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Preface

This volume contains the lessons delivered during the “Training School on
qualitative theory of dynamical systems, tools and applications” held at the
University of Urbino (Italy) from 17 September to 19 September 2015 in the
framework of the European COST Action “The EU in the new complex geography
of economic systems: models, tools and policy evaluation” (Gecomplexity).
Gecomplexity is a European research network, inspired by the New Economic
Geography approach, initiated by P. Krugman in the early 1990s, which describes
economic systems as multilayered and interconnected spatial structures. At each
layer, different types of decisions and interactions are considered: interactions
between international or regional trading partners at the macrolevel; the functioning
of (financial, labour, goods) markets as social network structures at mesolevel; and
finally, the location choices of single firms at the microlevel. Within these struc-
tures, spatial inequalities are evolving through time following complex patterns
determined by economic, geographical, institutional and social factors. In order to
study these structures, the Action aims to build an interdisciplinary approach to
develop advanced mathematical and computational methods and tools for analysing
complex nonlinear systems, ranging from social networks to game theoretical
models, with the formalism of the qualitative theory of dynamical systems and the
related concepts of attractors, stability, basins of attraction, local and global
bifurcations.

Following the same spirit, this book should provide an introduction to the study
of dynamic models in economics and social sciences, both in discrete and in
continuous time, by the methods of the qualitative theory of dynamical systems. At
the same time, the students should also practice (and, hopefully, appreciate) the
interdisciplinary “art of mathematical modelling” of real-world systems and
time-evolving processes. Indeed, the set-up of a dynamic model of a real evolving
system (physical, biological, social, economic, etc.) starts from a rigorous and
critical analysis of the system, its main features and basic principles. Measurable
quantities (i.e. quantities that can be expressed by numbers) that characterize its
state and its behaviour must be identified in order to describe the system
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mathematically. This leads to a schematic description of the system, generally a
simplified representation, expressed by words, diagrams and symbols. This task is,
commonly, carried out by specialists of the real system, such as economists and
social scientists. The following stage consists in the translation of the schematic
model into a mathematical model, expressed by mathematical symbols and oper-
ators. This leads us to the mathematical study of the model by using mathematical
tools, theorems, proofs, mathematical expressions and/or numerical methods. Then,
these mathematical results must be translated into the natural language and terms
typical of the system described, that is economic or biologic or physical terms, in
order to obtain laws or statements useful for the application considered. This closes
the path of mathematical modelling, but often it is not the end of the modelization
process. In fact, if the results obtained are not satisfactory, in the sense that they do
not agree with the observations or experimental data, then one needs to re-examine
the model, by adding some details or by changing some basic assumptions, and start
again the whole procedure. The chapters of this volume are mainly devoted to the
mathematical methods for the analysis of dynamical models by using the qualitative
theory of dynamical systems, developed through a continuous and fruitful inter-
action among analytical, geometric and numerical methods. However, several
examples of model building are given as well, because this is the most creative
stage, leading from reality to its formalization in the form of a mathematical model.
This requires competence and fantasy, the reason why we used the expression
“art of mathematical modelling”.

The simulation of the time evolution of economic systems by using the language
and the formalism of dynamical systems (i.e. differential or difference equations
according to the assumption of continuous or discrete time) dates back to the early
steps of the mathematical formalization of models in economics and social sciences,
mainly in the nineteenth century. However, in the last decades, the importance of
dynamic modelling increased because of the parallel trends in mathematics on one
side and economics and social sciences on the other side. The two developments are
not independent, as new issues in mathematics favoured the enhancement of
understanding of economic systems, and the needs of more and more complex
mathematical models in economics and social studies stimulated the creation of new
branches in mathematics and the development of existing ones. Indeed, in recent
mathematical research, a flourishing literature in the field of qualitative theory of
nonlinear dynamical systems, with the related concepts of attractors, bifurcations,
dynamic complexity, deterministic chaos, has attracted the attention of many
scholars of different fields, from physics to biology, from chemistry to economics
and sociology, etc. These mathematical topics become more and more popular even
outside the restricted set of academic specialists. Concepts such as bifurcations (also
called catastrophes in the Eighties), fractals and chaos entered and deeply modified
several research fields.

On the other side, during the last decades, also economic modelling has been
witnessing a paradigm shift in methodology. Indeed, despite its notable achieve-
ments, the standard approach based on the paradigm of the rational and represen-
tative agent (endowed with unlimited computational ability and perfect
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information) as well as the underlying assumption of efficient markets failed to
explain many important features of economic systems and has been criticized on a
number of grounds. At the same time, a growing interest has emerged in alternative
approaches to economic agents’ decision-making, which allow for factors such as
bounded rationality and heterogeneity of agents, social interaction and learning,
where agents’ behaviour is governed by simpler “rules of thumb” (or “heuristics”)
or “trial and error” or even “imitations mechanisms”. Adaptive system, governed by
local (or myopic) decision rules of boundedly rational and heterogeneous agents,
may converge in the long run to a rational equilibrium, i.e. the same equilibrium
forecasted (and instantaneously reached) under the assumption of full rationality
and full information of all economic agents. This may be seen as an evolutionary
interpretation of a rational equilibrium, and some authors say that in this case, the
boundedly rational agents are able to learn, in the long run, what rational agents
already know under very pretentious rationality assumptions. However, it may
happen that under different starting conditions, or as a consequence of exogenous
perturbations, the same adaptive process leads to non-rational equilibria as well, i.e.
equilibrium situations which are different from the ones forecasted under the
assumption of full rationality, as well as to dynamic attractors characterized by
endless asymptotic fluctuations that never settle to a steady state. The coexistence of
several attracting sets, each with its own basin of attraction, gives rise to path
dependence, irreversibility, hysteresis and other nonlinear and complex phenomena
commonly observed in real systems in economics, finance and social sciences, as
well as in laboratory experiments.

