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Preface

The theory of probability and stochastic processes is often neglected in the
education of chemists and biologists, although modern experimental techniques
allow for investigations of small sample sizes down to single molecules and
provide experimental data that are sufficiently accurate for direct detection of
fluctuations. Progress in the development of new techniques and improvement in
the resolution of conventional experiments have been enormous over the last 50
years. Indeed, molecular spectroscopy has provided hitherto unimaginable insights
into processes at atomic resolution down to time ranges of a hundred attoseconds,
whence observations of single particles have become routine, and as a consequence
current theory in physics, chemistry, and the life sciences cannot be successful
without a deeper understanding of fluctuations and their origins. Sampling of
data and reproduction of processes are doomed to produce interpretation artifacts
unless the observer has a solid background in the mathematics of probabilities.
As a matter of fact, stochastic processes are much closer to observation than
deterministic descriptions in modern science, as indeed they are in everyday life,
and presently available computer facilities provide new tools that can bring us closer
to applications by supplementing analytical work on stochastic phenomena with
simulations.

The relevance of fluctuations in the description of real-world phenomena ranges,
of course, from unimportant to dominant. The motions of planets and moons as
described by celestial mechanics marked the beginning of modeling by means of
differential equations. Fluctuations in these cases are so small that they cannot
be detected, not even by the most accurate measurements: sunrise, sunset, and
solar eclipses are predictable with almost no scatter. Processes in the life sciences
are entirely different. A famous and typical historical example is Mendel’s laws
of inheritance: regularities are detectable only in sufficiently large samples of
individual observations, and the influence of stochasticity is ubiquitous. Processes in
chemistry lie between the two extremes: the deterministic approach in conventional
chemical reaction kinetics has not become less applicable, nor have the results
become less reliable in the light of modern experiments. What has increased
dramatically are the accessible resolutions in amounts of materials, space, and
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viii Preface

time. Deeper insights into mechanisms provide new access to information regarding
molecular properties for theory and practice.

Biology is currently in a state of transition: the molecular connections with
chemistry have revolutionized the sources of biological data, and this sets the stage
for a new theoretical biology. Historically, biology was based almost exclusively on
observation and theory in biology engaged only in the interpretation of observed
regularities. The development of biochemistry at the end of the nineteenth and
the first half of the twentieth century introduced quantitative thinking concerning
chemical kinetics into some biological subdisciplines. Biochemistry also brought a
new dimension to experiments in biology in the form of in vitro studies on isolated
and purified biomolecules. A second influx of mathematics into biology came from
population genetics, first developed in the 1920s as a new theoretical discipline
uniting Darwin’s natural selection and Mendelian genetics. This became part of the
theoretical approach more than 20 years before evolutionary biologists completed
the so-called synthetic theory, achieving the same goal.

Then, in the second half of the twentieth century, molecular biology started
to build a solid bridge from chemistry to biology, and the enormous progress in
experimental techniques created a previously unknown situation in biology. Indeed,
the volume of information soon went well beyond the capacities of the human mind,
and new procedures were required for data handling, analysis, and interpretation.
Today, biological cells and whole organisms have become accessible to complete
description at the molecular level. The overwhelming amount of information
required for a deeper understanding of biological objects is a consequence of two
factors: (i) the complexity of biological entities and (ii) the lack of a universal
theoretical biology.

Primarily, apart from elaborate computer techniques, the current flood of results
from molecular genetics and genomics to systems biology and synthetic biology
requires suitable statistical methods and tools for verification and evaluation of
data. However, analysis, interpretation, and understanding of experimental results
are impossible without proper modeling tools. In the past, these tools were primarily
based on differential equations, but it has been realized within the last two decades
that an extension of the available methodological repertoire by stochastic methods
and techniques from other mathematical disciplines is inevitable. Moreover, the
enormous complexity of the genetic and metabolic networks in the cell calls
for radically new methods of modeling that resemble the mesoscopic level of
description in solid state physics. In mesoscopic models, the overwhelming and for
many purposes dispensable wealth of detailed molecular information is cast into
a partially probabilistic description in the spirit of dissipative particle dynamics
[358, 401], for example, and such a description cannot be successful without a solid
mathematical background.

The field of stochastic processes has not been bypassed by the digital revolution.
Numerical calculation and computer simulation play a decisive role in present-day
stochastic modeling in physics, chemistry, and biology. Speed of computation and
digital storage capacities have been growing exponentially since the 1960s, with
a doubling time of about 18 months, a fact commonly referred to as Moore’s law
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[409]. It is not so well known, however, that the spectacular exponential growth
in computer power has been overshadowed by progress in numerical methods, as
attested by an enormous increase in the efficiency of algorithms. To give just one
example, reported by Martin Grötschel from the Konrad Zuse-Zentrum in Berlin
[260, p. 71]:

The solution of a benchmark production planning model by linear programming would
have taken – extrapolated – 82 years CPU time in 1988, using the computers and the linear
programming algorithms of the day. In 2003 – fifteen years later – the same model could be
solved in one minute and this means an improvement by a factor of about 43 million. Out
of this, a factor of roughly 1 000 resulted from the increase in processor speed whereas a
factor of 43 000 was due to improvement in the algorithms.

There are many other examples of similar progress in the design of algorithms.
However, the analysis and design of high-performance numerical methods require
a firm background in mathematics. The availability of cheap computing power has
also changed the attitude toward exact results in terms of complicated functions: it
does not take much more computer time to compute a sophisticated hypergeometric
function than to evaluate an ordinary trigonometric expression for an arbitrary
argument, and operations on confusingly complicated equations are enormously
facilitated by symbolic computation. In this way, present-day computational facili-
ties can have a significant impact on analytical work, too.

