem posed by Linsmeier and Pearson. The board or other recipients
specify their probability level — 95%, 99% and so on — and the risk manager can tell them the
maximum they can lose at that probability level. The recipients can also specify the horizon
period — the next day, the next week, month, quarter, etc. — and again the risk manager can tell
them the maximum amount they stand to lose over that horizon period. Indeed, the recipients
can specify any combination of probability and horizon period, and the risk manager can give
them the VaR applicable to that probability and horizon period.

We then have to face the problem of how to measure the VaR. This is a tricky question, and
the answer is very involved and takes up much of this book. The short answer is, therefore, to
read this book or others like it.

However, before we get too involved with VaR, we also have to face another issue. Is a
VaR measure the best we can do? The answer is no. There are alternatives to VaR, and at least
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one of these — the so-called expected tail loss (ETL) or expected shortfall — is demonstrably
superior. The ETL is the loss we can expect to make if we get a loss in excess of VaR.
Consequently, I would take issue with Linsmeier and Pearson’s answer. ‘The VaR is . . . ’ is
generally a reasonable answer, but it is not the best one. A better answer would be to tell
the board the ETL — or better still, show them curves or surfaces plotting the ETL against
probability and horizon period. Risk managers who use VaR as their preferred risk measure
should really be using ETL instead. VaR is already passé.

But if ETL is superior to VaR, why both with VaR measurement? This is a good question,
and also a controversial one. Part of the answer is that there will be a need to measure VaR for
as long as there is a demand for VaR itself: if someone wants the number, then someone has
to measure it, and whether they should want the number in the first place is another matter. In
this respect VaR is a lot like the infamous beta. People still want beta numbers, regardless of
the well-documented problems of the Capital Asset Pricing Model on whose validity the beta
risk measure depends. A purist might say they shouldn’t, but the fact is that they do. So the
business of estimating betas goes on, even though the CAPM is now widely discredited. The
same goes for VaR: a purist would say that VaR is inferior to ETL, but people still want VaR
numbers and so the business of VaR estimation goes on. However, there is also a second,
more satisfying, reason to continue to estimate VaR: we often need VaR estimates to be able
to estimate ETL. We don’t have many formulas for ETL and, as a result, we would often be
unable to estimate ETL if we had to rely on ETL formulas alone. Fortunately, it turns out that
we can always estimate the ETL if we can estimate the VaR. The reason is that the VaR is a
quantile and, if we can estimate the quantile, we can easily estimate the ETL — because the
ETL itself is just a quantile average.

INTENDED READERSHIP

This book provides an overview of the state of the art in VaR and ETL estimation. Given the
size and rate of growth of this literature, it is impossible to cover the field comprehensively,
and no book in this area can credibly claim to do so, even one like this that focuses on risk
measurement and does not really try to grapple with the much broader field of market risk
management. Within the sub-field of market risk measurement, the coverage of the literature
provided here — with a little under 400 references — is fairly extensive, but can only provide,
at best, a rather subjective view of the main highlights of the literature.

The book is aimed at three main audiences. The first consists of practitioners in risk mea-
surement and management — those who are developing or already using VaR and related risk
systems. The second audience consists of students in MBA, MA, MSc and professional pro-
grammes in finance, financial engineering, risk management and related subjects, for whom
the book can be used as a textbook. The third audience consists of PhD students and academics
working on risk measurement issues in their research. Inevitably, the level at which the material
is pitched must vary considerably, from basic (e.g., in Chapters 1 and 2) to advanced (e.g.,
the simulation methods in Chapter 6). Beginners will therefore find some of it heavy going,
although they should get something out of it by skipping over difficult parts and trying to get an
overall feel for the material. For their part, advanced readers will find a lot of familiar material,
but many of them should, I hope, find some material here to engage them.

To get the most out of the book requires a basic knowledge of computing and spread-
sheets, statistics (including some familiarity with moments and density/distribution functions),



Preface xiii

mathematics (including basic matrix algebra) and some prior knowledge of finance, most espe-
cially derivatives and fixed-income theory. Most practitioners and academics should have rela-
tively little difficulty with it, but for students this material is best taught after they have already
done their quantitative methods, derivatives, fixed-income and other ‘building block’ courses.

USING THIS BOOK

This book is divided into two parts — the chapters that discuss risk measurement, presuppos-
ing that the reader has the technical tools (i.e., the statistical, programming and other skills)
to follow the discussion, and the toolkit at the end, which explains the main tools needed to
understand market risk measurement. This division separates the material dealing with risk
measurement per se from the material dealing with the technical tools needed to carry out risk
measurement. This helps to simplify the discussion and should make the book much easier to
read: instead of going back and forth between technique and risk measurement, as many books
do, we can read the technical material first; once we have the tools under our belt, we can then
focus on the risk measurement without having to pause occasionally to re-tool.

I would suggest that the reader begin with the technical material — the tools at the end —
and make sure that this material is adequately digested. Once that is done, the reader will be
equipped to follow the risk measurement material without needing to take any technical breaks.
My advice to those who might use the book for teaching purposes is the same: first cover the
tools, and then do the risk measurement. However, much of the chapter material can, I hope,
be followed without too much difficulty by readers who don’t cover the tools first; but some
of those who read the book in this way will occasionally find themselves having to pause to
tool up.