From the description given above, it is evident that the analysis of adaptive
systems can be formulated in the framework of the theory of dynamical systems, i.e.
systems of ordinary differential equations (continuous time) or difference equations
(discrete time); the qualitative theory of nonlinear dynamical systems, with the
related concepts of stability, bifurcations, attractors and basins of attraction, is a
major tool for the analysis of their long-run (or asymptotic) properties. Not only in
economics and social sciences, but also in physics, biology and chemical sciences,
such models are a privileged instrument for the description of systems that change
over time, often described as “nonlinear evolving systems”, and their long-run
aggregate outcomes can be interpreted as “emerging properties”, sometimes diffi-
cult to be forecasted on the basis of the local (or step by step) laws of motion. As we
will see in this book, a very important role in this theory is played by graphical
analysis, and a fruitful trade-off between analytic, geometric and numerical meth-
ods. However, these methods built up a solid mathematical theory based on general
theorems that can be found in the textbooks indicated in the references.

Chapter 1, by Gian Italo Bischi, Fabio Lamantia and Davide Radi, is the largest
one, as it contains the basic lessons delivered during the Training School. It
introduces some general concepts, notations and a minimal vocabulary about the
mathematical theory of dynamical systems both in continuous time and in discrete
time, as well as optimal control.
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Chapter 2, by Anastasiia Panchuk, points out several aspects related to global
analysis of discrete time dynamical systems, covering homoclinic bifurcations as
well as inner and boundary crises of attracting sets.

Chapter 3, by Anna Agliari, Nicolò Pecora and Alina Szuz, describes some
properties of the nonlinear dynamics emerging from two oligopoly models in
discrete time. The target of this chapter is the investigation of some local and global
bifurcations which are responsible for the changes in the qualitative behaviours
of the trajectories of discrete dynamical systems. Two different kinds of oligopoly
models are considered: the first one deals with the presence of differentiated goods
and gradient adjustment mechanism, while the second considers the demand
function of the producers to be dependent on advertising expenditures and adaptive
adjustment of the moves. In both models, the standard local stability analysis of the
Cournot-Nash equilibrium points is performed, as well as the global bifurcations of
both attractors and (their) basins of attraction are investigated.

Chapter 4, by Ingrid Kubin, Pasquale Commendatore and Iryna Sushko,
acquaints the reader with the use of dynamic models in regional economics. The
focus is on the New Economic Geography (NEG) approach. This chapter briefly
compares NEG with other economic approaches to investigation of regional
inequalities. The analytic structure of a general multiregional model is described,
and some simple examples are presented where the number of regions assumed to
be small to obtain more easily analytic and numerical results. Tools from the
mathematical theory of dynamical systems are drawn to study the qualitative
properties of such multiregional model.

In Chap. 5, Fabio Lamantia, Davide Radi and Lucia Sbragia review some
fundamental models related to the exploitation of a renewable resource, an
important topic when dealing with regional economics. The chapter starts by
considering the growth models of an unexploited population and then introduces
commercial harvesting. Still maintaining a dynamic perspective, an analysis of
equilibrium situations is proposed for a natural resource under various market
structures (monopoly, oligopoly and open access). The essential dynamic properties
of these models are explained, as well as their main economic insights. Moreover,
some key assumptions and tools of intertemporal optimal harvesting are recalled,
thus providing an interesting application of the theory of optimal growth.

In Chap. 6, Fabio Tramontana considers the qualitative theory of discrete time
dynamical systems to describe the time evolution of financial markets populated by
heterogeneous and boundedly rational traders. By using these assumptions, he is
able to show some well-known stylized facts observed in financial markets that can
be replicated even by using small-scale models.

Finally, in Chap. 7, Ugo Merlone and Paul van Geert consider some dynamical
systems which are quite important in psychological research. They show how to
implement a dynamical model of proximal development using a spreadsheet, sta-
tistical software such as R or programming languages such as C++. They discuss
strengths and weaknesses of each tool. Using a spreadsheet or a subject-oriented
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statistical software is rather easy to start, hence being likely palatable for people
with background in both economics and psychology. On the other hand, employing
C++ provides better efficiency at the cost of requiring some more competencies.
All the approaches proposed in this chapter use free and open-source software.

Urbino Gian Italo Bischi
Kiev Anastasiia Panchuk
Castellanza Davide Radi
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Chapter 1
Qualitative Methods in Continuous
and Discrete Dynamical Systems

Gian Italo Bischi, Fabio Lamantia and Davide Radi

Abstract This chapter gives a general and friendly overview to the qualitative theory
of continuous and discrete dynamical systems, as well as some applications to simple
dynamic economic models, and is concluded by a section on basic principles and
results of optimal control in continuous time, with some simple applications. The
chapter aims to introduce some general concepts, notations and aminimal vocabulary
concerning the study of themathematical theory of dynamical systems that are used in
the other chapters of the book. In particular, concepts like stability, bifurcations (local
and global), basins of attraction, chaotic dynamics, noninvertible maps and critical
sets are defined, and their applications are presented in the following sections both in
continuous time and discrete time, as well as a brief introduction to optimal control
together with some connections to the qualitative theory of dynamical systems and
applications in economics.
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2 G.I. Bischi et al.

