An Essential Guide to Electronic Material Surfaces and Interfaces
An Essential Guide to Electronic Material Surfaces and Interfaces

LEONARD J. BRILLSON
Ohio State University, USA

WILEY
3.3 Heterojunction Band Offsets: Electrical Measurements 35
3.4 Summary 38
3.5 Problems 38
References 39
Further Reading 41

4. Localized States at Surfaces and Interfaces 42
4.1 Interface State Models 42
4.2 Intrinsic Surface States 43
4.2.1 Experimental Approaches 43
4.2.2 Theoretical Approaches 45
4.2.3 Key Intrinsic Surface State Results 49
4.3 Extrinsic Surface States 49
4.4 The Solid State Interface: Changing Perspectives 52
4.5 Problems 52
References 53
Further Reading 54

5. Ultrahigh Vacuum Technology 55
5.1 Ultrahigh Vacuum Chambers 55
5.1.1 Ultrahigh Vacuum Pressures 55
5.1.2 Stainless Steel UHV Chambers 56
5.2 Pumps 57
5.3 Manipulators 61
5.4 Gauges 61
5.5 Residual Gas Analysis 62
5.6 Deposition Sources 62
5.7 Deposition Monitors 64
5.8 Summary 65
5.9 Problems 65
References 65
Further Reading 66

6. Surface and Interface Analysis 67
6.1 Surface and Interface Techniques 67
6.2 Excited Electron Spectroscopies 70
6.3 Principles of Surface Sensitivity 72
6.4 Multi-technique UHV Chambers 73
6.5 Summary 75
6.6 Problems 75
References 75
Further Reading 75

7. Surface and Interface Spectroscopies 76
7.1 Photoemission Spectroscopy 76
7.1.1 The Photoelectric Effect 76
7.1.2 Energy Distribution Curves 77
7.1.3 Atomic Orbital Binding Energies 78
7.1.4 Photoionization Cross Sections 78
7.1.5 Principles of X-Ray Photoelectron Spectroscopy 81
7.1.6 Advanced Surface and Interface Techniques 86
7.1.7 Excitation Sources: X-Ray, Ultraviolet, and Synchrotron 87
7.1.8 Electron Energy Analyzers 88
7.1.9 Photoemission Spectroscopy Summary 89
7.2 Auger Electron Spectroscopy 89
7.2.1 Auger versus X-Ray Transition Probabilities 92
7.2.2 Auger Electron Energies 93
7.2.3 Quantitative AES Analysis 96
7.2.4 Auger Electron Spectroscopy Summary 98
7.3 Electron Energy Loss Spectroscopy 98
7.3.1 Dielectric Response Theory 100
7.3.2 Surface Phonon Scattering 101
7.3.3 Plasmon Scattering 102
7.3.4 Interface Electronic Transitions 103
7.3.5 Transmission Electron Microscopy Energy Loss Spectroscopy 104
7.3.6 Electron Energy Loss Spectroscopy Summary 104
7.4 Rutherford Backscattering Spectrometry 104
7.4.1 Theory of Rutherford Backscattering 105
7.4.2 Rutherford Backscattering Equipment 108
7.4.3 RBS Experimental Spectra 109
7.4.4 RBS Interface Studies 110
7.4.5 Channeling and Blocking 111
7.4.6 Rutherford Backscattering Spectroscopy Summary 112
7.5 Surface and Interface Technique Summary 112
7.6 Problems 113
References 116
Further Reading 117

8. **Dynamical Depth-Dependent Analysis and Imaging** 118
8.1 Ion Beam-Induced Surface Ablation 118
8.2 Auger Electron Spectroscopy 119
8.3 X-Ray Photoemission Spectroscopy 121
8.4 Secondary Ion Mass Spectrometry 122
8.4.1 SIMS Principles 122
8.4.2 SIMS Equipment 123
8.4.3 Secondary Ion Yields 126
8.4.4 Organic and Biological Species 128
8.4.5 SIMS Summary 128
8.5 Spectroscopic Imaging 128
8.6 Depth-Resolved and Imaging Summary 129
8.7 Problems 129
9. **Electron Beam Diffraction and Microscopy of Atomic-Scale Geometrical Structure**