In teaching market risk material over the last few years, it has also become clear to me that one
cannot teach this material effectively — and students cannot really absorb it — if one teaches
only at an abstract level. Of course, it is important to have lectures to convey the conceptual
material, but risk measurement is not a purely abstract subject, and in my experience students
only really grasp the material when they start playing with it — when they start working out VaR
figures for themselves on a spreadsheet, when they have exercises and assignments to do, and
so on. When teaching, it is therefore important to balance lecture-style delivery with practical
sessions in which the students use computers to solve illustrative risk measurement problems.

If the book is to be read and used practically, readers also need to use appropriate spreadsheets
or other software to carry out estimations for themselves. Again, my teaching and supervision
experience is that the use of software is critical in learning this material, and we can only ever
claim to understand something when we have actually measured it. The software and risk mate-
rial are also intimately related, and the good risk measurer knows that risk measurement always
boils down to some spreadsheet or other computer function. In fact, much of the action in this
area boils down to software issues — comparing alternative software routines, finding errors,
improving accuracy and speed, and so forth. Any risk measurement book should come with at
least some indication of how risk measurement routines can be implemented on a computer.

It is better still for such books to come with their own software, and this book comes
with a CD that contains 150 risk measurement and related functions in MATLAB and a
manual explaining their use.1 My advice to users is to print out the manual and go through

1MATLAB is a registered trademark of The MathWorks, Inc. For more information on MATLAB, please visit their website,
www.mathworks.com., or contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA.
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the functions on a computer, and then keep the manual to hand for later reference.2 The
examples and figures in the book are produced using this software, and readers should be
able to reproduce them for themselves. Readers are very welcome to contact me with any
feedback; however, I would ask any who do so to bear in mind that because of time pressures I
cannot guarantee a reply. Nonetheless, I will keep the toolkit and the manual up-to-date on my
website (www.nottingham.ac.uk/∼lizkd) and readers are welcome to download updates from
there.

In writing this software, I should explain that I chose MATLAB mainly because it is both
powerful and user-friendly, unlike its obvious alternatives (VBA, which is neither powerful
nor particularly user-friendly, or the C or S languages, which are certainly not user-friendly). I
also chose MATLAB in part because it produces very nice graphics, and a good graph or chart
is often an essential tool for risk measurement. Unfortunately, the downside of MATLAB is
that many users of the book will not be familiar with it or will not have ready access to it, and I
can only advise such readers to think seriously about going through the expense and/or effort
to get it.3

In explaining risk measurement throughout this book, I have tried to focus on the underlying
ideas rather than on programming code: understanding the ideas is much more important, and
the coding itself is mere implementation. My advice to risk measurers is that they should aim
to get to the level where they can easily write their own code once they know what they are
trying to do. However, for those who want it, the code I use is easily accessible — one simply
opens up MATLAB, goes into the Measuring Market Risk (MMR) Toolbox, and opens the
relevant function. The reader who wants the code should therefore refer directly to the program
coding rather than search around in the text: I have tried to keep the text itself free of such
detail to focus on more important conceptual issues.

The MMR Toolbox also has many other functions besides those used to produce the examples
or figures in the text. I have tried to produce a fairly extensive set of software functions
that would cover all the obvious VaR or ETL measurement problems, as well as some of
the more advanced ones. Users — such as students doing their dissertations, academics doing
their research, and practitioners working on practical applications — might find some of these
functions useful, and they are welcome to make whatever use of these functions they wish.
However, before anyone takes the MMR functions too seriously, they should appreciate that I
am not a programmer, and anyone who uses these functions must do so at his or her own risk.
As always in risk measurement, we should keep our wits about us and not be too trusting of
the software we use or the results we get.

2The user should copy the Measuring Market Risk folder into his or her MATLAB works folder and activate the path to the
Measuring Market Risk folder thus created (so MATLAB knows the folder is there). The functions were written in MATLAB 6.0 and
most of the MMR functions should work if the user has the Statistics Toolbox as well as the basic MATLAB 6.0 or later software
installed on their machine. However, a small number of MMR functions draw on functions in other MATLAB toolboxes (e.g., such
as the Garch Toolbox), so users with only the Statistics Toolbox will find that the occasional MMR function does not work on their
machine.

3When I first started working on this book, I initially tried writing the software functions in VBA to take advantage of the fact that
almost everyone has access to Excel; unfortunately, I ran into too many problems and eventually had to give up. Had I not done so,
I would still be struggling with VBA code even now, and this book would never have seen the light of day. So, whilst I sympathise
with those who might feel pressured to learn MATLAB or some other advanced language and obtain the relevant software, I don’t see
any practical alternative: if you want software, Excel/VBA is just not up to the job — although it can be useful for many simpler tasks
and for teaching at a basic level.

However, for those addicted to Excel, the enclosed CD also includes a number of Excel workbooks to illustrate some basic risk
measurement functions in Excel. Most of these are not especially powerful, but they give an idea of how one might go about risk
measurement using Excel. I should add, too, that some of these were written by Peter Urbani, and I would like to thank Peter for
allowing me to include them here.
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OUTLINE OF THE BOOK

As mentioned earlier, the book is divided into the chapters proper and the toolkit at the end that
deals with the technical issues underlying (or the tools needed for) market risk measurement.
It might be helpful to give a brief overview of these so readers know what to expect.

The Chapters

The first chapter provides a brief overview of recent developments in risk measurement —
market risk measurement especially — to put VaR and ETL in their proper context. Chapter 2
then looks at different measures of financial risk. We begin here with the traditional mean–
variance framework. This framework is very convenient and provides the underpinning for
modern portfolio theory, but it is also limited in its applicability because it has difficulty
handling skewness (or asymmetry) and ‘fat tails’ (or fatter than normal tails) in our P/L or
return probability density functions. We then consider VaR and ETL as risk measures, and
compare them to traditional risk measures and to each other.