1.1 Some General Definitions

In this section we introduce some general concepts, notations and a minimal
vocabulary about the mathematical theory of dynamical systems. A dynamical sys-
tem is a mathematical model, i.e., a formal, mathematical description, of a system
evolving as time goes on. This includes, as a particular case, systems whose state
remains constant, that will be denoted as systems at equilibrium.

The first step to describe such systems in mathematical terms is the
characterization of their “state” by a finite number, say n, of measurable quanti-
ties, denoted as “state variables”, expressed by real numbers xi ∈ R, i = 1, . . . , n.
For example in an economic system these numbers may be the prices of n commodi-
ties in a market, or the respective quantities, or they can represent other measurable
indicators, like level of occupation, or salaries, or inflation. In an ecologic system
these n numbers used to characterize its state may be the numbers (or densities)
of individuals of each species, or concentration of inorganic nutrients or chemicals
in the environment. In a physical system1 the state variables may be the positions
and velocities of the particles, or generalized coordinates and related momenta of a
mechanical system, or temperature, pressure etc. in a thermodynamic system.

This ordered set of real numbers can be seen as a vector x = (x1, . . . , xn) ∈ R
n,

i.e., a “point” in an n-dimensional space, and this allows us to introduce a “geometric
language”, in the sense that a 1-dimensional dynamical system is represented by point
along a line, a 2-dimensional one by a point in a Cartesian plane and so on.

Sometimes only the values of the state variables included in a subset of Rn are
suitable to represent the real system. For example only non-negative values of xi
are meaningful if xi represents a price in an economic system or the density of a
species in an ecologic one, or it can be that in the equations that define the system a
state variable xi is the argument of a mathematical function that is defined in a given
domain, like a logarithm, a square root or a rational function. As a consequence,
only the points in a subset of Rn are admissible states for the dynamical system
considered, and this leads to the following definition.

Definition 1.1 The state space (or phase space) M ⊆ R
n is the set of admissible

values of the state variables.

As a dynamical system is assumed to evolve with time, these numbers are not
fixed but are functions of time xi = xi(t), i = 1, . . . , n, where t may be a real number
(continuous time) or a natural number (discrete time). The latter assumption may
sound quite strange, whereas it represents a common assumption in systems where
changes of the state variables are only observed as a consequence of events occur-
ring at given time steps (event-driven time). For example, it is quite common in
economic and social sciences where in many systems the state variables can change
as a consequence of human decisions that cannot be continuously revised, e.g., after

1Physics is the discipline where the formalism of dynamical system has been first introduced, since
17th century, even if the modern approach, often denoted as qualitative theory of dynamics systems,
has been introduced in the early years of the 20th century.



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 3

production periods (the typical example is output of agricultural products) or after
the meetings of an administration council or after the conclusions of contracts etc.
(decision-driven time).

So, in the following we will distinguish these two cases, according to the domain
of the state functions: xi : R → R or xi : N → R, i.e., the continuous or discrete
nature of time. In any case, the purpose of dynamical systems is the following: given
the state of the system at a certain time t0, compute the state of the system at time
t �= t0. This is equivalent to the knowledge of an operator

x(t) = G (t, x(t0)) , (1.1)

where boldface symbols represent vectors, i.e., x(t) = (x1(t), . . . , xn(t)) ∈ M ⊆ R
n

and G (·) = (G1(·), . . . ,Gn(·)) : M → M. If one knows the evolution operator G
then from the knowledge of the initial condition (or initial state) x(t0) the state of
the system at any future time t > t0 can be computed, as well as at any time of the
past t < t0. Generally we are interested in the forecasting of future states, especially
in the asymptotic (or long-run) evolution of the system as t → +∞, i.e., the fate, or
the destiny of the system. However, even the flashback may be useful in some cases,
like in detective stories when the investigators from the knowledge of the present
state want to know what happened in the past.

The vector function x(t), i.e., the set of n functions xi(t), i = 1, . . . , n obtained by
(1.1), represents the parametric equations of a trajectory, as t varies. In the case of
continuous time t ∈ R the trajectory is a curve in the spaceRn, that can be represented
in the n + 1-dimensional space (Rn, t), and denoted as integral curve, or in the state
space (also denoted as “phase space”)Rn, see Fig. 1.1. In the latter case the direction
of increasing time is represented by arrows, and the curve is denoted as phase curve.

In the case of discrete time a trajectory is a sequence (i.e., a countable set) of
points, and the time evolution of the system jumps from one point to the successive
one in the sequence. Sometimes line segments can be used to join graphically the
points, moving in the direction of increasing time, thus getting an ideal piecewise
smooth curve by which the time evolution of the system is graphically represented.

Fig. 1.1 Solution curve and
its projection in the phase
space



4 G.I. Bischi et al.

An equilibrium (stationary state or fixed point) x∗ = (x∗
1, . . . , x

∗
n

)
is a particular

trajectory such that all the state variables are constant

x(t) = G
(
t, x∗) = x∗ for each t > t0 .

An equilibrium is a trapping point, i.e., any trajectory through it remains in it for
each successive time: x(t0) = x∗ implies x(t) = x∗ for t ≥ t0. This definition can be
extended to any subset of the phase space:

Definition 1.2 A set A ⊆ M is trapping if x(t0) ∈ A implies x(t) = G (t, x(t0)) ∈ A
for each t > t0.