In the past, biologists often had mixed feelings about mathematics and reserva-
tions about using too much theory. The new developments, however, have changed
this situation, if only because the enormous amount of data collected using the new
techniques can neither be inspected by human eyes nor comprehended by human
brains. Sophisticated software is required for handling and analysis, and modern
biologists have come to rely on it [483]. The biologist Sydney Brenner, an early
pioneer of molecular life sciences, makes the following point [64]:

But of course we see the most clear-cut dichotomy between hunters and gatherers in the
practice of modern biological research. I was taught in the pregenomic era to be a hunter.
I learnt how to identify the wild beasts and how to go out, hunt them down and kill them.
We are now, however, being urged to be gatherers, to collect everything lying about and
put it into storehouses. Someday, it is assumed, someone will come and sort through the
storehouses, discard all the junk and keep the rare finds. The only difficulty is how to
recognize them.

The recent developments in molecular biology, genomics, and organismic biol-
ogy, however, seem to initiate this change in biological thinking, since there is
practically no way of shaping modern life sciences without mathematics, computer
science, and theory. Brenner advocates the development of a comprehensive theory
that would provide a proper framework for modern biology [63]. He and others are
calling for a new theoretical biology capable of handling the enormous biological
complexity. Manfred Eigen stated very clearly what can be expected from such a
theory [112, p. xii]:

Theory cannot remove complexity but it can show what kind of ‘regular’ behavior can be
expected and what experiments have to be done to get a grasp on the irregularities.
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Among other things, the new theoretical biology will have to find an appropriate
way to combine randomness and deterministic behavior in modeling, and it is safe
to predict that it will need a strong anchor in mathematics in order to be successful.

In this monograph, an attempt is made to bring together the mathematical
background material that would be needed to understand stochastic processes and
their applications in chemistry and biology. In the sense of the version of Occam’s
razor attributed to Albert Einstein [70, pp. 384–385; p. 475], viz., “everything should
be made as simple as possible, but not simpler,” dispensable refinements of higher
mathematics have been avoided. In particular, an attempt has been made to keep
mathematical requirements at the level of an undergraduate mathematics course
for scientists, and the monograph is designed to be as self-contained as possible.
A reader with sufficient background should be able to find most of the desired
explanations in the book itself. Nevertheless, a substantial set of references is given
for further reading. Derivations of key equations are given wherever this can be done
without unreasonable mathematical effort. The derivations of analytical solutions
for selected examples are given in full detail, because readers interested in applying
the theory of stochastic processes in a practical context should be in a position to
derive new solutions on their own. Some sections that are not required if one is
primarily interested in applications are marked by a star (?) for skipping by readers
who are willing to accept the basic results without explanations.

The book is divided into five chapters. The first provides an introduction to
probability theory and follows in part the introduction to probability theory by Kai
Lai Chung [84], while Chap. 2 deals with the link between abstract probabilities and
measurable quantities through statistics. Chapter 3 describes stochastic processes
and their analysis and has been partly inspired by Crispin Gardiner’s handbook
[194]. Chapters 4 and 5 present selected applications of stochastic processes to
problem-solving in chemistry and biology. Throughout the book, the focus is on
stochastic methods, and the scientific origin of the various equations is never
discussed, apart from one exception: chemical kinetics. In this case, we present
two sections on the theory and empirical determination of reaction rate parameters,
because for this example it is possible to show how Ariadne’s red thread can guide
us from first principles in theoretical physics to the equations of stochastic chemical
kinetics. We have refrained from preparing a separate section with exercises, but
case studies which may serve as good examples of calculations done by the reader
himself are indicated throughout the book. Among others, useful textbooks would
be [84, 140, 160, 161, 194, 201, 214, 222, 258, 290, 364, 437, 536, 573]. For a brief
and concise introduction, we recommend [277]. Standard textbooks in mathematics
used for our courses were [21, 57, 383, 467]. For dynamical systems theory, the
monographs [225, 253, 496, 513] are recommended.

This book is derived from the manuscript of a course in stochastic chemical
kinetics for graduate students of chemistry and biology given in the years 1999,
2006, 2011, and 2013. Comments by the students of all four courses were very
helpful in the preparation of this text and are gratefully acknowledged. All figures in
this monograph were drawn with the COREL software and numerical computations
were done with Mathematica 9. Wikipedia, the free encyclopedia, has been used
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extensively by the author in the preparation of the text, and the indirect help by the
numerous contributors submitting entries to Wiki is thankfully acknowledged.

Several colleagues gave important advice and made critical readings of the
manuscript, among them Edem Arslan, Reinhard Bürger, Christoph Flamm, Thomas
Hoffmann-Ostenhof, Christian Höner zu Siederissen, Ian Laurenzi, Stephen Lyle,
Eric Mjolsness, Eberhard Neumann, Paul E. Phillipson, Christian Reidys, Bruce E.
Shapiro, Karl Sigmund, and Peter F. Stadler. Many thanks go to all of them.

Wien, Austria Peter Schuster
April 2016
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Chapter 1
Probability

The man that’s over-cautious will achieve little.
Wer gar zu viel bedenkt, wird wenig leisten.