Having established what our basic risk measures actually are, Chapter 3 has a first run
through the issues involved in estimating them. We cover three main sets of issues here:

� Preliminary data issues — how to handle data in profit/loss (or P/L) form, rate of return form,
etc.

� How to estimate VaR based on alternative sets of assumptions about the distribution of our
data and how our VaR estimation procedure depends on the assumptions we make.

� How to estimate ETL — and, in particular, how we can always approximate ETL by taking
it as an average of ‘tail VaRs’ or losses exceeding VaR.

Chapter 3 is followed by an appendix dealing with the important subject of mapping — the
process of describing the positions we hold in terms of combinations of standard building
blocks. We would use mapping to cut down on the dimensionality of our portfolio, or deal with
possible problems caused by having closely correlated risk factors or missing data. Mapping
enables us to estimate market risk in situations that would otherwise be very demanding or
even impossible.

Chapter 4 then takes a closer look at non-parametric VaR and ETL estimation. Non-
parametric approaches are those in which we estimate VaR or ETL making minimal assump-
tions about the distribution of P/L or returns: we let the P/L data speak for themselves as much
as possible. There are various non-parametric approaches, and the most popular is historical
simulation (HS), which is conceptually simple, easy to implement, widely used and has a fairly
good track record. We can also carry out non-parametric estimation using non-parametric den-
sity approaches (see Tool No. 5) and principal components and factor analysis methods (see
Tool No. 6); the latter methods are sometimes useful when dealing with high-dimensionality
problems (i.e., when dealing with portfolios with very large numbers of risk factors). As a
general rule, non-parametric methods work fairly well if market conditions remain reasonably
stable, and they are capable of considerable refinement and improvement. However, they can
be unreliable if market conditions change, their results are totally dependent on the data set,
and their estimates of VaR and ETL are subject to distortions from one-off events and ghost
effects.

Chapter 5 looks more closely at parametric approaches, the essence of which is that we fit
probability curves to the data and then infer the VaR or ETL from the fitted curve. Parametric
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approaches are more powerful than non-parametric ones, because they make use of additional
information contained in the assumed probability density function. They are also easy to
use, because they give rise to straightforward formulas for VaR and sometimes ETL, but
are vulnerable to error if the assumed density function does not adequately fit the data. The
chapter discusses parametric VaR and ETL at two different levels — at the portfolio level,
where we are dealing with portfolio P/L or returns, and assume that the underlying distribution
is normal, Student t, extreme value or whatever and at the sub-portfolio or individual position
level, where we deal with the P/L or returns to individual positions and assume that these are
multivariate normal, elliptical, etc., and where we look at both correlation- and copula-based
methods of obtaining portfolio VaR and ETL from position-level data. This chapter is followed
by appendices dealing with the use of delta–gamma and related approximations to deal with
non-linear risks (e.g., such as those arising from options), and with analytical solutions for the
VaR of options positions.

Chapter 6 examines how we can estimate VaR and ETL using simulation (or random number)
methods. These methods are very powerful and flexible, and can be applied to many different
types of VaR or ETL estimation problem. Simulation methods can be highly effective for many
problems that are too complicated or too messy for analytical or algorithmic approaches, and
they are particularly good at handling complications like path-dependency, non-linearity and
optionality. Amongst the many possible applications of simulation methods are to estimate
the VaR or ETL of options positions and fixed-income positions, including those in interest-
rate derivatives, as well as the VaR or ETL of credit-related positions (e.g., in default-risky
bonds, credit derivatives, etc.), and of insurance and pension-fund portfolios. We can also use
simulation methods for other purposes — for example, to estimate VaR or ETL in the context
of dynamic portfolio management strategies. However, simulation methods are less easy to use
than some alternatives, usually require a lot of calculations, and can have difficulty dealing
with early-exercise features.

Chapter 7 looks at tree (or lattice or grid) methods for VaR and ETL estimation. These
are numerical methods in which the evolution of a random variable over time is modelled in
terms of a binomial or trinomial tree process or in terms of a set of finite difference equations.
These methods have had a limited impact on risk estimation so far, but are well suited to
certain types of risk estimation problem, particularly those involving instruments with early-
exercise features. They are also fairly straightforward to program and are faster than some
simulation methods, but we need to be careful about their accuracy, and they are only suited
to low-dimensional problems.

Chapter 8 considers risk addition and decomposition — how changing our portfolio alters
our risk, and how we can decompose our portfolio risk into constituent or component risks.
We are concerned here with:

� Incremental risks. These are the changes in risk when a factor changes — for example, how
VaR changes when we add a new position to our portfolio.

� Component risks. These are the component or constituent risks that make up a certain total
risk — if we have a portfolio made up of particular positions, the portfolio VaR can be broken
down into components that tell us how much each position contributes to the overall portfolio
VaR.

