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Preface

First as a student and later as an engineer, I have always been involved in the calculation of transfer
functions. When designing power electronics circuits and switch mode power supplies, [ had to apply
my analytical skills on passive filters. I also had to linearize active networks when I needed the
control-to-output dynamic response of my converter. Methods to determine transfer functions
abounded and there are numerous textbooks on the subject. I started in college with mesh-node
analysis, and at some point ended up using state variables. If all paths led to the correct result, I often
struggled rearranging equations to make them fit a friendly format. Matrices were useful for
immediate numerical results but, when trying to extract a meaningful symbolic transfer function,
I was often stuck with an intractable result. What matters with a transfer function formula is that you
can immediately distinguish poles, zeros and gains without having to rework the expression. This is
the idea behind the term low-entropy, a concept forged by Dr. Middlebrook.

Simulation gives you an idea where poles and zeros hide by interpreting the phase and magnitude
plots with minimum-phase functions. However, inferring which terms really affect a pole or a zero
position from a Bode plot is a different story. Fortunately, if the transfer function is written the right
way, then you can immediately identify which elements contribute to the roots and assess how they
impact the dynamic response. As some of these parasitics vary in production or drift with temperature,
you have to counteract their effects so that reliability is preserved during the circuit’s life. The typical
example is when you are asked to assess the impact of a parasitic term variation on a product you have
designed: if a new capacitor or a less expensive inductor is selected by the buyers, will production be
affected? Is there a chance that stability will be jeopardized in some operating conditions?
Implementing the classical analysis method will surely deliver a result describing the considered
circuit, but extracting the information you need from the final expression is unlikely to happen if the
equations you have are disorganized or in a high-entropy form.

This is where Fast Analytical Circuit Techniques (FACTs) come into play. The acronym was
formed by Dr. Vatché Vorpérian, who formalized the technique you are about to discover here.
Before him, Dr. Middlebrook published numerous papers and lectured on his Extra-Element
Theorem (EET), later generalized to the N extra-element theorem by one of his alumni. Since
Hendrik Bode in the 40’s, authors have come up with techniques aiming to simplify linear circuit
analysis through various approaches. All of them were geared towards determining the transfer
function at a pace quicker than what traditional methods could provide. Unfortunately, while
traveling and visiting customers world-wide, I have found that, despite all the available documenta-
tion, FACTs were rarely adopted by engineers or students. When describing examples in my seminars
and showing the method at work in small-signal analysis, I could sense interest from the audience
through questions and comments. However, during the discussions I had later on with some of
the engineers or students, they confessed that they tried to acquire the skill but gave up because of the



xii Preface

intimidating mathematical formalism and the complexity of the examples. If one needs to be rigorous
when tackling electrical analysis, perhaps a different approach and pace could make people feel at
ease when learning the method. This is what I strived to do with this new book, modestly shedding a
different light on the subject by progressing with simple-to-understand examples and clear explan-
ations. As a student, I too struggled to apply these fast analytical circuits techniques to real-world
problems; as such, I identified the obstacles and worked around them with success. Thus, the seeds for
this book were sown.

This book consists of five chapters. The first chapter is a general introduction to the technique,
explaining what transfer functions are and how time constants characterize a circuit. The second
chapter digs into transfer function definitions and polynomial forms, introducing the low-Q
approximation, and how to organize 2" and 3™-order denominators or numerators. The third
chapter uses the superposition theorem to gently introduce the extra-element theorem. Numerous
examples are given to illustrate its usage in different 1*'-order configurations. The fourth chapter deals
with the 2-extra element theorem, generalized and applied to 2"%-order networks. Numerous
examples illustrated with Mathcad® and SPICE punctuate the explanations. Finally, the fifth chapter
tackles 3"- and 4™-order circuits, all illustrated with examples. Each chapter ends with 10 fully
documented problems. There is no secret; mastering a technique requires patience and practice, and
I encourage you to test what you have learned after each chapter through these problems.

I have adopted the same casual writing style already used in my previous books, as readers’
comments show that the way I present things better explains complex matters. Please let me know if
my approach still applies here and if you enjoy reading this new book. As usual, feel free to send me
your comments or any typos you may find at cbasso@wanadoo.fr. I will maintain an errata list in my
personal webpage as I did for the previous books (http://cbasso.pagesperso-orange.fr/Spice
.htm). Thank you, and have fun determining transfer functions!