Friedrich Schiller, Wilhelm Tell, III

Abstract Probabilistic thinking originated historically when people began to ana-
lyze the chances of success in gambling, and its mathematical foundations were
laid down together with the development of statistics in the seventeenth century.
Since the beginning of the twentieth century statistics has been an indispensable
tool for bridging the gap between molecular motions and macroscopic observations.
The classical notion of probability is based on counting and dealing with finite
numbers of observations. Extrapolation to limiting values for hypothetical infinite
numbers of observations is the basis of the frequentist interpretation, while more
recently a subjective approach derived from the early works of Bayes has become
useful for modeling and analyzing complex biological systems. The Bayesian
interpretation of probability accounts explicitly for the incomplete but improvable
knowledge of the experimenter. In the twentieth century, set theory became the
ultimate basis of mathematics, thus constituting also the foundation of current
probability theory, based on Kolmogorov’s axiomatization of 1933. The modern
approach allows one to handle and compare finite, countably infinite, and also
uncountable sets, the most important class, which underlie the proper consideration
of continuous variables in set theory. In order to define probabilities for uncountable
sets such as subsets of real numbers, we define Borel fields, families of subsets
of sample space. The notion of random variables is central to the analysis of
probabilities and applications to problem solving. Random variables are elements
of discrete and countable or continuous and uncountable probability spaces. They
are conventionally characterized by their distributions.

Classical probability theory, in essence, can handle all cases that are modeled by
discrete quantities. It is based on counting and accordingly runs into problems when
it is applied to uncountable sets. Uncountable sets occur with continuous variables
and are therefore indispensable for modeling processes in space as well as for
handling large particle numbers, which are described as continuous concentrations
in chemical kinetics. Current probability theory is based on set theory and can
handle variables on discrete—hence countable—as well as continuous—hence
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2 1 Probability

uncountable—sets. After a general introduction, we present a history of probability
theory through examples. Different notions of probability are compared, and we
then provide a short account of probabilities which are derived axiomatically from
set theoretical operations. Separate sections deal with countable and uncountable
sample spaces. Random variables are characterized in terms of probability distri-
butions and those properties required for applications to stochastic processes are
introduced and analyzed.

1.1 Fluctuations and Precision Limits

When a scientist reproduces an experiment, what does he expect to observe? If
he were a physicist of the early nineteenth century, he would expect the same
results within the precision limits of the apparatus he is using for the measurement.
Uncertainty in observations was considered to be merely a consequence of technical
imperfection. Celestial mechanics comes close to this ideal and many of us, for
example, were witness to the outstanding accuracy of astronomical predictions
in the precise timing of the eclipse of the sun in Europe on August 11, 1999.
Terrestrial reality, however, tells that there are limits to reproducibility that have
nothing to do with lack of experimental perfection. Uncontrollable variations in
initial and environmental conditions on the one hand and the broad intrinsic diversity
of individuals in a population on the other hand are daily problems in biology.
Predictive limitations are commonplace in complex systems: we witness them
every day when we observe the failures of various forecasts for the weather or
the stock market. Another no less important source of randomness comes from the
irregular thermal motions of atoms and molecules that are commonly characterized
as thermal fluctuations. The importance of fluctuations in the description of ensem-
bles depends on population size: they are—apart from exceptions—of moderate
importance in chemical reaction kinetics, but highly relevant for the evolution of
populations in biology.

Conventional chemical kinetics handles molecular ensembles involving large
numbers of particles,1 N � 1020 and more. Under the majority of common
conditions, for example, at or near chemical equilibrium or stable stationary states,
and in the absence of autocatalytic self-enhancement, random fluctuations in particle
numbers are proportional to

p
N. This so-called

p
N law is introduced here as

a kind of heuristic, but we shall derive it rigorously for the Poisson distribution
in Sect. 2.3.1 and we shall see many specific examples where it holds to a good
approximation. Typical experiments in chemical laboratories deal with amounts of

1In this monograph we shall use the notion of particle number as a generic term for discrete
population variables. Particle numbers may be numbers of molecules or atoms in a chemical
system, numbers of individuals in a population, numbers of heads in sequences of coin tosses,
or numbers of dice throws yielding the same number of pips.
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substance of about 10�4 mol—of the order of N D 1020 particles—so these give
rise to natural fluctuations which typically involve

p
N D 1010 particles, i.e., in

the range of ˙10�10N. Under such conditions the detection of fluctuations would
require an accuracy of the order of 1:1010, which is (almost always) impossible
to achieve in direct measurements, since most techniques in analytical chemistry
encounter serious difficulties when concentration accuracies of 1:10�6 or higher are
required.

Exceptions are new techniques for observing single molecules (Sect. 4.4). In
general, the chemist uses concentrations rather than particle numbers, i.e., c D
N=.NLV/, where NL D 6:022� 1023 mol�1 and V are Avogadro’s constant2 and the
volume in dm3 or liters. Conventional chemical kinetics considers concentrations
as continuous variables and applies deterministic methods, in essence differential
equations, for analysis and modeling. It is thereby implicitly assumed that particle
numbers are sufficiently large to ensure that the limit of infinite particle numbers is
essentially correct and fluctuations can be neglected. This scenario is commonly not
justified in biology, where particle numbers are much smaller than in chemistry and
uncontrollable environmental effects introduce additional uncertainties.

Nonlinearities in chemical kinetics may amplify fluctuations through autocatal-
ysis in such a way that the random component becomes much more important
than the

p
N law suggests. This is already the case with simple autocatalytic

reactions, as discussed in Sects. 4.3.5, 4.6.4, and 5.1, and becomes a dominant effect,
for example, with processes exhibiting oscillations or deterministic chaos. Some
processes in physics, chemistry, and biology have no deterministic component at all.
The most famous is Brownian motion, which can be understood as a visualized form
of microscopic diffusion. In biology, other forms of entirely random processes are
encountered, in which fluctuations are the only or the major driving force of change.
An important example is random drift of populations in the space of genotypes,
leading to fixation of mutants in the absence of any differences in fitness. In
evolution, after all, particle numbers are sometimes very small: every new molecular
species starts out from a single variant.