Both these (and their ETL equivalents) are extremely useful measures in portfolio risk man-
agement: amongst other uses, they give us new methods of identifying sources of risk, finding
natural hedges, defining risk limits, reporting risks and improving portfolio allocations.
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Chapter 9 examines liquidity issues and how they affect market risk measurement. Liquidity
issues affect market risk measurement not just through their impact on our standard measures
of market risk, VaR and ETL, but also because effective market risk management involves
an ability to measure and manage liquidity risk itself. The chapter considers the nature of
market liquidity and illiquidity, and their associated costs and risks, and then considers how
we might take account of these factors to estimate VaR and ETL in illiquid or partially liquid
markets. Furthermore, since liquidity is important in itself and because liquidity problems are
particularly prominent in market crises, we also need to consider two other aspects of liquidity
risk measurement — the estimation of liquidity at risk (i.e., the liquidity equivalent to value at
risk), and the estimation of crisis-related liquidity risks.

Chapter 10 deals with backtesting — the application of quantitative, typically statistical,
methods to determine whether a model’s risk estimates are consistent with the assumptions
on which the model is based or to rank models against each other. To backtest a model, we
first assemble a suitable data set — we have to ‘clean’ accounting data, etc. — and it is good
practice to produce a backtest chart showing how P/L compares to measured risk over time.
After this preliminary data analysis, we can proceed to a formal backtest. The main classes of
backtest procedure are:

� Statistical approaches based on the frequency of losses exceeding VaR.
� Statistical approaches based on the sizes of losses exceeding VaR.
� Forecast evaluation methods, in which we score a model’s forecasting performance in terms

of a forecast error loss function.

Each of these classes of backtest comes in alternative forms, and it is generally advisable
to run a number of them to get a broad feel for the performance of the model. We can also
backtest models at the position level as well as at the portfolio level, and using simulation or
bootstrap data as well as ‘real’ data. Ideally, ‘good’ models should backtest well and ‘bad’
models should backtest poorly, but in practice results are often much less clear: in this game,
separating the sheep from the goats is often much harder than many imagine.

Chapter 11 examines stress testing — ‘what if’ procedures that attempt to gauge the vul-
nerability of our portfolio to hypothetical events. Stress testing is particularly good for quan-
tifying what we might lose in crisis situations where ‘normal’ market relationships break
down and VaR or ETL risk measures can be very misleading. VaR and ETL are good on
the probability side, but poor on the ‘what if’ side, whereas stress tests are good for ‘what
if’ questions and poor on probability questions. Stress testing is therefore good where VaR
and ETL are weak, and vice versa. As well as helping to quantify our exposure to bad
states, the results of stress testing can be a useful guide to management decision-making
and help highlight weaknesses (e.g., questionable assumptions, etc.) in our risk management
procedures.

The final chapter considers the subject of model risk — the risk of error in our risk estimates
due to inadequacies in our risk measurement models. The use of any model always entails
exposure to model risk of some form or another, and practitioners often overlook this exposure
because it is out of sight and because most of those who use models have a tendency to end up
‘believing’ them. We therefore need to understand what model risk is, where and how it arises,
how to measure it, and what its possible consequences might be. Interested parties such as risk
practitioners and their managers also need to understand what they can do to combat it. The
problem of model risk never goes away, but we can learn to live with it.
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The MMR Toolkit

We now consider the Measuring Market Risk Toolkit, which consists of 11 different ‘tools’,
each of which is useful for risk measurement purposes. Tool No. 1 deals with how we can
estimate the standard errors of quantile estimates. Quantiles (e.g., such as VaR) give us the
quantity values associated with specified probabilities. We can easily obtain quantile estimates
using parametric or non-parametric methods, but we also want to be able to estimate the pre-
cision of our quantile estimators, which can be important when estimating confidence intervals
for our VaR.

Tool No. 2 deals with the use of the theory of order statistics for estimating VaR and
ETL. Order statistics are ordered observations — the biggest observation, the second biggest
observation, etc. — and the theory of order statistics enables us to predict the distribution of
each ordered observation. This is very useful because the VaR itself is an order statistic — for
example, with 100 P/L observations, we might take the VaR at the 95% confidence level as the
sixth largest loss observation. Hence, the theory of order statistics enables us to estimate the
whole of the VaR probability density function — and this enables us to estimate confidence
intervals for our VaR. Estimating confidence intervals for ETLs is also easy, because there is
a one-to-one mapping from the VaR observations to the ETL ones: we can convert the P/L
observations into average loss observations, and apply the order statistics approach to the latter
to obtain ETL confidence intervals.

Tool No. 3 deals with the Cornish–Fisher expansion, which is useful for estimating VaR and
ETL when the underlying distribution is near normal. If our portfolio P/L or return distribution
is not normal, we cannot take the VaR to be given by the percentiles of an inverse normal
distribution function; however, if the non-normality is not too severe, the Cornish–Fisher
expansion gives us an adjustment factor that we can use to correct the normal VaR estimate
for non-normality. The Cornish–Fisher adjustment is easy to apply and enables us to retain the
easiness of the normal approach to VaR in some circumstances where the normality assumption
itself does not hold.

Tool No. 4 deals with bootstrap procedures. These methods enable us to sample repeatedly
from a given set of data, and they are useful because they give a reliable and easy way of
estimating confidence intervals for any parameters of interest, including VaRs and ETLs.

Tool No. 5 discusses the subject of non-parametric density estimation: how we can best
represent and extract the most information from a data set without imposing parametric as-
sumptions on the data. This topic covers the use and usefulness of histograms and related
methods (e.g., naı̈ve and kernel estimators) as ways of representing our data, and how we can
use these to estimate VaR.

