Wolf Kleinert

# Defect Sizing Using Non-destructive Ultrasonic Testing

Applying Bandwidth-Dependent DAC and DGS Curves



Defect Sizing Using Non-destructive Ultrasonic Testing

Wolf Kleinert

# Defect Sizing Using Non-destructive Ultrasonic Testing

Applying Bandwidth-Dependent DAC and DGS Curves



Wolf Kleinert Bonn Germany

ISBN 978-3-319-32834-8 ISBN 978-3-319-32836-2 (eBook) DOI 10.1007/978-3-319-32836-2

Library of Congress Control Number: 2016937519

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

#### Preface

In 1982 I started my career in the Krautkrämer Company in Cologne. Since then I have worked in the field of non-destructive material testing using ultrasonics up to my retirement in the end of 2014. In the past couple of years I was particularly engaged with the distance–gain–size (DGS) method for the sizing of reflectors.

This activity started when a colleague of mine, Michael Berke, came to me showing the result of a software test. The software tested was the implementation of the DGS method in an ultrasonic Flaw Detector. The software test showed strange deviations using the DGS method applied to measurements with an angle beam probe. The first approach, assuming a software bug, had to be abandoned quickly. This led to the development of new innovative angle beam probes, single element as well as phased array probes. Many iterations were necessary during this development. The prototypes were improved step-by-step until the result was satisfactory. In Chaps. 4–6 the development is described in great detail.

A lot of insight was gained during the years of this development, finally resulting in probes which are fully modeled. The sound fields of these probes can be calculated easily. Due to this fact, bandwidth-dependent DGS curves, respectively DAC curves for flat-bottomed holes and side-drilled holes could be engineered.

GE Sensing & Inspection Technologies GmbH in Huerth, Germany applied for several patents covering these new probes including the bandwidth-dependent DGS and DAC curves. When referring to these probes the term *true*DGS<sup>®</sup> will be used which is a registered trademark of GE Sensing & Inspection Technologies GmbH.

Bonn April 2016 Wolf Kleinert

#### Acknowledgments

Without the help and assistance of my former colleagues the development of the *true*DGS<sup>®</sup> probes would have been impossible. Particularly with Gerhard Splitt I spent a lot of time discussing the next steps in the development. Additionally he checked all my equations and formulas for the calculation of these probes. In the patent application of the *true*DGS<sup>®</sup> probes both of us are mentioned as the inventors. Furthermore I appreciate the work of York Oberdoerfer and his team. They built these probes and were very patient following all the necessary iteration steps. It is hard to imagine how many measurements using test blocks were needed to validate the new probes. This large number of measurements was carried out by York and his team. York and I have had lots of technical discussions which all helped to improve the new probes.

Last but not least, I thank my wife Brigitte who patiently accepted my mental absence during the writing of this book which was sometimes connected with a bad mood. Additionally I thank her and my sons for proofreading this document several times.