In 1827, the British botanist Robert Brown detected and analyzed irregular
motions of particles in aqueous suspensions. These motions turned out to be
independent of the nature of the suspended materials—pollen grains or fine particles
of glass or minerals served equally well [69]. Although Brown himself had already

2The amount of a chemical compound A is commonly specified by the number NA of molecules
in the reaction volume V, via the number density CA D NA=V, or by the concentration cA D
NA=NLV, which is the number of moles in one liter of solution, where NL is Avogadro’s constant
NL D 6:02214179� 1023 mol�1, i.e., the number of atoms or molecules in one mole of substance.
Loschmidt’s constant n0 D 2:6867774 � 1025 m�3 is closely related to Avogadro’s constant and
counts the number of particles in one liter of ideal gas at standard temperature and pressure,
which are 0ı and 1 atm D 101:325 kPa. Both quantities have physical dimensions and are not
numbers, a point often ignored in the literature. In order to avoid ambiguity errors we shall refer to
Avogadro’s constant as NL, because NA is needed for the number of particles A (for units used in
this monograph see appendix Notation).
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demonstrated that the motion was not caused by any (mysterious) biological
effect, its origin remained something of a riddle until Albert Einstein [133], and
independently Marian von Smoluchowski [559], published satisfactory explanations
in 1905 and 1906, respectively.3 These revealed two main points:

(i) The motion is caused by highly frequent collisions between the pollen grain and
the steadily moving molecules in the liquid in which the particles are suspended,
and

(ii) the motion of the molecules in the liquid is so complicated and irregular that
its effect on the pollen grain can only be described probabilistically in terms of
frequent, statistically independent impacts.

In order to model Brownian motion, Einstein considered the number of particles per
unit volume as a function of space4 and time, viz., f .x; t/ D N.x; t/=V , and derived
the equation

@f

@t
D D

@2f

@x2
; with solution f .x; t/ D Cp

4�D

exp.�x2=4Dt/p
t

;

where C D N=V D R
f .x; t/ dx is the number density, the total number of particles

per unit volume, and D is a parameter called the diffusion coefficient. Einstein
showed that his equation for f .x; t/ was identical to the differential equation of
diffusion already known as Fick’s second law [165], which had been derived 50
years earlier by the German physiologist Adolf Fick. Einstein’s original treatment
was based on small discrete time steps�t D � and thus contains a—well justified—
approximation that can be avoided by application of the modern theory of stochastic
processes (Sect. 3.2.2.2). Nevertheless, Einstein’s publication [133] represents the
first analysis based on a probabilistic concept that is actually comparable to
current theories, and Einstein’s paper is correctly considered as the beginning
of stochastic modeling. Later Einstein wrote four more papers on diffusion with
different derivations of the diffusion equation [134]. It is worth mentioning that
3 years after the publication of Einstein’s first paper, Paul Langevin presented an
alternative mathematical treatment of random motion [325] that we shall discuss at
length in the form of the Langevin equation in Sect. 3.4. Since the days of Brown’s
discovery, interest in Brownian motion has never ceased and publications on recent
theoretical and experimental advances document this fact nicely—two interesting
recent examples are [344, 491].

3The first mathematical model of Brownian motion was conceived as early as 1880, by Thorvald
Thiele [330, 528]. Later, in 1900, a process involving random fluctuations of the Brownian motion
type was used by Louis Bachelier [31] to describe the stock market at the Paris stock exchange.
He gets the credit for having been the first to write down an equation that was later named after
Paul Langevin (Sect. 3.4). For a recent and detailed monograph on Brownian motion and the
mathematics of normal diffusion, we recommend [214].
4For the sake of simplicity we consider only motion in one spatial direction x.
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From the solution of the diffusion equation, Einstein computed the diffusion
parameter D and showed that it is linked to the mean square displacement

˝
�x2

˛

of the particle in the x-direction:

D D
˝
�x2

˛

2t
; or �x D

p
h�x2i D p2Dt :

Here �x is the net distance the particle travels during the time interval t. Exten-
sion to three-dimensional space is straightforward and results only in a different
numerical factor: D D ˝

�x2
˛
=6t. Both quantities, the diffusion parameter D and

the mean displacement �x, are measurable, and Einstein concluded correctly that a
comparison of the two quantities should allow for an experimental determination of
Avogadro’s constant [450].

Brownian motion was indeed the first completely random process that became
accessible to a description within the frame of classical physics. Although James
Clerk Maxwell and Ludwig Boltzmann had identified thermal motion as the driving
force causing irregular collisions of molecules in gases, physicists in the second
half of the nineteenth century were not interested in the details of molecular motion
unless they were required in order to describe systems in the thermodynamic limit.
In statistical mechanics the measurable macroscopic functions were, and still are,
derived by means of global averaging techniques. By the first half of the twentieth
century, thermal motion was no longer the only uncontrollable source of random
natural fluctuations, having been supplemented by quantum mechanical uncertainty
as another limitation to achievable precision.

The occurrence of complex dynamics in physics and chemistry has been known
since the beginning of the twentieth century through the groundbreaking theoretical
work of the French mathematician Henri Poincaré and the experiments of the
German chemist Wilhelm Ostwald, who explored chemical systems with period-
icities in space and time. Systematic studies of dynamical complexity, however,
required the help of electronic computers and the new field of research on complex
dynamical systems was not initiated until the 1960s. The first pioneer of this
discipline was Edward Lorenz [354] who used numerical integration of differential
equations to demonstrate what is nowadays called deterministic chaos. What was
new in the second half of the twentieth century were not so much the concepts of
complex dynamics but the tools to study it. Easy access to previously unimagined
computer power and the development of highly efficient algorithms made numerical
computation an indispensable technique for scientific investigation, to the extent that
it is now almost on a par with theory and experiment.