Tool No. 6 covers principal components analysis and factor analysis, which are alternative
methods of gaining insight into the properties of a data set. They are helpful in risk measurement
because they can provide a simpler representation of the processes that generate a given data
set, which then enables us to reduce the dimensionality of our data and so reduce the number
of variance–covariance parameters that we need to estimate. Such methods can be very useful
when we have large-dimension problems (e.g., variance–covariance matrices with hundreds
of different instruments), but they can also be useful for cleaning data and developing data
mapping systems.

The next tool deals with fat-tailed distributions. It is important to consider fat-tailed dis-
tributions because most financial returns are fat-tailed and because the failure to allow for
fat tails can lead to major underestimates of VaR and ETL. We consider five different ways
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of representing fat tails: stable Lévy distributions, sometimes known as α-stable or stable
Paretian distributions; Student t-distributions; mixture-of-normal distributions; jump diffu-
sion distributions; and distributions with truncated Lévy flight. Unfortunately, with the partial
exception of the Student t, these distributions are not nearly as tractable as the normal distri-
bution, and they each tend to bring their own particular baggage. But that’s the way it is in risk
measurement: fat tails are a real problem.

Tool No. 8 deals with extreme value theory (EVT) and its applications in financial risk
management. EVT is a branch of statistics tailor-made to deal with problems posed by extreme
or rare events — and in particular, the problems posed by estimating extreme quantiles and
associated probabilities that go well beyond our sample range. The key to EVT is a theorem —
the extreme value theorem — that tells us what the distribution of extreme values should look
like, at least asymptotically. This theorem and various associated results tell us what we should
be estimating, and also give us some guidance on estimation and inference issues.

Tool No. 9 then deals with Monte Carlo and related simulation methods. These methods
can be used to price derivatives, estimate their hedge ratios, and solve risk measurement
problems of almost any degree of complexity. The idea is to simulate repeatedly the random
processes governing the prices or returns of the financial instruments we are interested in. If
we take enough simulations, the simulated distribution of portfolio values will converge to the
portfolio’s unknown ‘true’ distribution, and we can use the simulated distribution of end-period
portfolio values to infer the VaR or ETL.

Tool No. 10 discusses the forecasting of volatilities, covariances and correlations. This is
one of the most important subjects in modern risk measurement, and is critical to derivatives
pricing, hedging, and VaR and ETL estimation. The focus of our discussion is the estimation of
volatilities, in which we go through each of four main approaches to this problem: historical
estimation, exponentially weighted moving average (EWMA) estimation, GARCH estimation,
and implied volatility estimation. The treatment of covariances and correlations parallels
that of volatilities, and is followed by a brief discussion of the issues involved with the esti-
mation of variance–covariance and correlation matrices.

Finally, Tool No. 11 deals with the often misunderstood issue of dependency between risky
variables. The most common way of representing dependency is by means of the linear corre-
lation coefficient, but this is only appropriate in limited circumstances (i.e., to be precise, when
the risky variables are elliptically distributed, which includes their being normally distributed
as a special case). In more general circumstances, we should represent dependency in terms of
copulas, which are functions that combine the marginal distributions of different variables to
produce a multivariate distribution function that takes account of their dependency structure.
There are many different copulas, and we need to choose a copula function appropriate for
the problem at hand. We then consider how to estimate copulas, and how to use copulas to
estimate VaR.
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The Risk Measurement Revolution

Financial risk is the prospect of financial loss — or gain — due to unforeseen changes in under-
lying risk factors. In this book we are concerned with the measurement of one particular form
of financial risk — namely, market risk, or the risk of loss (or gain) arising from unexpected
changes in market prices (e.g., such as security prices) or market rates (e.g., such as interest
or exchange rates). Market risks, in turn, can be classified into interest rate risks, equity risks,
exchange rate risks, commodity price risks, and so on, depending on whether the risk factor is
an interest rate, a stock price, or whatever. Market risks can also be distinguished from other
forms of financial risk, most especially credit risk (or the risk of loss arising from the failure
of a counterparty to make a promised payment) and operational risk (or the risk of loss arising
from the failures of internal systems or the people who operate in them).

The theory and practice of risk management — and, included within that, risk measure-
ment — have developed enormously since the pioneering work of Harry Markowitz in the
1950s. The theory has developed to the point where risk management/measurement is now
regarded as a distinct sub-field of the theory of finance, and one that is increasingly taught as a
separate subject in the more advanced master’s and MBA programmes in finance. The subject
has attracted a huge amount of intellectual energy, not just from finance specialists but also from
specialists in other disciplines who are attracted to it — as illustrated by the large number of
ivy league theoretical physics PhDs who now go into finance research, attracted not just by the
high salaries but also by the challenging intellectual problems it poses.

1.1 CONTRIBUTORY FACTORS

1.1.1 A Volatile Environment

One factor behind the rapid development of risk management was the high level of instability
in the economic environment within which firms operated. A volatile environment exposes
firms to greater financial risk, and therefore provides an incentive for firms to find new and
better ways of managing this risk. The volatility of the economic environment is reflected in
various factors:

� Stock market volatility. Stock markets have always been volatile, but sometimes extremely
so: for example, on October 19, 1987, the Dow Jones fell 23% and in the process knocked
off over $1 trillion in equity capital; and from July 21 through August 31, 1998, the Dow
Jones lost 18% of its value. Other western stock markets have experienced similar falls, and
some Asian ones have experienced much worse ones (e.g., the South Korean stock market
lost over half of its value during 1997).