This can also be expressed by the notation G (t,A) ⊆ A, where

G (t,A) = {x(t) ∈ M : ∃t ≥ t0 and x(t0) ∈ A so that x(t)= G (t, x(t0))} .

So, any trajectory starting inside a trapping set cannot escape from it. We now
define a stronger property, in the sense that it concerns particular kinds of trapping
sets.

Definition 1.3 A closed set A ⊆ M is invariant if G (t,A) = A, i.e., each subset
A′ ⊂ A is not trapping.

In other words, any trajectory starting inside an invariant set remains there, and all
the points of the invariant set can be reached by a trajectory starting inside it. Notice
that an equilibrium point is a particular kind of invariant set (let’s say the simplest).
However, we will see many other kinds of invariant sets, where interesting cases of
nonconstant trajectories are included.

We now wonder what happens if we start a trajectory from an initial condition
close to an invariant set, i.e., in a neighborhood of it. The trajectory may enter the
invariant set (and then it remains trapped inside it) or it may move around it or it may
go elsewhere, far from it. This leads us to the concept of stability of an invariant set
(Fig. 1.2).

Definition 1.4 (Lyapunov stability) An invariant set A is stable if for each neigh-
borhoodU of A there exists another neighborhood V of Awith V ⊆ U such that any
trajectory starting from V remains inside U.

In other words, Lyapunov stability means that all the trajectories starting from
initial conditions outside A and sufficiently close to it remain around it. Instability is
the negation of stability, i.e., an invariant set A is unstable if a neighborhood U ⊃ A

Fig. 1.2 Analogies with the
gravity field
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exists such that initial conditions taken arbitrarily close to A exist that generate
trajectories that exit U. The following definition is stronger.

Definition 1.5 (Asymptotic stability) An invariant setA is asymptotically stable (and
it is often called attractor) if:

(i) A is stable (according to the definition given above);
(ii) limt→+∞ G (t, x) ∈ A for each initial condition x ∈V .

In other words, asymptotic stabilitymeans that the trajectories starting from initial
conditions outside A and sufficiently close to it not only remain around it, but tend
to it in the long run (i.e., asymptotically), see the schematic pictures in Fig. 1.3. At
a first sight, the condition (ii) in the definition of asymptotic stability seems to be
stronger than (i), hence (i) seems to be superfluous. However it may happen that a
neighborhood U ⊃ A exists such that initial conditions taken arbitrarily close to A
generate trajectories that exit U and then go back to A in the long run (see the last
picture in Fig. 1.3).

Of course, all these definitions expressed in termsof neighborhoods canbe restated
by using a norm (and consequently a distance) inRn, for example the euclidean norm

‖x‖ =
√∑n

i=1 x
2
i from which the distance between two points x = (x1, . . . , xn) and

Fig. 1.3 Qualitative examples of stable, asymptotically stable and unstable equilibria
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y = (y1, . . . , yn) can be defined as ‖x − y‖ = √∑n
i=1(xi − yi)2. As an example we

can restate the definitions given above for the particular case of an equilibrium point.
Let x(t) = G(t, x(t0)), t ≥ 0, a trajectory starting from the initial condition

x(t0) = G(t0, x(t0)) and x∗ an equilibrium point x∗ = G(t, x∗) for t ≥ 0. The equi-
librium x∗ is stable if for each ε > 0 there exists δε > 0 such that ‖x(t0)−x∗‖ < δε

=⇒ ‖x(t)−x∗‖ < ε for t ≥ 0. If in addition limt→∞ ‖x(t)−x∗‖ = 0 then x∗ is
asymptotically stable. Instead, if an ε > 0 exists such that for each δ > 0 we have
‖x(t)−x∗‖ > ε for some t > 0 even if ‖x(t0)−x∗‖ < δ, then x∗ is unstable.

These definitions are local, i.e., concern the future behavior of a dynamical system
when its initial state is in an arbitrarily small neighborhood of an invariant set. So,
they can be used to characterize the behavior of the system under the influence of
small perturbation from an equilibrium or another invariant set. In other words, they
give an answer to the question: given a system at equilibrium, what happens when
small exogenous perturbation move its state slightly outside the equilibrium state?
However, in the study of real systems we are also interested in their global behavior,
i.e., far from equilibria (or more generally from invariant sets) in order to consider the
effect of finite perturbations and to answer questions like: how far can an exogenous
perturbation shift the state of a system from an equilibrium remaining sure that it will
spontaneously go back to the originary equilibrium? This kind of questions leads to
the concept of basin of attraction.

Definition 1.6 (Basin of attraction) The basin of attraction of an attractor A is the
set of all points x ∈ M such that limt→+∞ G(t, x) ∈ A, i.e.,

B(A) =
{
x ∈ M such that lim

t→+∞G(t, x) ∈ A

}
.

IfB(A) = M thenA is called global attractor. Generally the extension of the basin
of a given attractor gives a measure of its robustness with respect to the action of
exogenous perturbations. However this is a quite rough argument, because a greater
extension of the basin of an attractor may does not imply greater robustness if the
attractor is close to a basin boundary.Moreover, when basins are considered, one real-
izes that in some cases stable equilibria may be even more vulnerable than unstable
ones (see Fig. 1.4).