Computer simulations have shown that a large class of dynamical systems
modeled by nonlinear differential equations exhibit irregular, i.e., nonperiodic,
behavior for certain ranges of parameter values. Hand in hand with complex
dynamics go limitations on predictability, a point of great practical importance:
although the differential equations used to describe and analyze chaos are still
deterministic, initial conditions of an accuracy that could never be achieved in
reality would be required for correct long-time predictions. Sensitivity to small
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changes makes a stochastic treatment indispensable, and solutions were indeed
found to be extremely sensitive to small changes in initial and boundary conditions
in these chaotic regimes. Solution curves that are almost identical at the beginning
can deviate exponentially from each other and appear completely different after
sufficiently long times. Deterministic chaos gives rise to a third kind of uncertainty,
because initial conditions cannot be controlled with greater precision than the
experimental setup allows. It is no accident that Lorenz first discovered chaotic
dynamics in the equations for atmospheric motions, which are indeed so complex
that forecasts are limited to the short or mid-term at best.

In this monograph we shall focus on the mathematical handling of processes
that are irregular and often simultaneously sensitive to small changes in initial and
environmental conditions, but we shall not be concerned with the physical origin of
these irregularities.

1.2 A History of Probabilistic Thinking

The concept of probability originated much earlier than its applications in physics
and resulted from the desire to analyze by rigorous mathematical methods the
chances of winning when gambling. An early study that has remained largely
unnoticed, due to the sixteenth century Italian mathematician Gerolamo Cardano,
already contained the basic ideas of probability. However, the beginning of classical
probability theory is commonly associated with the encounter between the French
mathematician Blaise Pascal and a professional gambler, the Chevalier de Méré,
which took place in France a 100 years after Cardano. This tale provides such a
nice illustration of a pitfall in probabilistic thinking that we repeat it here as our first
example of conventional probability theory, despite the fact that it can be found in
almost every textbook on statistics or probability.

On July 29, 1654, Blaise Pascal addressed a letter to the French mathematician
Pierre de Fermat, reporting a careful observation by the professional gambler
Chevalier de Méré. The latter had noted that obtaining at least one six with one
die in 4 throws is successful in more than 50 % of cases, whereas obtaining at least
one double six with two dice in 24 throws comes out in fewer than 50 % of cases.
He considered this paradoxical, because he had calculated naïvely and erroneously
that the chances should be the same:

4 throws with one die yields 4 � 1
6
D 2

3
;

24 throws with two dice yields 24 � 1

36
D 2

3
:
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Blaise Pascal became interested in the problem and correctly calculated the
probability as we would do it now in classical probability theory, by careful counting
of events:

probability D P D number of favorable events

total number of events
: (1.1)

According to (1.1), the probability is always a positive quantity between zero and
one, i.e., 0 � P � 1. The sum of the probabilities that a given event has either
occurred or not occurred is always one. Sometimes, as in Pascal’s example, it is
easier to calculate the probability q of the unfavorable case and to obtain the desired
probability by computing p D 1 � q. In the one-die example, the probability of not
throwing a six is 5=6, while in the two-die case, the probability of not obtaining
a double six is 35=36. Provided the events are independent, their probabilities are
multiplied5 and we finally obtain for 4 and 24 trials, respectively:

q.1/ D
�
5

6

�4
and p.1/ D 1 �

�
5

6

�4
D 0:51775 ;

q.2/ D
�
35

36

�24
and p.2/ D 1 �

�
35

36

�24
D 0:49140 :

It is remarkable that Chevalier de Méré was able to observe this rather small
difference in the probability of success—indeed, he must have watched the game
very often!

In order to see where the Chevalier made a mistake, and as an exercise in deriving
correct probabilities, we calculate the first case—the probability of obtaining at least
one six in four throws—by a more direct route than the one used above. We are
throwing the die four times and the favorable events are: 1 time six, 2 times six, 3
times six, and 4 times six. There are four possibilities for 1 six—the six appearing in
the first, the second, the third, or the fourth throw, six possibilities for 2 sixes, four
possibilities for 3 sixes, and one possibility for 4 sixes. With the probabilities 1=6
for obtaining a six and 5=6 for any other number of pips, we get finally

 
4

1

!

�1
6

�
5

6

�3
C
 
4

2

!

�
�
1

6

�2 �
5

6

�2
C
 
4

3

!

�
�
1

6

�3
5

6
C
 
4

4

!

�
�
1

6

�4
D 671

1296
: �

For those who want to become champion probability calculators, we suggest
calculating p.2/ directly as well.

5We shall come back to a precise definition of independent events later, when we introduce modern
probability theory in Sect. 1.6.4.
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Fig. 1.1 The birthday
problem. The curve shows the
probability pn that two people
in a group of n people
celebrate their birthday on the
same day of the year

The second example presented here is the birthday problem.6 It can be used to
demonstrate the common human inability to estimate probabilities:

Let your friends guess – without calculating – how many people you need in a group so
that there is a fifty percent chance that at least two of them celebrate their birthday on the
same day. You will be surprised by some of the answers!

With our knowledge of the gambling problem, this probability is easy to
calculate. First we compute the negative event, that is, when everyone celebrates
their birthday on a different day of the year, assuming that it is not a leap year, so
that there are 365 days. For n people in the group, we find7

q D 365

365
� 364
365
� 363
365
� : : : � 365� .n � 1/

365
and p D 1 � q :

The function p.n/ is shown in Fig. 1.1. For the above-mentioned 50 % chance, we
need only 27 people. With 41 people, we already have more than 90 % chance that
two of them will celebrate their birthday on the same day, while 57 would yield a
probability above 99 %, and 70 a probability above 99.9 %. An implicit assumption
in this calculation has been that births are uniformly distributed over the year, i.e.,
the probability that somebody has their birthday on some particular day does not
depend on that particular day. In mathematical statistics, such an assumption may
be subjected to test and then it is called a null hypothesis (see [177] and Sect. 2.6.2).