� Exchange rate volatility. Exchange rates have been volatile ever since the breakdown of the
Bretton Woods system of fixed exchange rates in the early 1970s. Occasional exchange rate
crises have also led to sudden and significant exchange rate changes, including — among
many others — the ERM devaluations of September 1992, the problems of the peso in
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1994, the East Asian currency problems of 1997–98, the rouble crisis of 1998 and Brazil
in 1999.

� Interest rate volatility. There have been major fluctuations in interest rates, with their
attendant effects on funding costs, corporate cash flows and asset values. For example, the
Fed Funds rate, a good indicator of short-term market rates in the US, approximately doubled
over 1994.

� Commodity market volatility. Commodity markets are notoriously volatile, and commod-
ity prices often go through long periods of apparent stability and then suddenly jump
by enormous amounts: for instance, in 1990, the price of West Texas Intermediate crude
oil rose from a little over $15 a barrel to around $40 a barrel. Some commodity prices
(e.g., electricity prices) also show extremely pronounced day-to-day and even hour-to-hour
volatility.

1.1.2 Growth in Trading Activity

Another factor contributing to the transformation of risk management is the huge increase
in trading activity since the late 1960s. The average number of shares traded per day in the
New York Stock Exchange has grown from about 3.5m in 1970 to around 100m in 2000; and
turnover in foreign exchange markets has grown from about a billion dollars a day in 1965 to
$1,210 billion in April 2001.1 There have been massive increases in the range of instruments
traded over the past two or three decades, and trading volumes in these new instruments have
also grown very rapidly. New instruments have been developed in offshore markets and, more
recently, in the newly emerging financial markets of Eastern Europe, China, Latin America,
Russia, and elsewhere. New instruments have also arisen for assets that were previously illiquid,
such as consumer loans, commercial and industrial bank loans, mortgages, mortgage-based
securities and similar assets, and these markets have grown very considerably since the early
1980s.

There has also been a phenomenal growth of derivatives activity. Until 1972 the only deriva-
tives traded were certain commodity futures and various forwards and over-the-counter
(OTC) options. The Chicago Mercantile Exchange then started trading foreign currency futures
contracts in 1972, and in 1973 the Chicago Board Options Exchange started trading equity call
options. Interest-rate futures were introduced in 1975, and a large number of other financial
derivatives contracts were introduced in the following years: swaps and exotics (e.g., swap-
tions, futures on interest rate swaps, etc.) then took off in the 1980s, and catastrophe, credit,
electricity and weather derivatives in the 1990s. From negligible amounts in the early 1970s,
the daily notional amounts turned over in derivatives contracts grew to nearly $2,800 billion by
April 2001.2 However, this figure is misleading, because notional values give relatively little
indication of what derivatives contracts are really worth. The true size of derivatives trading
is better represented by the replacement cost of outstanding derivatives contracts, and these
are probably no more than 4% or 5% of the notional amounts involved. If we measure size by
replacement cost rather than notional principals, the size of the daily turnover in the deriva-
tives market in 2001 was therefore around $126 billion — which is still not an inconsiderable
amount.

1The latter figure is from Bank for International Settlements (2001, p. 1).
2Bank for International Settlements (2001, p. 9).
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1.1.3 Advances in Information Technology

A third contributing factor to the development of risk management was the rapid advance in the
state of information technology. Improvements in IT have made possible huge increases in both
computational power and the speed with which calculations can be carried out. Improvements
in computing power mean that new techniques can be used (e.g., such as computer-intensive
simulation techniques) to enable us to tackle more difficult calculation problems. Improvements
in calculation speed then help make these techniques useful in real time, where it is often
essential to get answers quickly.

This technological progress has led to IT costs falling by about 25–30% a year over the past
30 years or so. To quote Guldimann:

Most people know that technology costs have dropped rapidly over the years but few realise how
steep and continuous the fall has been, particularly in hardware and data transmission. In 1965, for
example, the cost of storing one megabyte of data (approximately the equivalent of the content of
a typical edition of the Wall Street Journal) in random access memory was about $100,000. Today
it is about $20. By 2005, it will probably be less than $1.

The cost of transmitting electronic data has come down even more dramatically. In 1975, it cost
about $10,000 to send a megabyte of data from New York to Tokyo. Today, it is about $5. By
2005, it is expected to be about $0.01. And the cost of the processor needed to handle 1 million
instructions a second has declined from about $1 million in 1965 to $1.50 today. By 2005, it is
expected to drop to a few cents. (All figures have been adjusted for inflation.) (Guldimann (1996,
p. 17))

Improvements in computing power, increases in computing speed, and reductions in comput-
ing costs have thus come together to transform the technology available for risk management.
Decision-makers are no longer tied down to the simple ‘back of the envelope’ techniques that
they had to use earlier when they lacked the means to carry out more complex calculations.
They can now use sophisticated algorithms programmed into computers to carry out real-time
calculations that were not possible before. The ability to carry out such calculations then creates
a whole new range of risk measurement and risk management possibilities.

1.2 RISK MEASUREMENT BEFORE VAR

To understand recent developments in risk measurement, we need first to appreciate the more
traditional risk measurement tools.