Christophe Basso
May 2015
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1

Electrical Analysis — Terminology
and Theorems

This first chapter is an introduction to some of the basic definitions and terms you must understand in
order to perform electrical analysis with efficiency and speed. By electrical analysis, I imply finding
the various relationships that characterize a particular electrical network. To excel in this field, as in
any job, you need to master a few tools. Obviously, they are innumerable and I am sure you have
learned a plethora of theorems during your student life. Some names now seem distant simply because
you never had a chance to exercise them. Or you actually did but implementation was so obscure and
complex that you left quite a few of them aside. This situation often happens in an engineer’s life
where real-case experience helps clean up what you have learned at school to only retain techniques
that worked well for you. Sometimes, when what you know fails to deliver the result, it is a good
opportunity to learn a new procedure, better suited to solve your current case. In this chapter, I will
review some of the founding theorems that I extensively use in the examples throughout this book.
However, before tackling definitions and examples, let us first understand what the term transfer
function designates.

1.1 Transfer Functions, an Informal Approach

Assume you are in the laboratory testing a circuit encapsulated in a box featuring two connectors: one
for the input, the second for the output. You do not know what is inside the box, despite the transparent
case in the picture! You now inject a signal with a function generator to the input connector and
observe the output waveform with an oscilloscope. Using the right terminology, you drive the circuit
input and observe its response to the stimulus. The input waveform represents the excitation denoted
u and it generates a response denoted y. In other words, the excitation variable propagates through the
box, undergoes changes in phase, amplitude, perhaps induces distortion etc. and the oscilloscope
reproduces the response on its screen.

The waveform displayed by the oscilloscope is a time-domain graph in which the horizontal axis x
is graduated in seconds while the vertical axis y indicates the signal amplitude (positive or negative).
Its dimension depends on the observed variable (volts, amperes and so on). The input waveform is
denoted in lower case as it is an instantaneous signal, observed at a time — the instant t — u(t). A similar
notation applies to the output signal, y(7). In Figure 1.1, you see a low duty ratio square-wave injected
in the box engendering a rather distorted waveform on the output.

Linear Circuit Transfer Functions: An Introduction to Fast Analytical Techniques, First Edition. Christophe P. Basso.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 Linear Circuit Transfer Functions

u(t) y(t)
input \ output
= 2f- /\/\va
excitation !

response

Figure1.1 A black box featuring an input and an output signal. What is the relationship linking output and input
waveforms?

This ringing signal tells us that the box could associate resonant elements, probably capacitors and
inductors but not much more than that. If we change the excitation, what type of shape will we obtain?
Knowing what is inside the box will let us predict its response to various types of excitation signals.

There are several available ways to characterize an electrical linear circuit. One of them is called
harmonic analysis. The input signal is replaced by a sinusoidal waveform and you observe how the
stimulus propagates through the box to form the response. This is shown in Figure 1.2:

The excitation level must be of reasonable amplitude — understand small — so that the response
signal is not distorted. The input signal dc bias must also be set accounting for the physical constraints
imposed by the active circuit so that upper- or lower-rail saturation is avoided. In other words, the box
internal circuitry is not overdriven and remains linear during the analysis. Linearity is confirmed if the
output signal is sinusoidal with the same frequency as the input sine and only varies in amplitude and
phase while you ac-sweep the network. This is a so-called small-signal analysis. In the Laplace
domain, you perform such harmonic analysis when you set s = jw in which @ = 2z f represents the
angular frequency expressed in radians per seconds (rads/s). Laplace analysis with s = jw applies to
linear circuits only.