Laws in classical physics are considered to be deterministic, in the sense that a
single measurement is expected to yield a precise result. Deviations from this result

6The birthday problem was invented in 1939 by Richard von Mises [557] and it has fascinated
mathematicians ever since. It has been discussed and extended in many papers, such as [3, 89, 255,
430], and even found its way into textbooks on probability theory [160, pp. 31–33].
7The expression is obtained by the following argument. The first person’s birthday can be chosen
freely. The second person’s must not be chosen on the same day, so there are 364 possible choices.
For the third, there remain 363 choices, and so on until finally, for the n th person, there are 365�
.n� 1/ possibilities.
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Fig. 1.2 Mendel’s laws of inheritance. The sketch illustrates Mendel’s laws of inheritance: (i) the
law of segregation and (ii) the law of independent assortment. Every (diploid) organism carries
two copies of each gene, which are separated during the process of reproduction. Every offspring
receives one randomly chosen copy of the gene from each parent. Encircled are the genotypes
formed from two alleles, yellow or green, and above or below the genotypes are the phenotypes
expressed as the colors of seeds of the garden pea (pisum sativum). The upper part of the figure
shows the first generation (F1) of progeny of two homozygous parents—parents who carry two
identical alleles. All genotypes are heterozygous and carry one copy of each allele. The yellow
allele is dominant and hence the phenotype expresses yellow color. Crossing two F1 individuals
(lower part of the figure) leads to two homozygous and two heterozygous offspring. Dominance
causes the two heterozygous genotypes and one homozygote to develop the dominant phenotype
and accordingly the observable ratio of the two phenotypes in the F2 generation is 3:1 on the
average, as observed by Gregor Mendel in his statistics of fertilization experiments (see Table 1.1)

are then interpreted as due to a lack of precision in the equipment used. When it
is observed, random scatter is thought to be caused by variations in experimental
conditions that are not sufficiently well controlled. Apart from deterministic laws,
other regularities are observed in nature, which become evident only when sample
sizes are made sufficiently large through repetition of experiments. It is appropriate
to call such regularities statistical laws. Statistical results regarding the biology of
plant inheritance were pioneered by the Augustinian monk Gregor Mendel, who
discovered regularities in the progeny of the garden pea in controlled fertilization
experiments [392] (Fig. 1.2).

As a third and final example, we consider some of Mendel’s data in order to
exemplify a statistical law. Table 1.1 shows the results of two typical experiments
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Table 1.1 Statistics of
Gregor Mendel’s experiments
with the garden pea (pisum
sativum)

Form of seed Color of seed

Plant Round Wrinkled Ratio Yellow Green Ratio

1 45 12 3.75 25 11 2.27

2 27 8 3.38 32 7 4.57

3 24 7 3.43 14 5 2.80

4 19 10 1.90 70 27 2.59

5 32 11 2.91 24 13 1.85

6 26 6 4.33 20 6 3.33

7 88 24 3.67 32 13 2.46

8 22 10 2.20 44 9 4.89

9 28 6 4.67 50 14 3.57

10 25 7 3.57 44 18 2.44

Total 336 101 3.33 355 123 2.89

In total, Mendel analyzed 7324 seeds from 253 hybrid plants in
the second trial year. Of these, 5474 were round or roundish and
1850 angular and wrinkled, yielding a ratio 2.96:1. The color
was recorded for 8023 seeds from 258 plants, out of which 6022
were yellow and 2001 were green, with a ratio of 3.01:1. The
results of two typical experiments with ten plants, which deviate
more strongly because of the smaller sample size, are shown in
the table

distinguishing roundish or wrinkled seeds with yellow or green color. The ratios
observed with single plants exhibit a broad scatter. The mean values for ten plants
presented in the table show that some averaging has occurred in the sample, but the
deviations from the ideal values are still substantial. Mendel carefully investigated
several hundred plants, whence the statistical law of inheritance demanding a ratio
of 3:1 subsequently became evident [392].8 In a somewhat controversial publication
[176], Ronald Fisher reanalyzed Mendel’s experiments, questioning his statistics
and accusing him of intentionally manipulating his data, because the results were too
close to the ideal ratio. Fisher’s publication initiated a long-lasting debate in which
many scientists spoke up in favor of Mendel [427, 428], but there were also critical
voices saying that most likely Mendel had unconsciously or consciously eliminated
outliers [127]. In 2008, one book declared the end of the Mendel–Fisher controversy
[186]. In Sect. 2.6.2, we shall discuss statistical laws and Mendel’s experiments in
the light of present day mathematical statistics, applying the so-called �2 test.

Probability theory in its classical form is more than 300 years old. It is no
accident that the concept arose in the context of gambling, originally considered
to be a domain of chance in stark opposition to the rigours of science. Indeed it
was rather a long time before the concept of probability finally entered the realms

8According to modern genetics this ratio, like other ratios between distinct inherited phenotypes,
are idealized values that are found only for completely independent genes [221], i.e., lying either
on different chromosomes or sufficiently far apart on the same chromosome.
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of scientific thought in the nineteenth century. The main obstacle to the acceptance
of probabilities in physics was the strong belief in determinism that held sway until
the advent of quantum theory. Probabilistic concepts in nineteenth century physics
were still based on deterministic thinking, although the details of individual events
at the microscopic level were considered to be too numerous to be accessible to
calculation. It is worth mentioning that probabilistic thinking entered physics and
biology almost at the same time, in the second half of the nineteenth century. In
physics, James Clerk Maxwell pioneered statistical mechanics with his dynamical
theory of gases in 1860 [375–377]. In biology, we may mention the considerations
of pedigree in 1875 by Sir Francis Galton and Reverend Henry William Watson
[191, 562] (see Sect. 5.2.5), or indeed Gregor Mendel’s work on the genetics of
inheritance in 1866, as discussed above. The reason for the early considerations
of statistics in the life sciences lies in the very nature of biology: sample sizes
are typically small, while most of the regularities are probabilistic and become
observable only through the application of probability theory. Ironically, Mendel’s
investigations and papers did not attract a broad scientific audience until they were
rediscovered at the beginning of the twentieth century. In the second half of the
nineteenth century, the scientific community was simply unprepared for quantitative
and indeed probabilistic concepts in biology.