1.2.1 Gap Analysis

One common approach was (and, in fact, still is) gap analysis, which was initially developed
by financial institutions to give a simple, albeit crude, idea of interest-rate risk exposure.3 Gap
analysis starts with the choice of an appropriate horizon period — 1 year, or whatever. We then
determine how much of our asset or liability portfolio will re-price within this period, and the
amounts involved give us our rate-sensitive assets and rate-sensitive liabilities. The gap is the
difference between these, and our interest-rate exposure is taken to be the change in net interest
income that occurs in response to a change in interest rates. This in turn is assumed to be equal

3For more on gap analysis, see, e.g., Sinkey (1992, ch. 12).
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to the gap times the interest-rate change:

�NII = (GAP)�r (1.1)

where �NII is the change in net interest income and �r is the change in interest rates.
Gap analysis is fairly simple to carry out, but has its limitations: it only applies to on-balance

sheet interest-rate risk, and even then only crudely; it looks at the impact of interest rates on
income, rather than on asset or liability values; and results can be sensitive to the choice of
horizon period.

1.2.2 Duration Analysis

Another method traditionally used by financial institutions for measuring interest-rate risks is
duration analysis.4 The (Macaulay) duration D of a bond (or any other fixed-income security)
can be defined as the weighted average term to maturity of the bond’s cash flows, where the
weights are the present value of each cash flow relative to the present value of all cash flows:

D =
n∑

i=1

[i × PVCFi ]

/ n∑
i=1

PVCFi (1.2)

where PVCFi is the present value of the period i cash flow, discounted at the appropriate spot
period yield. The duration measure is useful because it gives an approximate indication of the
sensitivity of a bond price to a change in yield:

% Change in bond price ≈ −D × �y/(1 + y) (1.3)

where y is the yield and �y the change in yield. The bigger the duration, the more the bond
price changes in response to a change in yield. The duration approach is very convenient
because duration measures are easy to calculate and the duration of a bond portfolio is a
simple weighted average of the durations of the individual bonds in that portfolio. It is also
better than gap analysis because it looks at changes in asset (or liability) values, rather than
just changes in net income.

However, duration approaches have similar limitations to gap analysis: they ignore risks
other than interest-rate risk; they are crude,5 and even with various refinements to improve
accuracy,6 duration-based approaches are still inaccurate relative to more recent approaches
to fixed-income analysis (e.g., such as HJM models). Moreover, the main reason for using
duration approaches in the past — their (comparative) ease of calculation — is no longer of
much significance, since more sophisticated models can now be programmed into micro-
computers to give their users more accurate answers rapidly.

4For more on duration approaches, see, e.g., Fabozzi (1993, ch. 11 and 12) or Tuckman (1995, ch. 11–13).
5They are crude because they only take a first-order approximation to the change in the bond price, and because they implicitly

presuppose that any changes in the yield curve are parallel ones (i.e., all yields across the maturity spectrum change by the same
amount). Duration-based hedges are therefore inaccurate against yield changes that involve shifts in the slope of the yield curve.

6There are two standard refinements. (1) We can take a second-order rather than a first-order approximation to the bond price
change. The second-order term — known as convexity — is related to the change in duration as yield changes, and this duration–
convexity approach gives us a better approximation to the bond price change as the yield changes. (For more on this approach, see,
e.g., Fabozzi (1993, ch. 12) or Tuckman (1995, ch. 11).) However, the duration–convexity approach generally only gives modest
improvements in accuracy. (2) An alternative refinement is to use key rate durations: if we are concerned about shifts in the yield curve,
we can construct separate duration measures for yields of specified maturities (e.g., short-term and long-term yields); these would give
us estimates of our exposure to changes in these specific yields and allow us to accommodate non-parallel shifts in the yield curve. For
more on this key rate duration approach, see Ho (1992) or Tuckman (1995, ch. 13).
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1.2.3 Scenario Analysis

A third approach is scenario analysis (or ‘what if’ analysis), in which we set out different
scenarios and investigate what we stand to gain or lose under them. To carry out scenario
analysis, we select a set of scenarios — or paths describing how relevant variables (e.g., stock
prices, interest rates, exchange rates, etc.) might evolve over a horizon period. We then postulate
the cash flows and/or accounting values of assets and liabilities as they would develop under
each scenario, and use the results to come to a view about our exposure.

Scenario analysis is not easy to carry out. A lot hinges on our ability to identify the ‘right’
scenarios, and there are relatively few rules to guide us when selecting them. We need to ensure
that the scenarios we examine are reasonable and do not involve contradictory or excessively
implausible assumptions, and we need to think through the interrelationships between the vari-
ables involved.7 We also want to make sure, as best we can, that we have all the main scenarios
covered. Scenario analysis also tells us nothing about the likelihood of different scenarios, so
we need to use our judgement when assessing the practical significance of different scenarios.
In the final analysis, the results of scenario analyses are highly subjective and depend to a very
large extent on the skill or otherwise of the analyst.

1.2.4 Portfolio Theory

A somewhat different approach to risk measurement is provided by portfolio theory.8 Portfolio
theory starts from the premise that investors choose between portfolios on the basis of their
expected return, on the one hand, and the standard deviation (or variance) of their return, on the
other.9 The standard deviation of the portfolio return can be regarded as a measure of the
portfolio’s risk. Other things being equal, an investor wants a portfolio whose return has a high
expected value and a low standard deviation. These objectives imply that the investor should
choose a portfolio that maximises expected return for any given portfolio standard deviation
or, alternatively, minimises standard deviation for any given expected return. A portfolio that
meets these conditions is efficient, and a rational investor will always choose an efficient
portfolio. When faced with an investment decision, the investor must therefore determine the
set of efficient portfolios and rule out the rest. Some efficient portfolios will have more risk than
others, but the more risky ones will also have higher expected returns. Faced with the set of
efficient portfolios, the investor then chooses one particular portfolio on the basis of his or her
own preferred trade-off between risk and expected return. An investor who is very averse to risk
will choose a safe portfolio with a low standard deviation and a low expected return, and an

7We will often want to examine scenarios that take correlations into account as well (e.g., correlations between interest-rate and
exchange-rate risks), but in doing so, we need to bear in mind that correlations often change, and sometimes do so at the most awkward
times (e.g., during a market crash). Hence, it is often good practice to base scenarios on relatively conservative assumptions that allow
for correlations to move against us.