Should you increase the input signal amplitude or change the operating bias point, slewing or
clipping may happen. In this case, you explore the box large-signal or nonlinear response. This is a
characterization different than the small-signal approach and it offers another insight into the circuit
operation. Let us keep linear and once the right input amplitude is found, i.e. a signal of comfortable
amplitude is observed on the oscilloscope screen, the frequency is varied step by step while output
amplitude/phase couples are recorded in an array. At each frequency point f, we store the ratio of the
response amplitude Y(f) in volts to the excitation amplitude U(f) in volts also. At each frequency
point f, we save the phase information linking both input and output waveforms. As U and Y are
complex variables affected by a magnitude and a phase, we can write:

A6 =3 (1)
A, represents a transfer function, a mathematical relationship linking a response signal Y to an
excitation signal U. Please note that the excitation signal U resides in the transfer function

excitation response

/\/\/\inpUt \ ? —>output /W\/\

u(t) ; = — y (1)

Figure 1.2 The black box is now driven by a sinusoidal stimulus for a small-signal analysis.
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denominator while the response Y sits in the numerator. It will always be this way throughout the
book.

The transfer function is a complex variable characterized by a magnitude noted |A,(f)| and an
argument, ZA,(f) also noted arg A,(f). The ratios Y(f)/U(f) we have stored correspond to the
transfer function magnitude (also called modulus) observed at a frequency f while the phase difference
between Y and U represents the transfer function argument or phase at the considered frequency. The
transfer function magnitude dimension depends on the observed variables as we will later see. Here,
because volts are involved for both variables, the transfer function magnitude is dimensionless or
unitless. Furthermore, |4,| can only be greater than or equal to zero. It is what makes the difference
between an amplitude which can take on any value, positive, null or negative and a magnitude which
can only be zero or positive. If it is 0, there is no output signal. If |4,| is less than 1, we talk about
attenuation. Now, if |A, | is greater than 1, it is designated as a gain. If the magnitude can only be a null
or positive number, what about a gain of —2 then? It simply characterizes a stage offering a gain of 2,
lagging or leading the excitation signal phase by 180°.

1.1.1 Input and Output Ports

Itis convenient to represent our box as a two-port circuit. A port is a pair of connections that can input
or output signals such as voltage and current. Figure 1.3 shows an illustration of this principle where
you see two connecting ports, one input and one output.

Under some conditions, a port can take on the input and output roles at the same time. Imagine you
want to measure the output impedance of the box. To realize this measurement, you classically
implement Figure 1.4 where a current across the output terminals is injected while the voltage across
the same terminals is observed This is what is called a single injection, i.e. one stimulus and one
response. In this experiment, the box input port is shorted (see Appendix 1A). The excitation variable
is the current 1,,,(s) injected into the port while the response is the voltage V,,,(s) collected across the
port’s terminals. The output impedance Z obtained from the ratio of the port voltage to the injected

Input
port |

 Output
:oF:tU ﬂ|]|:> Response

Excitation []

L R, ", Excitation
) «
T L®
: outS
ov. | Vouls)
short circuit |
; Response

Figure 1.4 A portcan be both an input and an output at the same time. Here, an output impedance measurement.
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current is a transfer function. It has the dimension of an impedance expressed in ohms:

Vout (S )
I out (S )

L., the excitation signal lies in the denominator while the response, V,,,,, stands in the numerator. We
will come back on this important peculiarity.

If input and output connectors are fixed, physical ports, which let you respectively inject and
observe signals, nothing prevents one from creating other observation ports as needed. Simply
remove a resistor, a capacitor or an inductor and its connecting points become a new port. This port
can now be used as a new input stimulus or as an output variable you want to observe. As already
mentioned, this newly created port can also play the role of an input and output port at the same time.
In that case, the box originally featuring one input and one output, becomes a two-input/two-output
system as illustrated in Figure 1.5 in which the inductor has been removed. Using adequate
terminology, we analyze the system by performing a double-injection: two stimuli — inputs 1 and
2 — giving two responses, outputs 1 and 2.

In this example, the voltage across the removed inductor terminals is the response while the
injected current is the excitation signal. By dividing the port voltage by the injected current, we have
the resistance offered by the port terminals when the element initially connected has been removed. In
other words, we ‘look’ at the resistance offered by the inductor port as shown in Figure 1.6 where the
symbol R? and the arrow imply this exercise. Expressed in a different manner, we find the equivalent
output resistance exhibited by the port when ‘driving’ the inductor, hence the name driving point
resistance or driving point impedance abbreviated as DPI. Combining resistance and inductance
gives us a time constant 7 (‘tau’) associated with this inductive element:

Zous(s) =

(1.2)

=L (13)

To conduct this exercise and find the resistance R, you can directly look at the sketch and infer the
resistive series-parallel arrangement without solving a single equation. This exercise is called network
inspection: you simply observe the network in certain conditions (for instance in dc, or when V;,, is set
to 0) and find resistance values by observing how components are connected together. For example, in
Figure 1.6, what resistance do you ‘see’ looking into the inductor port while capacitor C is

—

Output 1

|
: | AVAVAY, ,
1 .. ¢ R, A

Figure1.5 If youremove acomponent from this circuit, its connections become a connecting port. You can bias
this port and consider it as a new input, or as a new output, or both of them at the same time.
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R?