### Contents

|   | Introduct                                                                                                                                                                                 | ion                                                                                                               | 1                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|   | 1.1 Dist                                                                                                                                                                                  | ance Amplitude Correction Curve                                                                                   | 2                                                        |
|   | 1.2 Dist                                                                                                                                                                                  | ance-Gain-Size Method (DGS)                                                                                       | 3                                                        |
|   | 1.3 Key                                                                                                                                                                                   | Differences: DAC Versus DGS                                                                                       | 4                                                        |
|   | 1.4 Fore                                                                                                                                                                                  | sight to This Book                                                                                                | 5                                                        |
|   | Reference                                                                                                                                                                                 | s                                                                                                                 | 5                                                        |
| 2 | State of t                                                                                                                                                                                | he Art: DAC and DGS                                                                                               | 7                                                        |
|   | 2.1 Dist                                                                                                                                                                                  | ance Amplitude Curve                                                                                              | 7                                                        |
|   | 2.2 Dist                                                                                                                                                                                  | ance–Gain–Size Method                                                                                             | 8                                                        |
|   | 2.2.                                                                                                                                                                                      | EN ISO 16811:2012                                                                                                 | 9                                                        |
|   | 2.2.2                                                                                                                                                                                     | 2 DGS Evaluation                                                                                                  | 9                                                        |
|   | Reference                                                                                                                                                                                 | s                                                                                                                 | 19                                                       |
| 3 | DGS Dev                                                                                                                                                                                   | iations Using Angle Beam Probes                                                                                   | 21                                                       |
|   | 3.1 Sour                                                                                                                                                                                  | nd Fields                                                                                                         | 23                                                       |
|   | 3.2 A M                                                                                                                                                                                   | anufacturer-Independent Issue                                                                                     | 25                                                       |
|   | 3.3 The                                                                                                                                                                                   | Beginning of a New Probe Technology                                                                               | 26                                                       |
|   | Reference                                                                                                                                                                                 |                                                                                                                   | ~                                                        |
|   |                                                                                                                                                                                           | S                                                                                                                 | 27                                                       |
| 4 | The New                                                                                                                                                                                   | s                                                                                                                 | 27<br>29                                                 |
| 4 | The New 4.1 Desi                                                                                                                                                                          | s                                                                                                                 | 27<br>29<br>29                                           |
| 4 | The New<br>4.1 Desi<br>4.2 Calc                                                                                                                                                           | s     Probe Technology, Single Element Probes.     gn Principle     ulation Method                                | 27<br>29<br>29<br>31                                     |
| 4 | The New      4.1    Desi      4.2    Calc      4.2.    Calc                                                                                                                               | s  Probe Technology, Single Element Probes.    gn Principle  ulation Method    The Fastest Path  The Statest Path | 27<br>29<br>29<br>31<br>32                               |
| 4 | <b>The New</b><br>4.1 Desi<br>4.2 Calc<br>4.2.<br>4.2.                                                                                                                                    | s  Probe Technology, Single Element Probes.    gn Principle                                                       | 27<br>29<br>29<br>31<br>32<br>34                         |
| 4 | The New      4.1    Desi      4.2    Calc      4.2.1    4.2.1      4.2.1    4.2.1                                                                                                         | s                                                                                                                 | 27<br>29<br>29<br>31<br>32<br>34<br>34                   |
| 4 | <b>The New</b><br>4.1 Desi<br>4.2 Calc<br>4.2.<br>4.2.<br>4.2.<br>4.2.                                                                                                                    | s  Probe Technology, Single Element Probes.    gn Principle                                                       | 27<br>29<br>29<br>31<br>32<br>34<br>34<br>35             |
| 4 | The New      4.1    Desi      4.2    Calc      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.                                                       | S  Probe Technology, Single Element Probes.    gn Principle                                                       | 27<br>29<br>29<br>31<br>32<br>34<br>34<br>35<br>35       |
| 4 | The New      4.1    Desi      4.2    Calc      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2.      4.2.    4.2. | S  Probe Technology, Single Element Probes.    gn Principle                                                       | 27<br>29<br>29<br>31<br>32<br>34<br>34<br>35<br>35<br>36 |