8The origin of portfolio theory is usually traced to the work of Markowitz (1952, 1959). Later scholars then developed the Capital
Asset Pricing Model (CAPM) from the basic Markowitz framework. However, I believe the CAPM — which I interpret to be portfolio
theory combined with the assumptions that everyone is identical and that the market is in equilibrium — was an unhelpful digression
and that the current discredit into which it has fallen is justified. (For the reasons behind this view, I strongly recommend Frankfurter’s
withering assessment of the rise and fall of the CAPM empire (Frankfurter (1995)).) That said, in going over the wreckage of the
CAPM, it is also important not to lose sight of the tremendous insights provided by portfolio theory (i.e., à la Markowitz). I therefore
see the way forward as building on portfolio theory (and, indeed, I believe that much of what is good in the VaR literature does exactly
that) whilst throwing out the CAPM.

9This framework is often known as the mean–variance framework, because it implicitly presupposes that the mean and variance
(or standard deviation) of the return are sufficient to guide investors’ decisions. In other words, investors are assumed not to need
information about higher order moments of the return probability density function, such as the skewness or kurtosis coefficients.
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investor who is less risk averse will choose a more risky portfolio with a higher expected
return.

One of the key insights of portfolio theory is that the risk of any individual asset is not the
standard deviation of the return to that asset, but rather the extent to which that asset contributes
to overall portfolio risk. An asset might be very risky (i.e., have a high standard deviation)
when considered on its own, and yet have a return that correlates with the returns to other
assets in our portfolio in such a way that acquiring the new asset adds nothing to the overall
portfolio standard deviation. Acquiring the new asset would then be riskless, even though the
asset held on its own would still be risky. The moral of the story is that the extent to which a
new asset contributes to portfolio risk depends on the correlation or covariance of its return
with the returns to the other assets in our portfolio — or, if one prefers, the beta, which is equal
to the covariance between the return to asset i and the return to the portfolio, rp, divided by the
variance of the portfolio return. The lower the correlation, other things being equal, the less
the asset contributes to overall risk. Indeed, if the correlation is sufficiently negative, it will
offset existing risks and lower the portfolio standard deviation.

Portfolio theory provides a useful framework for handling multiple risks and taking ac-
count of how those risks interact with each other. It is therefore of obvious use to — and is in
fact widely used by — portfolio managers, mutual fund managers and other investors. However,
it tends to run into problems over data. The risk-free return and the expected market return are
not too difficult to estimate, but estimating the betas is often more problematic. Each beta is
specific not only to the individual asset to which it belongs, but also to our current portfolio. To
estimate a beta coefficient properly, we need data on the returns to the new asset and the returns
to all our existing assets, and we need a sufficiently long data set to make our statistical esti-
mation techniques reliable. The beta also depends on our existing portfolio and we should, in
theory, re-estimate all our betas every time our portfolio changes. Using the portfolio approach
can require a considerable amount of data and a substantial amount of ongoing work.

In practice users often wish to avoid this burden, and in any case they sometimes lack the
data to estimate the betas accurately in the first place. Practitioners are then tempted to seek
a short-cut, and work with betas estimated against some hypothetical market portfolio. This
leads them to talk about the beta for an asset, as if the asset had only a single beta. However,
this short-cut only gives us good answers if the beta estimated against the hypothetical market
portfolio is close to the beta estimated against the portfolio we actually hold, and in practice we
seldom know whether it is.10 If the two portfolios are sufficiently different, the ‘true’ beta (i.e.,
the beta measured against our actual portfolio) might be very different from the hypothetical
beta we are using.11

10There are also other problems. (1) If we wish to use this short-cut, we have relatively little firm guidance on what the hypothetical
portfolio should be. In practice, investors usually use some ‘obvious’ portfolio such as the basket of shares behind a stock index, but
we never really know whether this is a good proxy for the CAPM market portfolio or not. It is probably not. (2) Even if we pick a good
proxy for the CAPM market portfolio, it is still very doubtful that any such portfolio will give us good results (see, e.g., Markowitz
(1992, p. 684)). If we wish to use proxy risk estimates, there is a good argument that we should abandon single-factor models in favour
of multi-factor models that can mop up more systematic risks. This leads us to the arbitrage pricing theory (APT) of Ross (1976).
However, the APT has its own problems: we can’t easily identify the risk factors, and even if we did identify them, we still don’t know
whether the APT will give us a good proxy for the systematic risk we are trying to proxy.

11We can also measure risk using statistical approaches applied to equity, FX, commodity and other risks, as well as interest-rate
risks. The idea is that we postulate a measurable relationship between the exposure variable we are interested in (e.g., the loss/gain on
our bond or FX portfolio or whatever) and the factors that we think influence that loss or gain. We then estimate the parameters of this
relationship by an appropriate econometric technique, and the parameter estimates give us an idea of our risk exposures. This approach
is limited by the availability of data (i.e., we need enough data to estimate the relevant parameters) and by linearity assumptions, and
there can be problems caused by misspecification and instability in estimated statistical relationships.


