OPTICAL AND MICROWAVE TECHNOLOGIES FOR TELECOMMUNICATION NETWORKS

OTTO STROBEL

WILEY
OPTICAL AND MICROWAVE TECHNOLOGIES FOR TELECOMMUNICATION NETWORKS
OPTICAL AND MICROWAVE TECHNOLOGIES FOR TELECOMMUNICATION NETWORKS

Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Otto Strobel
Esslingen University of Applied Sciences
This book is dedicated to my whole family
 in particular
 to my very beloved grandchildren
 Sevi, Jamie and Clara
Contents

Preface xi

1 Introduction 1

2 Optical and Microwave Fundamentals 11
 2.1 Free Space Propagation of Electromagnetic Waves 11
 2.2 Interference 16
 2.3 Coherence 17
 2.4 Polarization 21
 2.5 Refraction and Reflection 27
 2.6 Diffraction 31

3 Optical Fibers 35
 3.1 Attenuation in Glass Fibers 47
 3.1.1 Attenuation Mechanisms in Glass Fibers 48
 3.1.2 Attenuation Measurement Techniques 51
 3.2 Dispersions in Fibers 55
 3.2.1 Dispersion Mechanisms in Fibers 56
 3.2.2 Polarization Mode Dispersion in Single-Mode Fibers 63
 3.2.3 Joint Action of Dispersion Mechanisms 65
 3.2.4 Dispersion Measurement Techniques 68
 3.2.5 Partial Dispersion Suppression by Soliton Transmission in Single-Mode Fibers 70

4 Fiber Manufacturing, Cabling and Coupling 75
 4.1 Fiber Manufacturing 75
 4.1.1 Preparation of a Preform 75
 4.1.2 Fiber Drawing 82
 4.1.3 Mechanical Properties of Optical Fibers 83
 4.1.4 Alternative Fiber Manufacturing Processes 85
 4.2 Fiber Cabling 86
 4.2.1 Fibers for Telecom and Data Networks 86
 4.2.2 Cables: Applications, Operating Conditions and Requirements 94
9.2.3 Implementation Options for Coherent Optical OFDM 230
9.2.4 Nyquist Pulse Shaping as an Alternative to OFDM Systems 232
9.3 Optical Satellite Communications 233
 9.3.1 Applications of Optical Satellite Communications 234
 9.3.2 Channel Characteristics and Technical Issues 236
9.4 Coherent Transmission Systems 241
 9.4.1 Main Principle of Coherent Transmission 241
 9.4.2 System Components 245
 9.4.3 Modulation Methods for Coherent Transmission Systems 247
 9.4.4 Detection and Demodulation Methods for Coherent Transmission Systems 248
9.5 Top Results on Fiber-Optic Transmission Capacity for High-Speed Long Distance 251
9.6 Optical Fibers in Automation Technology 255
 9.6.1 Optical Fiber Cables 255
 9.6.2 Connectors 257
 9.6.3 Network and Network Components 257
10 Last Mile Systems, In-House-Networks, LAN- and MAN-Applications 263
10.1 Last Mile Systems 269
 10.1.1 Special Case of Access Network 270
 10.1.2 Fiber Access Networks 271
 10.1.3 FTTH Networks 275
 10.1.4 Point-to-Point FTTH Networks 277
 10.1.5 Passive Optical Networks (PON) 280
 10.1.6 WDM-PON Networks 285
 10.1.7 Upgrade and Migration Issues in FTTH Networks 286
 10.1.8 Passive Fiber Plant 288
 10.1.9 Development and standardization of FTTH technologies 297
 10.1.10 Active Equipment 300
 10.1.11 Conclusions 305
10.2 Polymer Optical Fibers, POF 306
 10.2.1 Basics of POF 306
 10.2.2 Techniques for Data Transmission over POF 312
 10.2.3 In-House Communications 319
 10.2.4 Communications in Transportation Systems: From Automotive to Spatial 321
 10.2.5 Standardization Activities 325
10.3 Radio over Fiber (RoF) Systems 328
 10.3.1 Key Enabling Technologies 331
 10.3.2 RoF Land Network Design 337
 10.3.3 Case Study of the Proposed Design Framework 344
 10.3.4 Conclusions 349
10.4 Free Space Optical Communications 349
 10.4.1 FSO under Turbulence Conditions 352
 10.4.2 System Set-up 356
10.4.3 System Performance under Weak Turbulence 358
10.4.4 FSO Link Evaluation 361
10.4.5 Relation to Outdoor FSO Link 363
10.4.6 FSO under Fog Conditions 364
10.4.7 Characterization of Fog and Smoke Attenuation in a Laboratory Chamber 366
10.4.8 Fog and Smoke Channel – Experiment Set-up 367
10.4.9 Results and Discussion 369
10.4.10 Conclusions 376
10.5 WLAN Systems and Fiber Networks 377
10.5.1 A Historical Perspective on IEEE 802.11 WLANs 380
10.5.2 Relevant Operating Principles of WLAN Systems 386
10.5.3 Hybrid Fiber-Wireless Network Architectures: Wi-Fi-based FiWi Architectures 392
10.6 Energy Efficiency Aspects in Optical Access and Core Networks 399
10.6.1 Energy Efficiency in Current and Next Generation Optical Access Networks 399
10.6.2 Energy Efficient Time Division Multiplexed Passive Optical Networks 400
10.6.3 Energy Efficient Time and Wavelength Division Multiplexed Passive Optical Networks 406
10.6.4 Spectral and Energy Efficiency Considerations in Single Rate WDM Networks with Signal Quality Guarantee 413
10.6.5 Spectral versus Energy Efficiency in Mixed-Line Rate WDM Systems with Signal Quality Guarantee 420
10.6.6 Results and Discussion 423