Qutput 1

Input 1
=0V

Figure 1.6 Removing the inductor lets you look at the port output resistance that drives the inductor.
Associating the port resistance and the inductance leads to a time constant. Here, the resistance seen at the
inductor port is Ry + R3.

disconnected for the exercise? R, appears first and then R; in series goes to ground and returns to the
inductor left terminal via the shorted input source. R, is open and plays no role:

R=R|+R; (1.4)
Applying (1.3) with (1.4) gives the definition for the time constant involving L:

L

=— 1.5
R +R; (1-5)

(21

A similar exercise can be conducted with the capacitor to also unveil the resistance R that drives this
element. In this case, the time constant associated with the capacitance is simply:

7=RC (1.6)

Assuming a shorted inductance in this particular illustration, what resistance value do you see in
Figure 1.7 when looking into the capacitor port? The left terminal is grounded while the second

Output 1

Input 1
=0V

R?

Figure 1.7 Removing the capacitor lets you conduct a similar exercise to unveil the time constant associated
with this component. In this case, the resistance seen at the capacitor port is R,.
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terminal also goes to ground via R,. R and R;3 play no role since their series combination goes from
one ground to the other one. Therefore:

R=R, (1.7)
The time constant involving the capacitor is simply:
T = ch (18)

We have two storage elements, C and L, and there are two time constants. For each storage element,
there is an associated time constant.

Rather than looking into a capacitive or an inductive port, we could also remove a resistor and
define what resistance drives it, the exercise remains the same. Sometimes, looking into the port to
‘see’ the resistance is not as straightforward, especially when controlled sources are involved. In this
case, you need to add a test current generator as in Figure 1.5 and define the voltage generated across
the considered terminals. The resistance offered by the port being the port voltage divided by the test
current generator. This test generator will later be labeled I7- and the voltage across its terminals V7.

What we just described is part of the technique foundations we will later describe: find resistances
offered across the connecting terminals of resistive, capacitive or inductive elements once they have
been temporarily removed from the circuit under certain conditions. Breaking a complex passive or
active circuit into a succession of simple configurations where time constants are unveiled will help us
characterize a network featuring poles and zeros. The Extra Element Theorem (EET) and later, the n
Extra Element Theorem (rEET), make an extensive usage of these methods and it is important to
understand this prerequisite. Appendix 1A will refresh our memory regarding available methods to
derive output impedances while Appendix 1B collects several examples to let you exercise your skills
at finding these resistances.

1.1.2 Different Types of Transfer Function

Depending where you inject the excitation and where you observe the response, you can define six
types of transfer functions as detailed in [1]. For the sake of simplicity, input and output ports are
ground-referenced but could also be differential types. The first one, is the voltage gain A, already
encountered in the above lines and it appears in Figure 1.8 together with an operational amplifier
(op amp) in an inverting configuration. In all the following illustrations, the op amp is considered a
perfect element (infinite open-loop gain, infinite bandwidth, zero output and infinite input imped-
ances). You sweep the input voltage with a sinusoid, the stimulus, and observe the voltage at the op
amp output, the response. In Laplace notation, you compute A, as:

Alls) = va”’(g)

(1.9)

A, is dimensionless, sometimes expressed in [V]/[V].

The second one is the current gain, A;, this time involving input and output currents as shown in
Figure 1.9. The excitation signal is now the input current /;,, while the observed variable is the output
current 1,

— 1 out (S )
I in (S )
A; is dimensionless, sometimes expressed in [A]/[A].

The third transfer function is called a transadmittance — short name for transfer admittance — and
is denoted Y;. You observe the output current while the input is excited by a voltage source.