|   | 4.3         | Necessary Adaptations4.3.1Phase Shift4.3.2Corrected Angle of Incidence | 38<br>38<br>41 |
|---|-------------|------------------------------------------------------------------------|----------------|
|   | 4.4         | 4.3.3 Area Correction.                                                 | 42             |
|   | 4.4<br>4.5  | Rotational Symmetry                                                    | 42<br>44       |
|   | 1.6         | 4.5.1 Measurement of the Sound Fields                                  | 44             |
|   | 4.6<br>Refe | Advantage of the New Probe Technology                                  | 45<br>45       |
| 5 | New         | Probe Technology Phased Array Probes                                   | 47             |
| 5 | 5.1         | Delay Laws.                                                            | 49             |
|   | 5.2         | DGS Accuracy                                                           | 49             |
|   | 5.3         | Sound Exit Points                                                      | 50             |
|   | Refe        | rences                                                                 | 52             |
| 6 | New         | Probe Technology, Curved Coupling Surfaces                             | 53             |
|   | 6.1         | Fastest Path.                                                          | 54             |
|   | 0.2<br>6.3  | Angles                                                                 | 50<br>57       |
|   | 6.4         | Example: Solid Axle                                                    | 58             |
|   | 6.5         | Delay Laws.                                                            | 60             |
|   | Refe        | rences                                                                 | 63             |
| 7 | Bano        | dwidth-Dependent DGS Diagrams                                          | 65             |
|   | 7.1         | Single Frequency Ultrasound.                                           | 65             |
|   |             | 7.1.1 Near Field Length                                                | 69             |
|   | 7.2         | Multi-frequency Ultrasound.                                            | 71             |
|   |             | 7.2.1 Near Field Length                                                | 71             |
|   |             | 7.2.2 Back wall Ecno Curve                                             | 74             |
|   | Refe        | rences                                                                 | 79             |
| 0 | Ann         | wing Pandwidth Danandant DCS Diagrams                                  | 01             |
| 0 | App<br>8 1  | Results Using Phased Array Angle Beam Probes                           | 82             |
|   | Refe        | rences                                                                 | 84             |
| 9 | Band        | dwidth-Dependent DAC Curves                                            | 85             |
|   | 9.1         | Calculating Bandwidth-Dependent DAC Curves                             | 85             |
|   | 9.2         | Applying the Bandwidth-Dependent DAC Curves                            | 88             |
|   |             | 9.2.1 Using a Reference Echo from a Calibration Standard               | 88             |
|   |             | 9.2.2 Using One Single Side-Drilled Hole as Reference                  | 91             |
|   |             | 9.2.3 Recording a DAC Curve for One Single Angle                       | 92<br>06       |
|   | Refe        | 9.2.4 FIOS and CONS                                                    | 90<br>08       |
|   | ILUIC       | 1011000                                                                | 20             |

| 10  | Convert SDH into FBH and Vice Versa<br>10.1 SDH or FBH?<br>References | 99<br>102<br>103  |
|-----|-----------------------------------------------------------------------|-------------------|
| 11  | Frequency-Dependent Sound Attenuation    Reference                    | 105<br>105<br>108 |
| Арр | pendix                                                                | 109               |
| Fur | ther Readings                                                         | 115               |
| Ind | ex                                                                    | 117               |

## List of Figures

| Sketch of a test block with side-drilled holes in different depths       | 2                                                                     |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Recorded distance amplitude correction <i>curve</i>                      | 3                                                                     |
| General DGS Diagram taken from EN ISO                                    |                                                                       |
| 16811:2012 [3]                                                           | 4                                                                     |
| Figure from the Krautkrämer book [1]                                     | 8                                                                     |
| Digitized general DGS diagram                                            | 9                                                                     |
| Special DGS diagram for a straight beam probe                            | 10                                                                    |
| DGS evaluation for a straight beam probe                                 | 11                                                                    |
| Special DGS diagram for an angle beam probe                              | 14                                                                    |
| V and W through transmission                                             | 15                                                                    |
| Determination of the sound attenuation                                   | 15                                                                    |
| DGS evaluation for a measurement using an angle beam                     |                                                                       |
| probe                                                                    | 18                                                                    |
| DGS scale design Krautkrämer [1]                                         | 18                                                                    |
| Ultrasonic instrument with a DGS curve and DGS                           |                                                                       |
| evaluation                                                               | 19                                                                    |
| Ultrasonic instrument with Time Corrected Gain according                 |                                                                       |
| to a DGS curve                                                           | 19                                                                    |
| Deviations in the DGS evaluation using a SWB 60-2                        | 22                                                                    |
| DGS evaluation of measurements taken with a SWB 60-2                     |                                                                       |
| considering a sound attenuation of 10 dB/m                               | 22                                                                    |
| Sound field cross sections of an angle beam probe with a                 |                                                                       |
| $8 \times 9 \text{ mm}^2$ transducer at 0.7, 1, and 2 near field lengths | 23                                                                    |
| Long sections through the sound field of a $8 \times 9$ mm               |                                                                       |
| transducer through the acoustic axis: a parallel to the                  |                                                                       |
| longer side. <b>b</b> Parallel to the shorter side                       | 23                                                                    |
| Cross sections perpendicular to the acoustic axis in the                 |                                                                       |
| depth of 0.5, 1 and 3 near field lengths                                 | 24                                                                    |
|                                                                          | Sketch of a test block with side-drilled holes in different<br>depths |