Classical probability theory can successfully handle a number of concepts like
conditional probabilities, probability distributions, moments, and so on. These will
be presented in the next section using set theoretic concepts that can provide a
much deeper insight into the structure of probability theory than mere counting.
In addition, the more elaborate notion of probability derived from set theory is
absolutely necessary for extrapolation to countably infinite and uncountable sample
sizes. Uncountability is an unavoidable attribute of sets derived from continuous
variables, and the set theoretic approach provides a way to define probability
measures on certain sets of real numbers x 2 R

n. From now on we shall use only the
set theoretic concept, because it can be introduced straightforwardly for countable
sets and discrete variables and, in addition, it can be straightforwardly extended to
probability measures for continuous variables.

1.3 Interpretations of Probability

Before introducing the current standard theory of probability we make a brief
digression into the dominant philosophical interpretations:

(i) the classical interpretations that we have adopted in Sect. 1.2,
(ii) the frequency-based interpretation that stand in the background for the rest of

the book, and
(iii) the Bayesian or subjective interpretation.

The classical interpretation of probability goes back to the concepts laid out in the
works of the Swiss mathematician Jakob Bernoulli and the French mathematician
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and physicist Pierre-Simon Laplace. The latter was the first to present a clear
definition of probability [328, pp. 6–7]:

The theory of chance consists in reducing all the events of the same kind to a certain number
of equally possible cases, that is to say, to such as we may be equally undecided about in
regard of their existence, and in determining the number of cases favorable to the event
whose probability is sought. The ratio of this number to that of all possible cases is the
measure of this probability, which is thus simply a fraction whose numerator is the number
of favorable cases and whose denominator is the number of all possible cases.

Clearly, this definition is tantamount to (1.1) and the explicitly stated assumption
of equal probabilities is now called the principle of indifference. This classical
definition of probability was questioned during the nineteenth century by the two
British logicians and philosophers George Boole [58] and John Venn [549], among
others, initiating a paradigm shift from the classical view to the modern frequency
interpretations of probabilities.

Modern interpretations of the concept of probability fall essentially into two
categories that can be characterized as physical probabilities and evidential prob-
abilities [228]. Physical probabilities are often called objective or frequency-based
probabilities, and their advocates are referred to as frequentists. Besides the
pioneer John Venn, influential proponents of the frequency-based probability theory
were the Polish–American mathematician Jerzy Neyman, the British statistician
Egon Pearson, the British statistician and theoretical biologist Ronald Fisher,
the Austro-Hungarian–American mathematician and scientist Richard von Mises,
and the German–American philosopher of science Hans Reichenbach. Physical
probabilities are derived from some real process like radioactive decay, a chemical
reaction, the turn of a roulette wheel, or rolling dice. In all such systems the notion
of probability makes sense only when it refers to some well defined experiment with
a random component.

Frequentism comes in two versions: (i) finite frequentism and (ii) hypothetical
frequentism. Finite frequentism replaces the notion of the total number of events
in (1.1) by the actually recorded number of events, and is thus congenial to
philosophers with empiricist scruples. Philosophers have a number of problems with
finite frequentism. For example, we may mention problems arising due to small
samples: one can never speak about probability for a single experiment and there
are cases of unrepeated or unrepeatable experiments. A coin that is tossed exactly
once yields a relative frequency of heads being either zero or one, no matter what
its bias really is. Another famous example is the spontaneous radioactive decay of
an atom, where the probabilities of decaying follow a continuous exponential law,
but according to finite frequentism it decays with probability one only once, namely
at its actual decay time. The evolution of the universe or the origin of life can serve
as cases of unrepeatable experiments, but people like to speak about the probability
that the development has been such or such. Personally, I think it would do no harm
to replace probability by plausibility in such estimates dealing with unrepeatable
single events.

Hypothetical frequentism complements the empiricism of finite frequentism by
the admission of infinite sequences of trials. Let N be the total number of repetitions
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of an experiment and nA the number of trials when the event A has been observed.
Then the relative frequency of recording the event A is an approximation of the
probability for the occurrence of A :

probability .A/ D P.A/ � nA

N
:

This equation is essentially the same as (1.1), but the claim of the hypothetical
frequentists’ interpretation is that there exists a true frequency or true probability
to which the relative frequency would converge if we could repeat the experiment
an infinite number of times9:

P.A/ D lim
N!1

nA

N
D jAjj˝j ; with A 2 ˝ : (1.2)

The probability of an event A relative to a sample space ˝ is then defined as the
limiting frequency of A in ˝ . As N goes to infinity, j˝j becomes infinitely large
and, depending on whether jAj is finite or infinite, P.A/ is either zero or may be
a nonzero limiting value. This is based on two a priori assumptions that have the
character of axioms:

(i) Convergence. For any event A, there exists a limiting relative frequency, the
probability P.A/, satisfying 0 � P.A/ � 1.

(ii) Randomness. The limiting relative frequency of each event in a set ˝ is the
same for any typical infinite subsequence of ˝ .