Adls) (1.10)
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L ) I 1
T Q—> Vt)ut(s)
Voltage gain
Excitation PAl : Response
source IV\' : Y (s) V. (5)
U) T | T ' A= ———
Vin (5)
Ry
AVAVAY,
10kQ
R 33.4uV
1
100mV R
T ~ 2
Ay=-—
v, + 1Ko 2-1 .00V v R,
100 mV +
VOU/

Figure 1.8 The voltage gain A, is the first transfer function and links the output voltage to the input voltage.

Current gain

Ioul (S)
Excitation Response
source Y (s) Ao Lou (5)
Us) L)
R
-1.00V
NN
10 kQ
ln [374uv
» R2
1 A=1+ =
1
100 pA T

Figure 1.9 The current gain A; is the second transfer function and links the output current to the input current.



8 Linear Circuit Transfer Functions

Transadmittance
I(IM[ (‘S)

Excitation
source Response v Lo (5)
Y —_——
UGs) © VL)
R,
1.50V
3 Yt =— L
v, * 1kQ R
15V

Figure 1.10 The transadmittance Y, links the output current to the input voltage. Here the current in R, is
imposed by V;, and reaches 1.5 mA. The transadmittance gain is —0.001 A/V or —1 mS.

The measurement configuration is shown in Figure 1.10. The definition is as follows:

Loui(s)
V,-,,(S)

Yi(s) = (1.11)

If the two preceding gains were dimensionless, the transadmittance is expressed in ampere per volt,
[A]/[V] or siemens [S]. Similarly, we can define the fourth transfer function in which, this time, the
input is excited by a current source while the output voltage is the response (Figure 1.11). The ratio of
these two variables is designated as a transimpedance — short name for transfer impedance — denoted
Z; and expressed in volt per ampere, [V]/[A] or ohm [Q]:

Vour(s)
I in (S )

Transimpedance amplifiers are often used in case you want to amplify a photodiode current for
instance. You will find in [2] a design example of such a circuit.

In the four previous transfer functions, the involved quantities — excitation and response signals
— appear at two different places in the network. We conveniently considered the box input and
output terminals for the examples, but definitions apply equally for relationships between any
ports in the network. For the two remaining transfer functions, impedance Z and admittance Y,
excitation and response signals are observed at the same port terminals. It is therefore important to
distinguish how we create the excitation signal and what is considered the response signal. You
can argue that it is not a problem to reverse excitation and response because impedance and
admittances are reciprocal to each other. However, if we want to stick to our transfer function
definition in which the excitation waveform lies in the denominator while the response appears in
the numerator, then, for a driving point impedance (DPI) function Z,,(s), the excitation signal is a
current source and for a driving point admittance function Y,(s), the stimulus is a voltage source.

Zi(s) = (1.12)
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T Q: — V., (5)
Excitation Z(s) 36(3;30”39 Transimpedance
xcitati : . )
S — , o e
v (Y) Iin (S)
R
A
4.14mV| 100 kQ
Iin
! 1,00V Z=-R,
0pA Of . 2
V()Ut

Figure 1.11 The transimpedance Z, links the output voltage to the input current. In the op amp example, resistor
R, brings a transimpedance gain of —100kV/A.

The 5™ transfer function is thus the port input impedance Z(s) whose generalized transfer function
is given below:

V] (S)
I] (S)

If you consider V,, and [;,, or V,,,,; and I,,,,, you respectively measure the network input and output
impedances by injecting a test current in the port and measuring the voltage across the port terminals.
Figure 1.12 shows sources arrangement for this specific measurement. The dimension of an
impedance is ohm, [Q].

Finally, the 6™ transfer function is the admittance, the inverse of an impedance. You measure an
admittance by exciting the concerned port with a voltage source which produces a current, the
response (Figure 1.13). The generalized transfer function of an admittance is:

Zap(s) = (1.13)

11(s)
Y, = 1.14
dﬂ(s) V] (S) ( )
Zg? Driving point impedance
I,(s) 'TV() 2 V, (s)
| S ! » ($) =
Excitation o : < 1 (s)

source I '
i R '
Response

Figure 1.12 Impedances have the dimension of ohms. The excitation signal is a current.
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Yap? Driving point admittance

Response — [;(s) I, (s)
Excitation
source

L Y=
Tvl (s) | ap (8) Vo)

Figure 1.13 Admittances have the dimension of Siemens. The excitation signal is a voltage.