9.1 Low Energy Electron Diffraction – Principles

9.1.1 Low-Energy Electron Diffraction Techniques

9.1.2 LEED Equipment

9.1.3 LEED Kinematics

9.1.4 LEED Reconstructions, Surface Lattices, and Superstructures

9.1.5 Representative Semiconductor Reconstructions

9.2 Reflection High Energy Electron Diffraction

9.2.1 Principles of RHEED

9.2.2 Coherence Length

9.2.3 RHEED Oscillations

9.3 Scanning Electron Microscopy

9.3.1 Scanning Auger Microscopy

9.3.2 Photoelectron Microscopy

9.4 Transmission Electron Microscopy

9.4.1 Atomic Imaging: Z-Contrast

9.4.2 Surface Atomic Geometry

9.4.3 Electron Energy Loss Spectroscopy

9.5 Electron Beam Diffraction and Microscopy Summary

9.6 Problems

References

Further Reading

10. **Scanning Probe Techniques**

10.1 Atomic Force Microscopy

10.1.1 Non-Contact Mode AFM

10.1.2 Kelvin Probe Force Microscopy

10.1.3 Contact Mode AFM

10.2 Scanning Tunneling Microscopy

10.2.1 STM Overview

10.2.2 Tunneling Theory

10.2.3 Surface Atomic Structure

10.3 Ballistic Electron Energy Microscopy

10.4 Atomic Positioning

10.5 Summary

10.6 Problems

References

Further Reading

11. **Optical Spectroscopies**

11.1 Overview

11.2 Optical Absorption
11.3 Modulation Techniques 168
11.4 Multiple Surface Interaction Techniques 169
11.5 Spectroscopic Ellipsometry 171
11.6 Surface Enhanced Raman Spectroscopy 171
11.7 Surface Photoconductivity 174
11.8 Surface Photovoltage Spectroscopy 175
 11.8.1 Transient Surface Photovoltage Spectroscopy 180
11.9 Photoluminescence Spectroscopy 180
11.10 Cathodoluminescence Spectroscopy 181
 11.10.1 Overview 181
 11.10.2 Theory 182
 11.10.3 Semiconductor Ionization Energies 183
 11.10.4 Universal Range–Energy Relations 185
 11.10.5 Monte Carlo Simulations 187
 11.10.6 Depth-Resolved Cathodoluminescence Spectroscopy 188
 11.10.7 Spatially-Resolved Cathodoluminescence Spectroscopy and Imaging 189
11.11 Summary 190
11.12 Problems 191
References 192
Further Reading 192

12. Electronic Material Surfaces 193
12.1 Geometric Structure 193
 12.1.1 Surface Relaxation and Reconstruction 193
 12.1.2 Extended Geometric Structure 193
12.2 Chemical Structure 196
 12.2.1 Crystal Growth 196
 12.2.2 Etching 197
 12.2.3 Adsorbates 199
 12.2.4 Epitaxical Overlayers 199
 12.2.5 Growth Modes 200
 12.2.6 Interface Chemical Reaction 202
12.3 Electronic Structure 203
 12.3.1 Physisorption 204
 12.3.2 Chemisorption 204
 12.3.3 Surface Dipoles 206
12.4 Summary 209
12.5 Problems 210
References 211
Further Reading 212

13. Surface Electronic Applications 213
13.1 Charge Transfer and Band Bending 213
 13.1.1 Sheet Conductance 213
 13.1.2 Transient Effects 215
Contents

13.2 Oxide Gas Sensors 216
13.3 Granular Gas Sensors 217
13.4 Nanowire Sensors 217
13.5 Chemical and Biosensors 217
 13.5.1 Sensor Sensitivity 218
 13.5.2 Sensor Selectivity 219
13.6 Surface Electronic Temperature, Pressure, and Mass Sensors 220
13.7 Summary 220
13.8 Problems 221
References 222
Further Reading 222

14. Semiconductor Heterojunctions 223
14.1 Geometrical Structure 223
 14.1.1 Epitaxial Growth 223
 14.1.2 Lattice Matching 224
 14.1.3 Two-Dimensional Electron Gas Heterojunctions 228
 14.1.4 Strained Layer Superlattices 228
14.2 Chemical Structure 230
 14.2.1 Interdiffusion 230
 14.2.2 Chemical Reactions 231
 14.2.3 Template Overlayers 231
14.3 Electronic Structure 232
 14.3.1 Heterojunction Band Offsets 232
 14.3.2 Band Offset Measurements 233
 14.3.3 Inorganic Heterojunction Results 237
 14.3.4 Organic Heterojunctions 238
 14.3.5 Heterojunction Band Offset Theories 238
 14.3.6 Interface Effects on Band Offsets 240
 14.3.7 Theoretical Methods 241
 14.3.8 Band Offset Engineering 244
14.4 Conclusions 245
14.5 Problems 246
References 247
Further Reading 248

15. Metal–Semiconductor Interfaces 249
15.1 Overview 249
15.2 Metal–Semiconductor Interface Dipoles 249
15.3 Interface States 251
 15.3.1 Localized States 251
 15.3.2 Metal-Induced Gap States 252
 15.3.3 Charge Transfer, Electronegativity, and Defects 254
 15.3.4 Imperfections, Impurities, and Native Defects 255
 15.3.5 Chemisorption, Interface Reaction, and Interfacial Phases 255
 15.3.6 Organic Semiconductor–Metal Interfaces 256
Contents