Other important indicators should be critically considered. For example, how fast
is the convergence towards an attractor? Even if an invariant set is asymptotically sta-
ble and it has a large basin, an important question concerns the speed of convergence,
i.e., the amount of time which is necessary to reduce the extent of a perturbation.
In some cases this time interval may be too much for any practical purpose. These
arguments lead us to the necessity of a deep understanding of the global behavior
of a dynamical system in order to give useful indications about the performance of
the real system modeled. The main problem is that, generally, the operator G that
allows to get an explicit representation of the trajectories of the dynamical system
for any initial condition in the phase space, is not known, or cannot be expressed in
terms of elementary functions, or its expression is so complicated that it cannot be
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Fig. 1.4 Stability and vulnerability

used for any practical purpose. In general a dynamical system is expressed in terms
of local evolution equations, also denoted as dynamic equations or laws of motion,
that state how the dynamical system changes as a consequence of small time steps.
In the case of continuous time the evolution equations are expressed by the following
set of ordinary differential equations (ODE) involving the time derivative, i.e., the
speeds of change, of each state variable

dxi(t)

dt
= fi(x1(t), . . . , xn(t);α) , i = 1, . . . , n ,

xi(t0) = xi , (1.2)

where the time derivative at the left hand side represents, as usual, the speed of change
of the state variable xi(t)with respect to time variations, the functional relations give
information about the influence of the same state variable xi (self-control) and of
the other state variables xj, j �= i (cross-control) on such rate of change, and α =
(α1, . . . αm), αi ∈ R, represents m real parameters, fixed along a trajectory, which
can assume different numerical values in order to represent exogenous influences on
the dynamical systems, e.g., different policies or effects of the outside environment.
The modifications induced in the model after a variation of some parameters αi are
called structural modifications, as such changes modify the shape of the functions
fi, and consequently the properties of the trajectory.

The set of equations (1.2) are “differential equations” because their “unknowns”
are functions xi(t) and they involve not only xi(t) but also their derivatives. In the
theory of dynamical systems it is usual to replace the Leibniz notation dx

dt of the
derivative with the more compact “dot” notation ẋ introduced by Newton. With this
notation, the dynamical system (1.2) is indicated as

ẋi = fi(x1, . . . , xn;α), i = 1, . . . , n , (1.3)
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Differential equations of order greater than one, i.e., involving derivatives of higher
order, can be easily reduced to systems of differential equations of order one in
the form (1.2) by introducing auxiliary variables. For example the second order
differential equation (involving the second derivative ẍ = d2x

dt2 )

ẍ (t) + aẋ (t) + bx (t) = 0 (1.4)

with initial conditions x(0) = x0 and ẋ (0) = v0 can be reduced to the form (1.3)
by defining x1(t) = x(t) and x2(t) = ẋ (t), so that the equivalent system of two first
order differential equations becomes

ẋ1 = x2 ,

ẋ2 = −bx1 − ax2

with x1(0) = x0, x2(0) = v0. If along a trajectory the parameters explicitly vary with
respect to time, i.e., some αi = αi(t) are functions of time, then the model is called
nonautonomous. Also a nonautonomous model can be reduced to an equivalent
autonomous one in the normal form (1.2) of dimension n + 1 by introducing the
dynamic variable xn+1 = t whose time evolution is governed by the added first order
differential equation ẋn+1 = 1.

In the case of discrete time, the evolution equations are expressed by the following
set of difference equations that inductively define the time evolution as a sequence
of discrete points starting from a given initial condition

xi(t + 1) = fi(x1(t), . . . , xn(t);α), i = 1, . . . , n ,

xi(0) = xi (1.5)

Also in this case a higher order difference equation, as well as a nonautonomous
difference equation, can be reduced to an expanded system of first order difference
equations. For example, the second order difference equations

x(t + 1) + ax(t) + bx(t − 1) = 0

starting from the initial conditions x(−1) = x0, x(0) = x1 can be equivalently
rewritten as

x(t + 1) = −ax(t) − by(t) ,

y(t + 1) = x(t) ,

where y(t) = x(t − 1), with initial conditions being x(0) = x1, y(0) = x0.
Analogously, a nonautonomous difference equation

x(t + 1) = f (x(t), t)
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becomes

x(t + 1) = f (x(t), y(t)),

y(t + 1) = y(t) + 1,

where y(t) = t.
So, the study of (1.2) and (1.5) constitutes a quite general approach to dynamical

systems in continuous and discrete time respectively. They are local representations
of the evolution of systems that change with time. Their qualitative analysis consists
in the study of existence and main properties of attracting sets, their basins, and their
qualitative changes as the control parameters are let to vary. We refer the reader to
standard textbooks and the huge literature about difference and differential equations
in order to study their general properties and methods of solutions. The aim of this
lecture note is just to give a general overview of the basic elements for a qualita-
tive understanding of the long run behavior of some dynamic models. We will first
consider the case of continuous time, then the case of discrete time by stressing the
analogies and differences between these two time scales, and finally we shall give
some concepts and results about optimal control analysis.

1.2 Continuous-Time Dynamical Systems

In this section we consider dynamic equations in the form (1.2), starting from prob-
lemswith n = 1, i.e., 1-dimensionalmodels where the state of the system is identified
by a single dynamical variable, then we move to n = 2 and finally some comments
on n > 2. For each case, we will first consider linear models, for which an explicit
expression of the solution can be obtained, and then we move to nonlinear mod-
els for which we will only give a qualitative description of the equilibrium points,
their stability properties and the long-run (or asymptotic) properties of the solutions
without giving their explicit expression. We will see that such qualitative study (also
denoted as qualitative or topological theory of dynamical systems, a modern point of
view developed in the 20th century) essentially reduces to the solution of algebraic
equations and inequalities, without the necessity to use advancedmethods for solving
integrals. We start with a sufficiently general (for the goals of these lecture notes)
theorem of existence and uniqueness of solutions of ordinary differential equations.