If you consider [;,, and V;, or I,,,; and V,,,,,, you respectively measure the network input and output
admittances.

Admittances are expressed in siemens, abbreviated [S]. Old notations such mhos, O or Q are
no longer in use in the International System of units (SI, after the French Systeme International
d’unités).

As explained, when determining a port impedance, the excitation signal is a current source.
In certain configurations, it is sometimes more convenient to actually calculate the admittance
instead by exciting the circuit with a voltage source. The final result is simply reversed to obtain
the impedance we are looking for. We will see an application of this principle in an example later
on. Figure 1.14 below summarizes the 6 transfer functions we just described.

Iin (Y) Inuz (S)

V() — > T(s) —a— V()

N(s) «—— Response signal

T(s)=
© D(s) <«—— Stimulus signal
A, (s) You® | age gain A;(s) Low 5)
L= v i (§)=— i
V. o) ge g i 1) current gain
]Dut (‘S) . Vuut (b)
Y, (s)= W transadmittance Z,(s)= IMT transimpedance
[in (‘5) Vin (S)
Yip($) = —— Zy ()= —"
Vin (S) Iin (S)
admittance impedance
]Dur (‘S) Vom (Y)
You I Z wt\S) = ———
' (S) Vout (S) o (g) Iout (A)

Figure 1.14 There are six different transfer functions, 4 of them have a stimulus and a response at different
locations — different ports — while two of them, Z;, and Y, have stimulus and response at the same port.
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1.2 The Few Tools and Theorems You Did Not Forget . . .

In the litany of theorems and analysis tools I had been taught during my university years, there are a
few I did not forget because I exercise them almost every day in my engineer’s job. Voltage and
current dividers are the first in the tools list. They are of tremendous help when it comes to simplifying
circuits and a quick refresh is given below. Among theorems, the first one is Thévenin’s theorem, after
the French electrical engineer, Charles Léon Thévenin, in 1883. The second is the dual of Thévenin’s
theorem, Norton’s theorem, after the American electrical engineer, Edward Lawry Norton who
described the theorem in his 1926 technical memorandum. The third one is obviously the
superposition theorem whose extension will lay the foundations for the EET and, later, the
nEET. Superposition and the EET are thoroughly detailed in Chapter 3.

Let’s have a look at a few examples applying these tools, showing how Thévenin and Norton can
help us simplify circuits in a quick and efficient way.

1.2.1 The Voltage Divider

This is one of the most useful tools I employ when analyzing electrical circuits. It works with all
passive elements in dc or ac (direct or alternating voltages/currents) and the Thévenin theorem makes
an extensive use of it. Figure 1.15 shows its simple representation.

The circulating current /; is the input voltage V;, divided by the total resistive path, Ry + R;:

Vin

I, = 1.15
""Ri+R; (1.15)

The voltage across R; is the resistance value multiplied by current /;:
Vour = 11Rs (]]6)

Substituting (1.15) in (1.16), we have:
R,

V()u = Vin O 1.17
! R +R; ( )

If we divide both sides of the equation by V,,, we have the transfer function linking V,,,, to V,,:

Vout — RZ (1 18)
Vin R +R, ’
Rl
I
+

Figure 1.15 A resistive divider is a great tool to simplify circuits.
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Z,
R, oL
—AAA— AN
Vour (5) o RO
+ poom- -3 + R -3
e (O e o O o L
z | z |
Z,(s)= Z()=sL;  Zy(s)=
sCy sCy
1 1
AGS) Z,(s) sC 1 AG) Z,(5) sC 1
(s)= = = s)= = =
! Z,(s) +R, 1 . 1+ sR,C, ! Z,(8)+Z,(s) 1 il 1+ 2L, Cy
sC, ! sCy !

Figure 1.16 The divider equation works with passive elements such as capacitors and inductors.

When you see networks such as those of Figure 1.16, you can immediately apply (1.18) without
writing a single line of algebra. In this example, (1.18) is updated with impedances rather than
resistances:

Voul(s) — ZZ(S)
V,‘,,(S) Z (5) + ZZ(S)

Ay(s) = (1.19)
Please note that (1.18) and (1.19) only work if R, or Z, are unloaded. Should you have another circuit
connected across R, or Z, respectively in Figure 1.15 and Figure 1.16, (1.18) and (1.19) no longer
work.