11 Optical Data-Bus and Microwave Systems for Automotive Application in Vehicles, Airplanes and Ships 427
11.1 Communication in Transportation Systems 427
11.1.1 Communication Needs in Transportation Systems 428
11.1.2 Communication with Transportation Systems 433
11.1.3 Hybrid Networks for use in Transportation Systems 435
11.2 Radar for Transportation Systems 438
11.2.1 ARVS Main Features 441
11.2.2 Features of ARVS Equipment Construction 446
11.2.3 Main Tasks and Processing Methods of Radar Data in the ARVS 455
11.2.4 Main Problems and Tasks of ARVS Development 460
11.2.5 Conclusions 461

References 463
Index 497
Preface

After human beings solved their most elementary problems of nutrition and availability of warming and protective clothes, they felt the need to communicate between each other. Even then, this communication improved the results of their labor. People first started by talking to each other at distances our ears are able to understand acoustically. The next step was visible communication limited by the resolution and focusing abilities of our eyes. Smoke signals, for example, were used during the day and fire beacons at night. The oldest written proof of optical communication is presented in Aeschylos’s (Ἀεσχύλος) play Agamemnon, written in the 5th century BC [1.25]. The news of the fall of Troy in 1200 BC, after years of siege by the Greeks, was reported to Agamemnon’s wife Clytemnestra by fires which were lit on hills all the way from Asia Minor to Argos in Greece.

The first development of a useful optical telegraph happened to be during the time of the French Revolution. Claude Chappe, a former Abbé, invented the semaphore. On top of a building a moveable beam was arranged, which carried a moveable arm at both ends; 192 different positions could be realized. In 1880, Alexander Graham Bell invented the photophone. The idea was that a light beam was modulated by acoustic vibrations of a thin mirror. The demodulation of the optical signal could be realized, for example, by utilizing the photoelectric effect in selenium.

All free space transmissions depend on good weather and undisturbed atmosphere. Some methods work only during the daytime, some only at night. An exception is free space transmission in outer space because, outside of the Earth’s atmosphere, typical problems like natural disturbances by fog, rain or snow or artificially caused impurities do not inherently exist. However, even on Earth, it was desirable that communication is independent of environmental conditions. Therefore, some form of guidance of the light beam in a protective environment was necessary. There were ideas of guiding the light within a tube, whose inner walls reflect the light.

The development of the laser by Theodor Maiman, at the beginning of the 1960s, provided a light source which yields an entirely different behavior compared to the sources we had before. A short time after this very important achievement, diode lasers for usage as optical transmitters were developed. Parallel to that accomplishment in the early 1970s, researchers and engineers accomplished the first optical glass fiber with sufficiently low attenuation to transmit electromagnetic waves in the near infrared region. The photodiode as detector already worked, and thus, systems could be developed using optoelectric (O/E) and electrooptic (E/O) components for transmitters and receivers, as well as a fiber in the center of the arrangement. In 1966, Charles K. Kao and G.A. Hockam of Standard Telecommunications Laboratories...
in Harlow, England, published a paper in which they proposed the guidance of light within
dielectric glass fibers. The immediate problem was the optical attenuation in fibers. Whereas,
on a clear day, atmospheric attenuation is about 1 dB/km, the best glass then available showed
an attenuation of about 1000 dB/km. To illustrate this, the optical power is reduced to 1‰
after a path of only 30 m. Kao and Hockham’s main thesis was that if the attenuation could
be reduced to 20 dB/km at a convenient wavelength, then practical fiber-optic communication
should be possible.

In 1970, Corning Glass Works, USA, achieved this goal. By further refinement of fiber
production, the attenuation coefficient could be reduced to below 0.2 dB/km in 1982. Fibers
of commercial mass production today show an attenuation of approximately 0.2 dB/km. The
optical power in such a fiber still amounts to about 1% after traveling a distance of 100 km.