Theorem 1.1 (Existence and Uniqueness) If the functions fi have continuous partial
derivatives inM and x(t0) ∈ M, then there exists a unique solution xi(t), i = 1, . . . , n,
of the system (1.2) such that x(t0) = x, and each xi(t) is a continuous function.

Indeed, the assumptions of this theoremmay be weakened, by asking for bounded
variations of the functions fi in the equations of motion (1.2), such as the so called
Lipschitz conditions. However the assumptions of the previous Theorem are suitable
for our purposes. Moreover, other general theorems are usually stated to define the
conditions under which the solutions of the differential equations have a regular
behavior. We refer the interested reader to more rigorous books, see the bibliography
for details.
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1.2.1 One-Dimensional Dynamical Systems
in Continuous Time

1.2.1.1 The Simplest One: A Linear Dynamical System

Let us consider the following dynamic equation

ẋ = αx with initial condition x(t0) = x0 . (1.6)

It states that the rate of growth of the dynamic variable x(t) is proportional to itself,
with proportionality constant α (a parameter). If α > 0 then whenever x is positive
it will increase (positive derivative means increasing). Moreover, as x increases also
the derivative increases, so it increases faster and so on. This is what, even in the
common language, is called “exponential growth”, i.e., “the more we are, the more
we increase”. Instead, whenever x is negative it will decrease (negative derivative)
so it will become even more negative and so on. This is a typical unstable behavior.

On the contrary, if α < 0 then whenever x is positive it will decrease (and will
tend to zero) whereas when x is negative the derivative is positive, so that x will
increase (and tend to zero). A stabilizing behavior.

In this case an explicit solution can be easily obtained to confirm these arguments.
In fact, it is well known, from elementary calculus, that the only function whose
derivative is proportional to the function itself is the exponential, so x(t)will be in the
general form x(t) = keαt , where k is an arbitrary constant that can be determined by
imposing the initial condition x(t0) = xo, hence keαt0 = x0, from which k = x0e−αt0 .
After replacing k in the general form we finally get the (unique) solution

x(t) = x0e
α(t−t0) . (1.7)

The same solution can be obtained by amore standard integrationmethod, denoted
as separation of the variables: from dx

dt = αx we get dx
x = αdt and then, integrating

both terms we get

x(t)∫

x0

dx

x
=

t∫

t0

dx

x
=⇒ ln x(t) − ln x0 = α(t − t0) =⇒ ln

x(t)

x0
= α(t − t0) ,

fromwhich (1.7) is obtained by taking exponential of bothmembers. Some graphical
representations of (1.7), with different values of the parameter α and different initial
conditions, are shown in Fig. 1.5 in the form of integral curves, with time t repre-
sented along the horizontal axis and the state variable along the vertical one. Among
all the possible solutions there is also an equilibrium solution, corresponding to the
case of vanishing time derivative ẋ = 0 (equilibrium condition). In fact, from (1.6)
we can see that the equilibrium condition corresponds to the equation αx = 0 which,
for α �= 0, gives the unique solution x∗ = 0. Indeed, the trajectory starting from the
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Fig. 1.5 Integral curves and phase portraits of ẋ = αx

initial condition x0 = 0 is given by x(t) = 0 for each t, i.e., starting from x0 = 0
the system remains there forever. However, as shown in Fig. 1.5, different behav-
iors of the system can be observed if the initial condition is slightly shifted from
the equilibrium point, according to the sign of the parameter α. In fact if α > 0
(left panel) then the system amplifies this slight perturbation and exponentially
departs from the equilibrium (unstable, or repelling, equilibrium) whereas if α < 0
(right panel) then the system recovers from the perturbation going back to the equi-
librium after a given return time (asymptotically stable, or attracting, equilibrium).

This qualitative analysis of existence and stability of the equilibrium can be
obtained even without any computation of the explicit analytic solution (1.7), by
solving the equilibrium equation αx = 0 and by a simple algebraic study of the sign
of the right hand side of the dynamic equation (1.6) around the equilibrium, as shown
in Fig. 1.6. This method simply states that if the right hand side of the dynamic equa-
tion (hence ẋ) is positive then the state variable increases (arrow towards positive
direction of the axis), if ẋ < 0 then x decreases (arrow towards negative direction).

This 1-dimensional representation (i.e., along the line) is the so called phase
diagram of the dynamical system, where the invariant sets are represented (the equi-
librium in this case) together with the arrows that denote tendencies associated with
any point of the phase space (and consequently stability properties). Of course,
the knowledge of the explicit analytic solution gives more information, for exam-
ple the time required to move from one point to another. For example, in the case
α < 0, corresponding to stability of the equilibrium x∗ = 0, we can state that after a

Fig. 1.6 Graphic of the the line y = αx and the corresponding one-dimensional phase diagram
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displacement of the initial condition at distance d = ‖x0 − x∗‖ from the equilibrium,
the time required to reduce such a perturbation at the fraction d/e (where e is the
Neper constant e � 2.7) is Tr = −1/a, an important stability indicator known as
return time. As it can be seen, as the parameter α goes to 0 the return time tends to
infinity. In fact, ifα = 0 all the points are equilibrium points, i.e., any initial condition
generates a constant trajectory that remains in the same position forever.