1.2.2 The Current Divider

This is another example of a very useful tool often involved in electrical analysis. Consider
Figure 1.17a circuit in which you need to find the current flowing in R;.
The total current /; is V;, divided by the resistive path connected to the source:

V.
I =—2__ (1.20)
R + RolR;
In this expression, the || operator refers to the paralleling of R, and R3:
RyR;
Ry IRy = 1.21
5l IR; R+ ks (1.21)

Mathematically, the parallel operator has precedence over the addition: R;||R; is first computed and
then added to R;.

The original sketch can then be updated to a simpler one as shown in Figure 1.17b. Kirchhoft’s
current law (KCL) tells us that the sum of the currents entering a junction equals the sum of currents
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V[n ﬂ> RZ R3 § Vom @T 11 R2 § R3 § Vour

Figure 1.17 The current divider is another great simple tool.
leaving it. Thus:
L=0hL+1; (1.22)

Currents I, and I3 are defined by the voltage across their terminals, V,,,,:

VOLII

I = 1.23
SR (1.23)
VDM[
L =— 1.24
2= %, (1.24)

Extracting V,,,, from (1.23) and (1.24) then equating results gives another relationship linking I3
and I,:
R3l3 = Ry1, (1.25)
Extracting I, from (1.22) and substituting it in (1.25) leads to:
R3l3 = Ry(I) — I3) (1.26)
Rearranging and factoring leads to the relationship linking /5 and I;:

R,
! R, + R

=1 (1.27)

This is the current divider expression which helps us get the current into R, or R; when [; splits
between these elements. Figure 1.18 gives another representation. The current flowing in R, equals

+ Il + Il qu
R, R, § R2§ §R3 §R4 Rs |

TEE

Figure 1.18 The current divider is easily generalized to paralleled resistors.
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Iy
- % YL
O _4|;_ ) R, L,
' P! |
Lol C C,=—
| |
: .| : . +
YR YR B O
| |
| |
| R | 2Ry, Ry §
| | itchi
z\ 9 L9 Uz Switching converter

Figure 1.19 Passive elements arranged to form a filter: how much current flows in L,?

the main current /; multiplied by the resistance ‘facing’ R, (thus R3) and divided by the sum of
resistances, R, + R3. The right side of Figure 1.18 generalizes the concept where more resistors are
connected in parallel with R3. If R, = R3||R4lIRs then the current in R, is simply:

Req

L= ————
2 ]Req-l-Rz

(1.28)

This technique works equally well with energy-storing components as represented in Figure 1.19.
This is a typical Electromagnetic Interference (EMI) filter found in switching converters. /; illustrates
the converter current signature — its high-frequency input current — C is the front-end capacitor while
L, is the filtering inductor. With a perfect filter, all the alternating current would flow in C; while only
direct current flows in L;, providing the dc source with the right isolation to the switching current.
Reality differs and what you need is the current really flowing in L; and check what attenuation this
configuration brings. Apply the current divider expression to Figure 1.19 circuit and you have

1
I3(S) _ ZQ(S) _ R2+E 14 sR,Cy

Li(s)  Zi(s)+Za(s) =1+SC1(R1+R2)+S2L1C1

- (1.29)
Ry +—+ Ry +sL,
SC[

We did not write a single equation to derive this transfer function, we just inspected the figure and
applied the current division law. This technique is called solving for a transfer function by inspection.

1.2.3 Thévenin’s Theorem at Work

Any 2-port linear system made of resistors, capacitors, inductors, dependent/independent current/
voltage sources can be represented by an equivalent Thévenin model. This equivalent circuit is made
of a complex generator V;;, associated with a complex output impedance Z,,. When solving complex
networks transfer functions, or if the current or voltage at a given point is needed, the idea is to apply
Thévenin’s theorem and break the complex circuit into a simpler representation with a Thévenin
equivalent circuit in place. This idea behind Thévenin’s approach is to model the I-V characteristics
‘seen’ by the load. You remove the load and model the equivalent source that drives it, affected by a
certain output impedance/resistance. As such, Thévenin’s and Norton’s equivalent circuits do not