In the 1970s and 1980s, reliable semiconductor light sources and detectors were developed.
First field trials of fiber-optic links were very successful during the 1980s.

People often discuss the quality of systems in simple terms, such as good or bad. From the
physical point of view, nothing is good or bad; it is as it is – the only question is what you
need it for. For example, are we discussing a high-speed long-distance system in the order of
one-tenth of Gbit up to 100 Gbit/s (or more) with nearly no cost restriction, or are we talking
about application in cars with 150 Mbit/s and about 10 m link lengths at low cost demands?
These are completely different worlds and thus, for each demand, we have to find the proper
solution.

In the last five decades, landline network communication has mainly been considered for
application in telecom areas. The most well-known use is for high-speed, middle and long
distance systems, as well as MAN and LAN networking; any last-mile application, including
in-house communication to a single user’s desk, needs to be connected to the rest of the world.
Most recently, mobile communication, in particular cell phones (more recently smart phones),
tables, tablet PCs, laptops, PCs, etc., have been developed to replace cable-based phone calls,
emails and Internet communication.

For about 20 years, Fiber-to-the-home (FTTH) has become the phrase on everybody’s
lips – the efforts to also bring optical communication into a single-family house. This did
not happen until now for reasons of economy. However, because of the soaring use of the
Internet, higher data rate needs increasingly occur in single-family houses, too. In order to
permit a corresponding quantum leap, it remains absolutely essential to reduce costs for the
participants. The keyword is “opening up the last mile”. Latest developments can help to
achieve this aim.

In the last ten years, communication in transportation systems has become more and more
in demand – for communication within a vehicle, from one vehicle to another and to land-line
networks too. Development started in high-end cars with application in the infotainment area
and has already reached airplanes and ships where sensor-relevant needs were also addressed.
These techniques began with low data rates. Car communication technologies for the coming
decade will also include high bit-rate systems up to the level of Gbit/s. Moreover, a new
industry-standard, named communication in automation engineering, has been developed.
By applying this technology, new perspectives could be opened up for data linking between
tooling machines and central control units.

The idea of this book is to address a broad scope of readers, in order to give them an
introduction to optical and microwave communication systems. For this reason, we not only
present articles on state-of-the-art methods but also promising techniques for the future are
discussed as well. On the one hand, it is important that the key differences between optical and non-optical systems are appreciated, yet on the other hand, similarities can be also seen. Moreover, a combination of these different physical techniques might lead to excellent results, which cannot be reached using them separately. Taking all these optical and microwave techniques, as well as GPS, together with high-speed high-data processing devices and appropriate software, may mean that the old human dream of easy worldwide communication (involving nearly unlimited data consumption), be it listening, seeing or reading, could be realized in the not too distant future.

For readers not familiar with all these topics, there is coverage of many subjects of optical and microwave fundamentals. The book is intended to help undergraduate, graduate and PhD students with a basic knowledge of the subjects studying communication technologies. In addition, R&D engineers in companies should also find this book interesting and useful. This is true for novices as well as for experts checking certain facts or dealing with areas of expertise peripheral to their normal work.