15.4 Self-Consistent Electrostatic Calculations 258
15.5 Experimental Schottky Barriers 259
 15.5.1 Metals on Si and Ge 260
 15.5.2 Metals on III-V Compound Semiconductors 260
 15.5.3 Metals on II-VI Compound Semiconductors 262
 15.5.4 Other Compound Semiconductors 263
 15.5.5 Compound Semiconductor Summary 264
15.6 Interface Barrier Height Engineering 264
 15.6.1 Macroscopic Methods 264
 15.6.2 Defect Formation 265
 15.6.3 Thermally-Induced Phase Formation 266
 15.6.4 Interdiffused Ohmic Contacts 266
15.7 Atomic-Scale Control 266
 15.7.1 Reactive Metal Interlayers 267
 15.7.2 Molecular Buffer Layers 268
 15.7.3 Semiconductor Interlayers 268
 15.7.4 Wet Chemical Treatments 268
 15.7.5 Crystal Growth 269
15.8 Summary 272
15.9 Problems 272
References 273
Further Reading 275

16. Next Generation Surfaces and Interfaces 276
16.1 Current Status 276
16.2 Current Device Challenges 278
16.3 Emerging Directions 279
 16.3.1 High-K Dielectrics 279
 16.3.2 Complex Oxides 280
 16.3.3 Spintronics and Topological Insulators 280
 16.3.4 Nanostructures 281
 16.3.5 Two-Dimensional Materials 281
 16.3.6 Quantum-Scale Interfaces 281
16.4 The Essential Guide Conclusions 282

Appendices

Appendix A: Glossary of Commonly Used Symbols 283
Appendix B: Table of Acronyms 286
Appendix C: Table of Physical Constants and Conversion Factors 290
Appendix D: Semiconductor Properties 291

Index 293
Preface

This book is intended to introduce scientists, engineers, and students to surfaces and interfaces of electronic materials. It is designed to be a concise but comprehensive guide to the essential information needed to understand the physical properties of surfaces and interfaces, the techniques used to measure them, and the methods now available to control them. The book is organized to provide readers first with the basic parameters that describe semiconductors, then the key features of their interfaces with vacuum, metal, and other semiconductors, followed by the many experimental and theoretical techniques available to characterize electronic material properties, semiconductor surfaces, and their device applications, and finally our current understanding of semiconductor interfaces with metals and with other semiconductors – understanding that includes the methods, both macroscopic and atomic-scale, now available to control their properties.

Electronic material surfaces and interfaces has become an enormous field that spans physics, chemistry, materials science, and electrical engineering. Its development in terms of new materials, analytic tools, measurement and control techniques, and atomic-scale understanding is the result of nearly 70 years of activity worldwide. This book is intended to provide researchers new to this field with the primary results and a framework for new work that has developed since then. More in-depth information is provided in a Track II, accessed online, that provides advanced examples of concepts discussed in the text as well as selected derivations of important relationships. The problem sets following each chapter provide readers with exercises to strengthen their understanding of the material presented. Figures for use by instructors are available from the accompanying website. For more advanced and detailed information, the reader is referred to Surfaces and Interfaces of Electronic Materials (Wiley-VCH, Weinheim, 2010) as well as the lists of Further Reading following each chapter.

On a personal note, the author wishes to acknowledge his Ph.D. thesis advisor, Prof. Eli Burstein at the University of Pennsylvania and Dr. Charles B. Duke at Xerox Corporation in Webster, New York for their inspiration and mentoring. Here at The Ohio State University, he thanks his many Electrical & Computer Engineering and Physics colleagues who have provided such a stimulating environment for both teaching and research. Most of all, the author’s deepest thanks are to his wife, Janice Brillson, for her patience, love, and support while this book was written.

Columbus, Ohio July 31, 2015
About the Companion Websites

This book is accompanied by Instructor and Student companion websites:

www.wiley.com/go/brillson/electronic

The Instructor website includes

• Supplementary materials
• PPT containing figures
• Advanced topics
• Solutions to problems

The student website includes

• Supplementary materials
• Advanced topics
1

Why Surfaces and Interfaces of Electronic Materials

1.1 The Impact of Electronic Materials

This is the age of materials – we now have the ability to design and create new materials with properties not found in nature. Electronic materials are one of the most exciting classes of these new materials. Historically, electronic materials have meant semiconductors, the substances that can emit and react to light, generate and control current, as well as respond to temperature, pressure, and a host of other physical stimuli. These materials and their coupling with insulators and metals have formed the basis of modern electronics and are the key ingredient in computers, lasers, cell phones, displays, communication networks, and many other devices. The ability of these electronic materials to perform these functions depends not only on their inherent properties in bulk form but also, and increasingly so, on the properties of their surfaces and interfaces. Indeed, the evolution of these materials over the past 70 years has been for ever decreasing size and increasing complexity, features that have driven ever increasing speeds and the ability to manage ever larger bodies of information. In turn, these are enabling our modern day quality of life.