| Figure 3.6  | Excerpt from an Olympus article published                                |    |
|-------------|--------------------------------------------------------------------------|----|
|             | at ndt.net [4]                                                           | 25 |
| Figure 3.7  | The task to be solved                                                    | 26 |
| Figure 4.1  | Basic idea for the new probe technology: a Straight beam                 |    |
|             | probe used as base of the design. <b>b</b> Angle beam probe              |    |
|             | under construction                                                       | 30 |
| Figure 4.2  | Example of a transducer of a <i>true</i> DGS <sup>®</sup> probe          | 31 |
| Figure 4.3  | Coordinate system used for all calculations                              | 32 |
| Figure 4.4  | Phase shifts at the interface between probe wedge and test               |    |
|             | material                                                                 | 38 |
| Figure 4.5  | Sum of the phase shifts for both directions back                         |    |
|             | and forth                                                                | 39 |
| Figure 4.6  | Applied phase correction                                                 | 40 |
| Figure 4.7  | Angle deviation in dependence on the angle                               |    |
|             | of incidence                                                             | 41 |
| Figure 4.8  | Correction of the angle of incidence                                     | 41 |
| Figure 4.9  | Special DGS diagram for the MWB 60-4tD                                   | 43 |
| Figure 4.10 | Calculation results for the MWB 60-4tD                                   | 43 |
| Figure 4.11 | CIVA simulation of the sound field of a <i>true</i> <sup>®</sup> probe   | 44 |
| Figure 4.12 | Sound field measurements using the photo                                 |    |
|             | elastic effect                                                           | 45 |
| Figure 5.1  | Long sections: nominal and virtual transducer                            | 48 |
| Figure 5.2  | Long sections after solving the system of equations                      | 48 |
| Figure 5.3  | Calculation of the delay times                                           | 49 |
| Figure 5.4  | DGS evaluation of measurements taken with a <i>true</i> DGS <sup>®</sup> |    |
|             | phased array angle beam probe at $70^{\circ}$                            | 50 |
| Figure 5.5  | Assumption to calculate the sound exit points                            | 51 |
| Figure 5.6  | Measured sound exit points compared to the calculated                    |    |
|             | sound exit points                                                        | 52 |
| Figure 6.1  | Figure taken from EN ISO 16811:2012                                      | 54 |
| Figure 6.2  | Coupling geometry of the solid axle BA013                                | 59 |
| Figure 6.3  | Coupling geometry and acoustic axis                                      | 59 |
| Figure 6.4  | Transducer and transducer shape                                          | 60 |
| Figure 6.5  | Original and virtual transducer including calculation of the             |    |
|             | delay laws for the solid axle BA 013                                     | 62 |
| Figure 6.6  | Solid axle inspected ultrasonically                                      | 62 |
| Figure 6.7  | Tool for calculating delay laws for complex geometries                   | 63 |
| Figure 7.1  | Evaluation of measurements taken with a trueDGS <sup>®</sup>             |    |
| C           | phased array angle beam probe according to EN ISO                        |    |
|             | 16811:2012                                                               | 66 |
| Figure 7.2  | Reflectors are oversized at sound paths below 0.7 N using                |    |
| c           | the general DGS diagram from the EN ISO                                  |    |
|             | 16811:2012                                                               | 66 |
| Figure 7.3  | Sketch for the calculation of the sound pressure                         | 67 |