I would like to express my appreciation to my former colleagues at Alcatel-Lucent Research Center (now Bell Labs Germany) for numerous helpful discussions. I also gratefully acknowledge my current colleagues at Esslingen University for much help, in particular Prof. Dr. Dr. h.c. R. Martin. Moreover, I have to mention my staff member Dipl.-Phys. H. Bletzer for active support in lab and manuscript preparation. For the latter, also many thanks to M.Sc. Marko Čehovski, who as my student also co-authored several publications – also Dipl.-Ing. Daniel Seibl, M.Sc. Jan Lubkoll, now with ASML Veldhoven/Niederlande. For this book, I was able to find a variety of R&D contributors from companies and universities all over the world: MSc. Werner Auer, FOP Faseroptische Produkte GmbH, Crailsheim, Germany (Chapter 4.1), Dr. Krzysztof Borzycki, National Institute of Telecommunications, Warsaw, Poland (Chapter 4.2 and 10.1), Dr. Ronald Freund, Dr. Markus Nölle, Fraunhofer Heinrich Hertz Institute, Berlin, Germany (Chapter 9.2), Dr. Ronald Freund, Dr. Nicolas Perlot, Fraunhofer Heinrich Hertz Institute, Berlin, Germany (Chapter 9.3), MSc. Marko Čehovski, Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Germany (Chapter 9.5), Thorsten Ebach, eks Engel GmbH & Co. KG, Wenden, Germany (Chapter 9.6), Dr. Alicia López, Dr. M. Ángeles Losada, Dr. Javier Mateo, GTF, Aragón Institute of Engineering Research (i3A), University of Zaragoza, Spain (Chapter 10.2), Dr. Joaquín Beas, Dr. Gerardo Castañón, Dr. Ivan Aldaya, Dr. Alejando Aragón-Zavala, Tecnológico de Monterrey, Mexico (Chapter 10.3), Prof. Dr. Zabih Ghassemlooy, KTH Royal Institute of Technology, Stockholm, Sweden, Dr. Luca Valcaregghi, Dr. Piero Castoldi, ScuolaSuperiore Sant’Anna, Pisa, Italy, Aleksejs Udalcovs, Institute of Telecommunications, Riga Technical University, Riga, Latvia, (Chapter 10.6), Prof. Dr. Kira Kastell, Frankfurt University of Applied Sciences, Germany (Chapter 11.1), Prof. Dr. Vladimir Rastorguev, Dr. Andrey Ananenkov, Engineer Anton Konovaltsev, Prof. Dr. Vladimir Nuzhdin; Engineer Pavel Sokolov, Moscow Aviation Institute, National Research University, Russia (Chapter 11.2). Also Dr. rer. nat. Sebastian Döring from TU Braunschweig, Germany has to be acknowledged for actual contributions to recent research in organic Lasers (OLASERs). All R&D projects were carried out in cooperation with companies such as Alcatel-Lucent (Bell Labs Germany), HP, Agilent, Mercedes-Benz Technology, Siemens, Diehl Aerospace and Balluff Germany. The same holds
for national and international universities, in particular concerning Bachelor, Master and PhD theses. Grateful acknowledgement to all university and company members involved.

Last but not least, a very big thank you to my family, especially to my wife Dorothee (who has to date suffered more than 40 years under an often absent professor), as well as my children Sven, Jana and Jasmin.

Otto A. Strobel

Esslingen/Germany, Summer 2015
1

Introduction

In this book, we present state-of-the-art and next-decade technologies for optical and related microwave transmission in telecom applications, high-speed long distance as well as last-mile and in-house communication. Furthermore, we have learned a lot about the needs of companies producing state-of-the-art systems. They use practical systems in order to compete in the market for such products. They want a complete solution to their demands, and they do not care if fiber optics are part of the solution or not. Consequently, nowadays, further physical techniques have to be developed: Wireless applications open up a new field of data transmission. High-speed wireless LED transmission offers short-range data transmission without EMI/EMC problems. Visible light communication using high power LEDs is an interesting technique. The first aim of using these light sources is to illuminate a room. However, at the same time, they can be modulated to transmit a data signal (Figure 1.6). Thus, optical and non-optical solutions, microwave-, Radio over Fiber- or even RADAR-systems have to be developed.

All these systems working in common will offer high-speed up- and downloads for offices, labs and private homes, and also for transportation systems such as cars, airplanes and ships.

Since the beginning of the 1960s, there has been a light source which yields a completely different behavior compared to the sources we had before. This light source is the LASER, Light Amplification by Stimulated Emission of Radiation. Basic work had been published already, in 1917 by Albert Einstein [1.1]. The first laser realized was the bulk-optic ruby laser, a solid state laser [1.2] developed by Theodor Maiman in 1960. A short time after this very important achievement, diode lasers for use as optical transmitters were developed [1.3]. At the beginning they were difficult to operate. They had to be cooled using nitrogen at -169°C. It took until 1970 to drive semiconductor diode lasers in a continuous wave (CW) mode at room temperature [1.4]. Parallel to that accomplishment, the use of dielectric optical waveguides as media for transmission systems was suggested. Charles Kao and George Hockam [1.5] can be regarded as inventors of fiber-optic transmission systems, as well as Manfred Börner [1.6]. Nowadays, their invention would not be regarded as anything remarkable. Take a light source as a transmitter, an optical fiber as a transmission medium, and a photodiode as a detector (Figure 1.1)! Yet, in the 1960s it was a revolution, because the attenuation of optical glass was in the order of 1000 dB/km corresponding to a factor of 10^{-100} over one kilometer. This was totally unrealistic for use in practical systems.
In the early 1970s, physicists and engineers in research laboratories developed the first optical glass fiber with sufficient low attenuation to transmit electromagnetic waves in the near infrared region (Corning Glass Works [1.7]). They achieved a value of about 20 dB/km, that is, after one kilometer there is still 1% of light at the detector from the light which was coupled into the fiber by the transmitter. Today’s fibers have an attenuation of below 0.2 dB/km, which means the 1% value is still achieved after 100 km of the fiber.