As an example, let us consider the dynamic equation that describes the growth
of a natural population. If x(t) represents the number of individuals in a population
(of insects, or bacteria, or fishes or humans), n > 0 represents the natality (or birth)
rate and m > 0 represents the mortality (or death) rate then a basic balance equation
used in any population model states that

ẋ = nx − mx = (n − m) x

which is of the form (1.6) with α = n − m. Of course in this case, due to the meaning
of the model, only non-negative values of the state variable x are admissible. The
qualitative analysis of this model states that if natality is greater than mortality then
the population exponentially increases, if the two rates are identical the population
remains constant and if mortality exceeds natality the population exponentially goes
to extinction.Aquite reasonable result.Wenow introduce amodification in the simple
population growth model by introducing a constant immigration (emigration) term
b > 0 (< 0)

ẋ = αx + b . (1.8)

Now the equilibrium condition ẋ = 0 becomes αx + b = 0 from which the equi-
librium is x∗ = −b/a. If α < 0 and b > 0 (endogenously decreasing population
with constant immigration) then the equilibrium is positive and stable (as ẋ < 0 for
x > x∗ and ẋ > 0 for x < x∗). Instead, forα > 0 and b < 0 (endogenously increasing
population with constant emigration) the equilibrium is positive and unstable. We
conclude by noticing that the dynamic model (1.8) is called linear nonhomogeneous
(or affine) and can be reduced into the form (1.6) by a change of variable (a trans-
lation). In fact, let us define the new dynamic variable X = x − x∗ = x + b/a. This
change of variable corresponds to a translation that brings the new zero coordinate
into the equilibriumpoint. If we replace x = X − b/a into (1.8)we get Ẋ = αX. Then
we have the linear model (1.6) in the dynamic variable X(t), with initial condition
X(t0) = x0 + b/a, whose solution is X(t) = X(t0)eα(t−t0). Going back to the original
variable, by using the transformation X = x + b/a, we obtain

x(t) =
(
x0 + b

α

)
e

α(t−t0) − b

α
.

This is a first example of conjugate dynamical systems, as the models (1.6) and (1.8)
can be transformed one into the other by an invertible change of coordinates. We
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will give a more formal definition of conjugate (or qualitative equivalent) dynamic
models in the following chapters.

As an example, let us now consider a dynamic formalization of a partial mar-
ket of a single commodity, under the Walrasian assumption that the price of the
good increases (decreases) if the demand is higher (lower) than supply. The simplest
dynamic equation to represent this assumption is given by

ṗ = f (p) = k
[
D(p) − S(p)

]
, (1.9)

where q = D(p) represents the demand function, i.e., the quantity demanded by
consumers when the price of the good considered is p, q = S(p) represents the
supply function, i.e., the quantity of the good that producers send to the market when
the price is p, k > 0 is a constant that gives the speed by which the price reacts to a
disequilibrium between supply and demand. The standard occurrence is that supply
function S(p) is increasing and demand function is decreasing, as shown in Fig. 1.7.
The equilibrium point p∗ is located at the intersection of demand and supply curves,
and it is stable because the derivative of p is positive on the left and negative on the
right of p∗, so that p∗ is always reached in the long run even if the initial price p(0)
is not an equilibrium one (or equivalently if the price has been displaced from the
equilibrium price). An analytic solution of the dynamic equations can be obtained
under the assumption that demand and supply functions are linear

D(p) = a − bp , S(p) = a1 + b1p ,

where all the parameters a, b, a1, b1 are positive. In fact, in this case the dynamic
equation is a linear differential equation with constant coefficients

ṗ = −k (b + b1) p + k (a − a1)

which is in the form (1.8) and has equilibrium point p∗ = (a − a1)/(b + b1). As we
will see in the next sections, a similar analysis, based on the linearization of themodel
around the equilibrium point, is possible by computing the slopes of the functions
(i.e., their derivatives) at the equilibrium point.

Fig. 1.7 Qualitative graphical analysis of price dynamics with standard demand and supply func-
tions
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Fig. 1.8 Qualitative analysis
of (1.9) with bimodal
demand function

Let us now consider a different demand curve, obtained by assuming that con-
sumers exhibit a nonstandard behavior for intermediate prices. In the situation shown
in Fig. 1.8, even if demanded quantity is high for low prices and low for high prices,
like in the standard case, we assume that for intermediate prices consumers prefer
to buy the good at higher price because they use price as a quality indicator. Such
assumption leads to a“bimodal” shape of the demand function (i.e., with two inver-
sion points, a relative minimum and relative maximum) that may intersect the supply
curve in three points, like in Fig. 1.8, and consequently three coexisting equilibrium
prices, say p∗

1 < p∗
2 < p∗

3. By using the qualitative analysis, we can see that the time
derivative of the price p(t) is positive whenever p < p∗

1 or p
∗
2 < p < p∗

3, i.e., where
D(p) > S(p). This leads to a situation of bistability as both the lowest equilibrium
price p∗

1 and the highest one p∗
3 are asymptotically stable, each with its own basin

of attraction, whereas the intermediate unstable equilibrium price p∗
2 separates the

basins, i.e., it acts as a watershed located on the boundary between the two basins.