| Figure 7.4  | Sketch of the circular transducer                            | 68  |
|-------------|--------------------------------------------------------------|-----|
| Figure 7.5  | Sound pressure on the acoustic axis calculated for a single  |     |
|             | frequency                                                    | 69  |
| Figure 7.6  | Transducer and rim beams to the end of the near field        | 70  |
| Figure 7.7  | Pulse and spectrum of multi frequency ultrasound             | 71  |
| Figure 7.8  | Sound pressure calculation for a single frequency and for a  |     |
| -           | pulse with a relative bandwidth of 30 %                      | 72  |
| Figure 7.9  | Approximation of the back wall echo curve and the 3.1        |     |
|             | mm ERS curve                                                 | 77  |
| Figure 7.10 | DGS diagram calculated bandwidth dependently                 | 77  |
| Figure 7.11 | General DGS diagram calculated for longitudinal waves        |     |
| -           | with a relative bandwidth of 30 %                            | 78  |
| Figure 7.12 | General DGS diagram calculated for transversal waves         |     |
| -           | with a relative bandwidth of 30 %                            | 78  |
| Figure 8.1  | Evaluation based on a bandwidth-dependent DGS diagram        |     |
| -           | covering the entire range of sound paths                     | 82  |
| Figure 8.2  | Evaluation of measurements taken with a trueDGS <sup>®</sup> |     |
| -           | 2 MHz phased array angle beam probe with a steering          |     |
|             | angle of $65^{\circ}$                                        | 83  |
| Figure 8.3  | DGS evaluation using one single reference echo               | 84  |
| Figure 9.1  | General DGS diagram for side-drilled holes                   | 86  |
| Figure 9.2  | Approximation of the sound pressure in the far field         | 88  |
| Figure 9.3  | DGS curve for a side-drilled hole                            | 89  |
| Figure 9.4  | DGS diagram for a 3 mm SDH with reference echo and           |     |
|             | $\Delta G$ marked                                            | 90  |
| Figure 9.5  | Calculated display curve                                     | 90  |
| Figure 9.6  | Calculated display curve with measurement results            | 91  |
| Figure 9.7  | Using one single SDH as reference and validation             |     |
|             | applying the rest of the side-drilled holes in the test      |     |
|             | block                                                        | 92  |
| Figure 9.8  | Display curve with measurement values and minimized          |     |
|             | distances between measurements and calculated curve          | 93  |
| Figure 9.9  | DGS curves for side-drilled holes recorded using four        |     |
|             | different angles including the standard deviations between   |     |
|             | measurements and calculated curves                           | 94  |
| Figure 9.10 | Validation of calculated curves for the other three          |     |
|             | angles                                                       | 95  |
| Figure 9.11 | Alternatively to the DAC display curve time corrected gain   |     |
|             | can be used                                                  | 97  |
| Figure 10.1 | Converting a given side-drilled hole into a flat-bottomed    |     |
|             | hole                                                         | 100 |
| Figure 10.2 | Converting a given flat-bottomed hole into a side-drilled    |     |
|             | hole                                                         | 101 |

| Figure 11.1 | Frequency spectrum for the V and W                 |     |
|-------------|----------------------------------------------------|-----|
|             | through transmission                               | 106 |
| Figure 11.2 | Digitized frequency spectra for the V and W        |     |
|             | through transmissions                              | 106 |
| Figure 11.3 | Distance-based gain difference between the V and W |     |
|             | through transmission                               | 107 |
| Figure 11.4 | Linear frequency amplitudes                        | 107 |
| Figure 11.5 | Frequency-dependent sound attenuation              | 108 |
| Figure 11.6 | Reconstructed original spectrum of the probe       | 108 |
|             |                                                    |     |