The development of optical detectors started much earlier. Already in 1876, W. Adams and R. Day proved the separation of charge carriers in Selenium [1.8] by illumination of light. They discovered the inner photo effect, also named the photovoltaic effect. This effect is still the fundamental process exploited in modern photo detectors. First experiments with silica solar cells took place in the early 1950s, and new developments for practical use to transmit a data signal started in 1970 [1.9]. Thus, systems could be developed using optoelectric (O/E) and electrooptic (E/O) components for transmitters and receivers, as well as a fiber in the center of the arrangement. The main fields of application of such systems are found in the area of fiber-optic transmission and fiber-optic sensors (Figure 1.2).

In the beginning, in both areas exclusively, the intensity of light was of interest. In analog as well as in digital systems, signal transmission is realized by modulation of the laser power. At the fiber end, an intensely sensitive receiver is used exclusively to detect the data signal. Regarding sensor systems, the measurement of the physical quantity of interest is also exclusively concerned with the power of the light. In this case the optical power is varied by exploiting a change of the fiber attenuation or other system components. Modern more sophisticated systems make use of the fact that an electromagnetic wave also carries information on frequency, phase and polarization.

The media to transport the propagation of light is named the waveguide. The most common waveguide is a glass fiber. The geometrical shape does not need to be strictly circular like a fiber, but can also be rectangular forming a planar waveguide. This was suggested by Stewart Miller in 1969 and thus the new field of integrated optics was born [1.10]. The aim of this technology is to integrate a maximum of components onto a single chip such as an integrated circuit – elements with a variety of different functions within the smallest space to avoid macro-optic devices like mirrors and lenses. Some integrated optic components are able to influence all parameters of an optical wave: amplitude (intensity), frequency, phase and polarization. However, the first optical transmission is much older. Native Americans for instance, were
already communicating with smoke signals a long time ago [1.12,1.13]. Furthermore, it was a very sophisticated and modern system, because it was already a digital system, consisting of “binary 1” and “binary 0” (smoke/no smoke) (Figure 1.3).

Thus digital systems have already existed for a long time, providing the basics for information technologies, information processing and transmission. However, analog techniques are still of interest – physical quantities at the origin and the reception (e.g. human reception). But as soon as they are processed or transmitted nowadays, almost exclusively digital techniques are used. A further free space transmission has also been developed, the optical telegraph realized by Claude Chappe. He invented a semaphore set-up by means of movable bars able to produce several signs. But free space transmission on Earth suffers from atmospheric disturbance [1.11]. This also holds for free space laser transmission on Earth, which came to light in the 1960s after the invention of the laser. There are exceptions in outer space applications and for short distance air transmissions (Chapter 9.3).

The real breakthrough of optical data transmission systems came with the glass fiber, which had sufficient low attenuation for propagation of electromagnetic waves in the near infrared region. This low value of attenuation is one of the most attractive advantages of fiber-optic systems compared to conventional electrical ones.

Figure 1.4 depicts the attenuation behavior. In particular, we observe independence of the modulation frequency of fiber-optic systems in contrast to electrical ones which suffer from the skin effect. Yet it has to be confessed that there are different problems leading to a frequency limit, the dispersions: modal, chromatic and polarization mode dispersions must be mentioned (Chapter 3). Solutions of how to deal with these problems with sufficient success will be
Figure 1.3 Digital optical transmission by use of smoke signals

Figure 1.4 Attenuation of coaxial cables and optical fibers
presented. In the end, the enormous achievable bandwidth must be highlighted. That leads to a high transmission capacity in terms of the product of achievable fiber bandwidth B and length L, also named \textit{transmission capacity}, C_t. It is a figure of merit, as one of the most important goals is to maximize this product for every kind of data transmission with respect to the demands concerning its application.

$$C_t = B \cdot L = \text{Max}$$

where:

B maximum achievable bandwidth and
L maximum achievable link length

In addition, low weight, small size, insensitivity against electromagnetic interference (EMI, EMC), electrical insulation and low crosstalk must be mentioned.