A typical sequence is sufficiently random10 in order to avoid results biased by
predetermined order. As a negative example of an acceptable sequence, consider
heads, heads, heads, heads, . . . recorded by tossing a coin. If it was obtained with
a fair coin—not a coin with two heads—jAj is 1 and P.A/ D 1=j˝j D 0, and we
may say that this particular event has measure zero and the sequence is not typical.
The sequence heads, tails, heads, tails, . . . is not typical either, despite the fact
that it yields the same probabilities for the average number of heads and tails as a
fair coin. We should be aware that the extension to infinite series of experiments
leaves the realm of empiricism, leading purist philosophers to reject the claim that
the interpretation of probabilities by hypothetical frequentism is more objective than
others.

Nevertheless, the frequentist probability theory is not in conflict with the
mathematical axiomatization of probability theory and it provides straightforward

9The absolute value symbol jAjmeans here the size or cardinality of A, i.e., the number of elements
in A (Sect. 1.4).
10Sequences are sufficiently random when they are obtained through recordings of random
events. Random sequences are approximated by the sequential outputs of pseudorandom number
generators. ‘Pseudorandom’ implies here that the approximately random sequence is created by
some deterministic, i.e., nonrandom, algorithm.
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guidance in applications to real-world problems. The pragmatic view that prefigures
the dominant concept in current probability theory has been nicely put by William
Feller, the Croatian–American mathematician and author of the two-volume classic
introduction to probability theory [160, 161, Vol. I, pp. 4–5]:

The success of the modern mathematical theory of probability is bought at a price: the
theory is limited to one particular aspect of ‘chance’. (. . . ) we are not concerned with
modes of inductive reasoning but with something that might be called physical or statistical
probability.

He also expresses clearly his attitude towards pedantic scruples of philosophic
purists:

(. . . ) in analyzing the coin tossing game we are not concerned with the accidental circum-
stances of an actual experiment, the object of our theory is sequences or arrangements of
symbols such as ‘head, head, tail, head, . . . ’. There is no place in our system for speculations
concerning the probability that the sun will rise tomorrow. Before speaking of it we should
have to agree on an idealized model which would presumably run along the lines ‘out of
infinitely many worlds one is selected at random . . . ’. Little imagination is required to
construct such a model, but it appears both uninteresting and meaningless.

We shall adopt the frequentist interpretation throughout this monograph, but give
brief mention here briefly to two more interpretations of probability in order to show
that it is not the only reasonable probability theory.

The propensity interpretation of probability was proposed by the American
philosopher Charles Peirce in 1910 [448] and reinvented by Karl Popper [455,
pp. 65–70] (see also [456]) more than 40 years later [228, 398]. Propensity is a
tendency to do or achieve something. In relation to probability, the propensity
interpretation means that it makes sense to talk about the probabilities of single
events. As an example, we can talk about the probability—or propensity—of a
radioactive atom to decay within the next 1000 years, and thereby conclude from
the behavior of an ensemble to that of a single member of the ensemble. Likewise,
we might say that there is a probability of 1/2 of getting ‘heads’ when a fair coin is
tossed, and precisely expressed, we should say that the coin has a propensity to yield
a sequence of outcomes in which the limiting frequency of scoring ‘heads’ is 1/2.
The single case propensity is accompanied by, but distinguished from, the long-run
propensity [215]:

A long-run propensity theory is one in which propensities are associated with repeatable
conditions, and are regarded as propensities to produce in a long series of repetitions of
these conditions frequencies, which are approximately equal to the probabilities.

In these theories, a long run is still distinct from an infinitely long run, in
order to avoid basic philosophical problems. Clearly, the use of propensities rather
than frequencies provides a somewhat more careful language than the frequentist
interpretation, making it more acceptable in philosophy.

Finally, we sketch the most popular example of a theory based on evidential
probabilities: Bayesian statistics, named after the eighteenth century British math-
ematician and Presbyterian minister Thomas Bayes. In contrast to the frequentist
view, probabilities are subjective and exist only in the human mind. From a
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Fig. 1.3 A sketch of the
Bayesian method. Prior
information on probabilities
is confronted with empirical
data and converted by means
of Bayes’ theorem into a new
distribution of probabilities
called posterior probability
[120, 507] posterior

probability

empirical
data

prior
probabiity

Bayes‘ theorem

practitioner’s point of view, one major advantage of the Bayesian approach is
that it gives a direct insight into the way we improve our knowledge of a given
subject of investigation. In order to understand Bayes’ theorem, we need the notion
of conditional probability, presented in Sect. 1.6.4. We thus postpone a precise
formulation of the Bayesian approach to Sect. 2.6.5. Here we sketch only the basic
principle of the method in a narrative manner.11

In physics and chemistry, we common deal with well established theories and
models that are assumed to be essentially correct. Experimental data have to be
fitted to the model and this is done by adjusting unknown model parameters
using fitting techniques like the maximum-likelihood method (Sect. 2.6.4). This
popular statistical technique is commonly attributed to Ronald Fisher, although it
has been known for much longer [8, 509]. Researchers in biology, economics, social
sciences, and other disciplines, however, are often confronted with situations where
no commonly accepted models exist, so they cannot be content with parameter
estimates. The model must then be tested and the basic formalisms improved.

Figure 1.3 shows schematically how Bayes’ theorem works: the inputs of the
method are (i) a preliminary or prior probability distribution derived from the initial
model and (ii) a set of empirical data. Bayes theorem converts the inputs into a
posterior probability distribution, which encapsulates the improvement of the model
in the light of the data sample.12 What is missing here is a precise probabilistic
formulation of the process shown in Fig. 1.3, but this will be added in Sect. 2.6.5.

11In this context it is worth mentioning the contribution of the great French mathematician and
astronomer the Marquis de Laplace, who gave an interpretation of statistical inference that can be
considered equivalent to Bayes’ theorem [508].
12It is worth comparing the Bayesian approach with conventional data fitting: the inputs are the
same, a model and data, but the nature of the probability distribution is kept constant in data fitting
methods, whereas it is conceived as flexible in the Bayes method.