1.2.1.2 Qualitative Analysis and Linearization Procedure
for the Logistic Model

The population model described in the Sect. 1.2.1.1 is quite unrealistic as it admits
unbounded population growth, which is impossible in a finite world. As already
noticed by Malthus [27], when the population density becomes too high, scarcity of
food or space (overcrowding effect) causes mortality, proportional to the population
density. So an extra mortality term, say sx, should be added to the natural mortality
m, and thus the model becomes

ẋ = f (x) = nx − (m + sx)x = αx − sx2 (1.10)

which is a nonlinear dynamic model. Also in this case, after separation of the vari-
ables, an analytic solution can be found by integrating a rational function. In fact,
after some algebraic transformations of the rational function the following solution
is obtained

x(t) = αx0eαt

α + sx0 (eαt − 1)
, (1.11)

whose graph (for different initial conditions) is shown in Fig. 1.9.
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Fig. 1.9 Graph of function
(1.11) with three different
initial conditions x(0) K

As it can be seen from the graph of x(t) in (1.11), all solutions starting from
a positive initial condition asymptotically converge to the attracting equilibrium
K = α/s (usually called carrying capacity in the language of ecology) represented
by the horizontal asymptote. Another equilibriumpoint exists, given by the extinction
equilibrium Q = 0, which is repelling.

However, the possibility to find an analytic solution by integrating a nonlinear
differential equation is a rare event, so we now try to infer the same conclusions
without finding the explicit solution, i.e., by using qualitative methods. As usual, the
first step is the localization of the equilibrium points, solutions of the equilibrium
condition ẋ = 0, i.e., f (x) = x(α − sx) = 0, from which the two solutions x∗

0 = 0
and x∗

1 = α/s are easily computed. In order to determine their local stability prop-
erties, it is sufficient to notice that the graph of the right hand side of (1.10), see
Fig. 1.10, has negative slope around the equilibrium x∗

1 , so that ẋ is positive on the
left and negative on the right, and vice versa at the equilibrium x∗

0 , as indicated by
the arrows along the x axis (the 1-dimensional state space of the system). This can
be analytically determined even without the knowledge of the whole graph of the
function, as it is sufficient to compute the sign of the x-derivative of the right hand
side at each equilibrium point. In fact, it is well known that the derivative computed
in a given point of the graph represents the slope of the graph (i.e., of the line tangent
to the graph) at that point. So, the local behavior of the dynamical system in a neigh-
borhood of an equilibrium point, hence its local stability as well, is generally the
same as the one of the linear approximation (i.e., the tangent). This rough argument
will be explained more formally in the next sections. In the particular case of the
logistic model (1.10) the derivative is df

dx = f ′(x) = α − 2sx, and computed at the
two equilibrium points becomes f ′(0) = α > 0, f ′(α/s) = −α < 0, hence Q = 0 is

Fig. 1.10 Qualitative
dynamic analysis of logistic
equation (1.10)
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unstable, K = α/s is stable. Moreover the parameter α can be seen as an indicator of
how fast the system will go back to the stable equilibrium after a small displacement,
as the return time for the linear approximation is Tr = 1/α.

Before ending this part, we notice that the equilibrium points x∗
0 = 0 and x∗

1 = α/s
are two (constant) solutions of (1.10), whose graphs in the plane (t, x) are horizontal
lines. Thus, by the theorem of existence and uniqueness of a solution stated above,
any other (nonconstant) solution x(t) of (1.10) cannot cross these twohorizontal lines.
From (1.10) by a simple second-degree inequality, it is easy to see that ẋ > 0 occurs
whenever x ∈ (0, α/s). Moreover, being d2x

dt2 = dẋ
dt = αẋ − 2sxẋ = ẋ (α − 2sx), we

deduce that x(t) is strictly decreasing and concave whenever x(0) ∈ (−∞, 0) and
that x(t) is strictly decreasing and convexwhenever x(0) ∈ (α/s,+∞). Finally,when
x(0) ∈ (0, α/s), x(t) is strictly increasing and from convex becomes concave when
x(t) = α/(2s), see again Fig. 1.9.

1.2.1.3 Qualitative Analysis of One-Dimensional Nonlinear
Models in Continuous Time

The qualitative method used to understand the dynamic properties of the logistic
equation can be generalized to any one-dimensional dynamic equation in continuous
time

ẋ = f (x) (1.12)

It consists, first of all, in the localization of the equilibrium points according to
the equilibrium condition ẋ = 0, i.e., the solutions of the equation f (x) = 0. As
a consequence of the Theorem of uniqueness, oscillations are not possible for a
1-dimensional dynamical system in continuous time, hence for a system starting
from any initial condition which is not an equilibrium, only increasing or decreasing
solutions can be obtained. Hence just four different phase portraits characterize the
dynamic behavior of the 1-dimensional system around an equilibrium, as shown in
Fig. 1.11.

Of course, if an initial condition coincides with an equilibrium point, i.e., x(0) =
x∗ and f (x∗) = 0, then the unique solution is x(t) = x∗ for t ≥ 0. In other words,
starting from an equilibrium point, the system remains there forever. The natural
question arising iswhat happens if the initial condition is taken close to an equilibrium
point, i.e., if the system is slightly perturbed from the equilibrium considered. Will
the distance from the equilibrium increase or will the perturbation be reduced so that
the system spontaneously goes back to the originary equilibrium? An answer to this
question is easy in the case of hyperbolic equilibria, defined as equilibrium points
with nonvanishing derivative, i.e., f ′(x∗) �= 0. In fact, if x∗ is one of such solutions

Fig. 1.11 The four different phase diagrams around an equilibrium point