Glass fiber systems are used in the near infrared range, right above the wavelengths we can see with our eyes. As optoelectronic components for light sources, we apply GaAlAs (Gallium-Aluminium-Arsenide) LEDs and laser diodes for wavelengths in the 850 nm region and InGaAsP (Indium-Gallium-Arsenide-Phosphide) devices for the long wavelengths of about 1200 nm to over 1600 nm. Photodiode materials of interest are well known, Si for 850 nm, and Ge and InGaAsP for the long wavelength range (Figure 6.40). However, an optical communication system is more than a light source, a fiber, and a photodiode. There is a laser driver circuit necessary to provide a proper high-bit-rate electric signal; this driver, combined with a laser or an LED, builds the optical transmitter. Also the photodiode (pin or APD—Avalanche Photodiode), together with the front-end amplifier, forms the optical detector, also called the optical receiver. This front-end amplifier consists of a very highly sophisticated electric circuit. It has to detect a high bandwidth operating with very few photons due to a large fiber length and it is struggling with a variety of noise generators. In addition, there are further electric circuits to be taken into account, such as circuits for coding, scrambling, error correction, clock extraction, temperature power-level, and gain controls. If the desired link length cannot be realized, a repeater consisting of a front-end amplifier and a pulse regenerator will be inserted. This pulse regenerator is necessary to restore the data signal before it is fed to a further laser driver followed by another laser (Figure 9.2). Alternatively, an optical amplifier can be used, in particular the Erbium-doped fiber amplifier is a great success (Figure 8.2). Moreover, instead of unidirectional systems, we need bi-directional ones (Figure 9.9); that is, it is not sufficient that for a telephone link a person at one side of the link is able to speak, but at the other side another person can only listen; the system does not operate the other way round. To overcome this inconvenient situation, optical couplers on both sides of the link are inserted (Figures 4.53 and 4.54). The two counter propagating optical waves superimpose undisturbed, and they separate at the optical couplers on the other side of the link and reach the according receivers. To improve the transmission capacity drastically, wavelength selective couplers are applied, called multiplexers and demultiplexers. Several laser diodes operating at different wavelengths are used as transmitters; their light waves are combined by the multiplexer and on the other link end they are separated by the demultiplexer. This set-up is named the wavelength division multiplex system (WDM). If we apply this arrangement again in the two counter propagating directions, we achieve a bi-directional WDM system. The
transmission capacity then rises by the number N of the channels transmitted over one single fiber.

For about 20 years now, last mile communication has been discussed. The idea of fiber to the home (FTTH) has also been discussed, but until now this did not happen because it was too expensive. Latest improvements could help to achieve this special communication. All-plastic PMMA-fibers (poly methyl methacrylate) have been developed, named Polymer Optical Fibers (POF), which feature in contrast to the previous PMMA-fibers at a considerably lower attenuation [1.17] (Chapter 10.2). As an economic alternative to the application of semiconductor lasers, another important step is the development of cheap high-speed LEDs [1.18] or low-cost VCSELs (Vertical Cavity Surface Emitting Lasers) [3.1], which can be modulated fast enough.

Combinations of fiber-optic with mm-waves systems or coaxial cable systems have been developed for the local area network as a possible alternative. As another alternative to cable systems, the declared dead free space transmission could be also revived with distances in the 100 m range. For this purpose, the light emerging from a fiber is fed to a lens and formed into a parallel beam. At the reception site it is again coupled into a fiber or directly to a detector.

This conjunction of fiber-optic transmission and free space may successfully be used in sky scraper areas, where air distances lie in the 100 m range and cable systems would need to be in kilometres. Wireless data transmission is also an interesting option for distances in the 10 m range. Connections between, for example, a PC, printer, scanner or adjacent participants in intranets (LANs, Local Area Networks, see below) should not be bridged by interfering electrical cables. Further developments in the microwave range have been developed, such as the recent well-known Bluetooth systems.

Moreover, besides typical point-to-point connections, network systems are necessary. In nearby zones, for example inside a business house, the commonly used term is LANs (Local Area Networks); in the local net or metro region it is MANs (Metropolitan Area Networks), [9.85–9.87]. The network topologies are bus, star or ring structures (Chapter 9.5.3).

Furthermore, free space transmission is gaining a particular renaissance in outer space, because outside of the Earth’s atmosphere typical problems such as natural disturbances by fog, rain, snow or artificially caused impurities do not inherently exist. Therefore, laser free space connections between satellites have been already tried and tested successfully (Chapter 9.3).

In the last 10 years, communication in automotive systems became of great interest (Chapter 11.1). Currently, optical data buses in vehicles are almost exclusively used for infotainment (information and entertainment) applications. The Media Oriented Systems Transport (MOST) is the optical data bus technology used nowadays in cars with a data rate up to 150 MBit/s (Figure 11.5 [1.14]). The development of infotainment applications in cars began with a radio and simple loudspeakers. Today’s infotainment systems in cars include but are not limited to ingenious sound systems, DVD-changers, amplifiers, navigation and video functions. Voice input and Bluetooth interfaces complement these packages. Important and basic logical links of these single components are already well known from a simple car radio. Everybody probably knows the rise of volume in the case of road traffic announcements. However, the integration of more and more multimedia and telematic devices in vehicles led to a large increase in data traffic demands. In particular, for luxurious classes, a huge need for network capacity and higher complexity by integration of various applications have to be taken into account. MOST
150 operates with LEDs, a POF and silicon photodiodes. However, to enable the next step towards autonomous driving, new bus systems with higher data rates will be required.

Another serious challenge arises in protecting new generation aircrafts, particularly against lightning strikes [1.15]. This is because new airplanes will be built using carbon-fibers to reduce the weight of the fuselage. Therefore, these airplanes will lose their inherent Faraday cage protection against lightning, cosmic radiation and further electrostatic effects (Figure 1.5).

In order to avoid failures in signal transmission in the physical layer, the electrical copper wires should be well protected. But this solution is too expensive and increases the weight of the cables [1.15]. A reasonable solution is to use glass or plastic fibers as transmission media in these new airplanes. Since the FlexRay bus protocol [1.16] is more adequate for avionic applications, it should be adapted for this kind of transmission. Thus, this solution is cost-efficient and offers more safety in the aviation domain. A promising solution for higher sophisticated systems could be the use of optical data transmission based on new laser types, such as VCSELs and the application of Polymer Cladded Silica (PCS) fibers. This enables EMC compatibility and paves the way for the future.

In this book we mainly give an introduction to optical transmission. Emphasis is on fiber transmission systems, working with basic components. The reader should be familiar with
the fundamental optical techniques for communication systems. Moreover, for more comprehensive considerations there are further components to be dealt with, for example the optical amplifier to enhance the link length. In order to achieve this, Erbium and Raman amplifiers (Chapter 8) [8.1,8.2] have been developed to overcome the problem of attenuation in fibers. Due to the above-mentioned dispersions, there are signal distortions in optical fibers. The systems suffer from pulse broadening (Figure 3.21) leading to bandwidth reduction with impact on the transmission capacity, the product of bandwidth and fiber length. Solutions to overcome or at least to reduce these problems are discussed in Chapter 3.2.

Furthermore, wireless applications open new fields for data transmission [1.19]. High speed wireless LED transmissions offer short and middle range data transmission without EMI/EMC problems (Figure 1.6). Higher bandwidths than non-optical wireless applications will offer high-speed up- and downloads in offices, labs and private homes.

Also, car-to-car communication could be an interesting scenario (Figure 11.1[1.20]). In particular, safety relevant applications are of great interest (Iizuka 2008, [1.20]). The catchword is “Pre-crash safety” by VL-ISC: Visible Light Image Sensor Communication. Human reaction time is a problem in security, as in difficult circumstances it could last much longer than a sensor does. The vehicle in front might suddenly start braking. Thus, depending on the brake pressure, immediately its stoplights will give information to the following vehicle. In critical cases the following vehicle will automatically start emergency braking to avoid a collision or at least to avoid serious damage.

A further new development is shown in Figure 11.2, a red-light-to-car communication. In this case, the red light tells a waiting driver that he will get a green signal in 50 seconds. Another example would be that a car is approaching a red light and the driver gets the information 10 seconds before he can even see it. While the driver is waiting at the red light, the system receives the red interval from the traffic light in order to take the decision to stop the engine. The outcome would be a gas-mileage and CO₂ reduction of more than 5% (November 2008). In addition, the driver does not have to fix his eyes on the traffic light permanently. These systems can predict idling intervals with accuracy to solve unnecessary engine stops and starts. Including information about the green, amber and red time zones, the traffic volume can be better regulated.

Figure 1.6 Room lighting with inherent data modulation and transmission
Moreover, a new industry standard, named communication in automation engineering, has been developed. Applying this technology has opened up new perspectives for data linking between tooling machines and a central control unit: Industry 4.0 is a collective term for technologies and concepts of value chain organization (Chapter 9.6).

Finally, non-optical techniques have to be taken into account (Chapters 10.5 and 11.2). For example, WLAN and even RADAR systems can be used in automotive application, to guarantee more safety in limited optical visibility situations like heavy rain, fog or snow.

As mentioned above, it has to be underlined that nowadays the user wants a complete solution for his demands and he does not stop to ask if that is fiber optics or whatever. Moreover, he also wants combinations of other physical techniques with or without fibers, so Optical wireless communications, Optical and Non-Optical Solutions, and Microwaves in Radio over Fiber (RoF) have to work together.
The propagation of electromagnetic waves in transmission media is very important for optical transmission techniques as well as for fiber-optic sensor applications. The spectrum of electromagnetic waves varies from long-wave radio waves to short-wave cosmic radiation. The area which is interesting in fiber optics and sensor techniques spans from visible light to the near infrared region (Figure 2.1).

The related physical area is called Optics. In a closer sense, almost exclusively, electromagnetic waves in the visible area are named light but often the IR- and UV-regions are included in the term too. The propagation can take place in free space, air and outer space or in guided media. The electromagnetic wave propagation device is called the optical waveguide. The most well-known type of optical waveguide is a glass fiber. Instead of glass, it is also possible to use a transparent plastic material, a polymer optical fiber (POF). Moreover, it is not imperative that the waveguide shows a round cross-sectional shape like the fiber does. For example, it can be inserted in a plane substrate. Thus, a two-dimensional waveguide structure will be achieved, which finds its application in the field of integrated optics.

2.1 Free Space Propagation of Electromagnetic Waves

Electromagnetic waves appear as a periodic spatiotemporal excitation of field quantities of a physical field transporting physical energy. The electric field vector (\vec{E}) oscillates perpendicularly to the magnetic field vector (\vec{H}) and moreover, both fields are perpendicular to the wave propagation direction (Figure 2.2); such a wave is called a transversal wave.
Figure 2.1 Infrared (IR) and visible region (VIS) including ultraviolet (UV) is called the field of optical radiation.

Figure 2.2 Electric (\vec{E}) and magnetic field vector (\vec{H}) of an optical wave at a certain time with propagation in the x-direction.
The mathematical description of electromagnetic wave propagation is based on Maxwell’s theory of the electromagnetic field [2.1]. For Maxwell’s equations include:

\[
\begin{align*}
\rot \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \quad (2.1) \\
\rot \vec{H} &= \frac{\partial \vec{D}}{\partial t} + \vec{j} \quad (2.2) \\
div \vec{D} &= \rho \quad (2.3) \\
div \vec{B} &= 0 \quad (2.4)
\end{align*}
\]

where:

- \(\vec{B} \) Magnetic induction
- \(\vec{D} \) Dielectric displacement
- \(\vec{j} \) Current density and Electric charge density

There are material equations which take into account the media properties that the waves are propagating:

\[
\begin{align*}
\vec{D} &= \varepsilon \vec{E}, \varepsilon = \varepsilon_0 \varepsilon_r \quad (2.5) \\
\vec{B} &= \mu \vec{H}, \mu = \mu_0 \mu_r \quad (2.6) \\
\vec{j} &= \kappa \vec{E} \quad (2.7)
\end{align*}
\]

where:

- \(\kappa \) Specific conductivity
- \(\varepsilon \) Dielectric constant (Permittivity)
- \(\varepsilon_0 \) Free space dielectric constant (Permittivity)
- \(\varepsilon_r \) Relative dielectric number
- \(\mu \) Permeability
- \(\mu_0 \) Induction constant
- \(\mu_r \) Relative permeability

Several helpful simplifications are obtained in optics and consequently for wave propagation in optical waveguides. Concerning the used wavelength areas, the attenuation is very small, particularly in glass fibers (Chapter 3.1). Thus it can be neglected for actual considerations and thus the waveguide will be treated as free of absorption. Furthermore, glass is a non-conductive material, and there are no charge carriers either. Moreover, the magnetic induction in the waveguide is approximately the same in a vacuum, so it follows that:

\[
\kappa = 0, \, j = 0, \, \rho = 0 \text{ and } \mu_r = 1
\]
Therefore a simplification of Maxwell’s Eqs (2.1) to (2.4) is gained by the application of the laws of vector analysis following from Eqs (2.1) to (2.4) [2.2]:

\[
\Delta \vec{E} - \mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \quad (2.8)
\]

\[
\Delta \vec{H} - \mu \epsilon \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \quad (2.9)
\]

Applying the Laplace operator \(\Delta\) to each Cartesian component of the \(\vec{E}\) and \(\vec{H}\) vector, respectively:

\[
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\]

the propagation velocity \(v\) (phase velocity) of an electromagnetic wave in the media is given by:

\[
v = \frac{1}{\sqrt{\mu \epsilon}} = \frac{1}{\sqrt{\mu_0 \epsilon_0 \epsilon_r}} = c/n = \omega/(k_0 n) \quad (2.10)
\]

where:

- \(c\) Light velocity in vacuum
- \(n\) Refraction index
- \(\omega\) Angular frequency
- \(f\) Frequency
- \(k_0\) Value of the wave vector \(k_0\) in vacuum (\(k_0 = 2\pi/\lambda\))
- \(\lambda\) Wavelength of the electromagnetic wave

Now Eqs (2.8) and (2.9) can be recalculated and regarding the electric and the magnetic field strength the following differential equations, the wave equations, are given by:

\[
\Delta \vec{E} - \frac{n^2 k_0^2}{\omega^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \quad (2.11)
\]

\[
\Delta \vec{H} - \frac{n^2 k_0^2}{\omega^2} \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \quad (2.12)
\]

Next, solutions to these differential equations have to be found for the vectors \(\vec{E}\) and \(\vec{H}\). The most general solution is (e.g. the electric field strength):

\[
\vec{E} = \vec{E} (\vec{r}, t) = \vec{E} (\vec{k} \vec{r} - \omega t)
\]