1.2 Surface and Interface Importance as Electronics Shrink

Surfaces and interfaces are central to microelectronics. One of the most common micro-electronic devices is the transistor, whose function can illustrate the interfaces involved and their increasing importance as the scale of electronics shrinks. Figure 1.1 shows the basic structure of a transistor and the functions of its interfaces. Current passes from a source metal to a drain metal through a semiconductor, in this case, Si. Voltage applied to a gate metal positioned between the source and drain serves to attract or repel charge.
from the semiconductor region, the “channel”, through which current travels. The result is to control or “gate” the current flow by this third electrode. This device is at the core of the microelectronics industry.

The interfaces between the semiconductor, metal, and insulator of this device play a central role in its operation. Barriers to charge transport across the metal–semiconductor interface are a major concern for all electronic devices. Low resistance contacts at Si source and drain contacts typically involve metals that produce interface reactions, for example, Ti contacts that react with Si with high temperature annealing to form TiSi$_2$ between Ti and Si, as shown in Figure 1.2a. These reacted layers reduce such barriers to charge transport and the contact resistivity ρ_C. Such interfacial silicide layers form low resistance, planar junctions that can be integrated into the manufacturing process for integrated circuits and whose penetration into the semiconductor can be controlled on a nanometer scale.

The gate–semiconductor interface is another important interface. This junction may involve either: (i) a metal in direct contact with the semiconductor where the interfacial barrier inhibits charge flow or (ii) as widely used in Si microelectronics, a metal–insulator–semiconductor stack to apply voltage without current leakage to the semiconductor’s channel region (Figure 1.2b). Lattice sites within the insulator and at the insulator–semiconductor interface can trap charges and introduce electric dipoles that oppose the voltage applied to the gate metal and its control of the channel current. A major goal of the microelectronics industry since the 1950s has been to minimize the formation of these localized charge states.

Figure 1.1 Source–gate–drain structure of a silicon transistor. (Brillson 2010. Reproduced with permission of Wiley.)

Figure 1.2 Interfaces involved in forming the transistor structure including: (a) the source or drain metal–semiconductor contact with a reacted interface, (b) the gate metal–semiconductor contact separated by an insulator in and near which charges are trapped, and (c) dopant impurity atoms implanted below the surface of a semiconductor to control its carrier concentration. (Brillson 2010. Reproduced with permission of Wiley.)
A third important interface involves the implantation of impurity atoms into the semiconductor to add donor or acceptor “dopants” that control the transistor’s n- or p-type carrier type and density within specific regions of the device. This process involves acceleration and penetration of ionized atoms at well-defined depths, nanometers to microns, into the semiconductor, as Figure 1.2c illustrates. This ion implantation also produces lattice damage that high temperature annealing can heal. However, such annealing can introduce diffusion and unintentional doping in other regions of the semiconductor that can change their electronic activity. Outdiffusion of semiconductor constituents due to annealing is also possible, leaving behind electronically active lattice sites. Precise design of materials, surface and interface preparation, thermal treatments, and device architectures are required in order to balance these competing effects.

At the circuit level, there are multiple interfaces between semiconductors, oxides, and metals. For Si transistors, the manufacturing process involves (i) growing a Si boule in a molten bath that can be sectioned into wafers, (ii) oxidizing, diffusing, and implanting with dopants, (iii) overcoating with various metal and organic layers, (iv) photolithographically patterning and etching the wafers into monolithic arrays of devices, and (v) dicing the wafer into individual circuits that can be mounted, wire bonded, and packaged into chips. Within individual circuit elements, there can be many layers of interconnected conductors, insulators, and their interfaces. Figure 1.3 illustrates the different materials and interfaces associated with a 0.18 μm transistor at the bottom of a multilayer Al–W–Si-oxide dielectric assembly [1]. Reaction, adhesion, interdiffusion, and the formation of localized electronic states must be carefully controlled at all of these interfaces during the many patterning, etching, and annealing steps involved in assembling the full structure. The materials used in this multilayer device architecture have continued to change over decades to compensate for the otherwise increasing electrical resistance as interconnects between layers shrink into the nanometer regime. These microelectronic materials and architectures continue to evolve in order to achieve higher speeds, reliability, and packing density. This continuing evolution highlights the importance of interfaces since they are an increasing proportion of the entire structure as circuit sizes decrease and become ever more complex.

![Figure 1.3](image-url)
Besides transistors, many other electronic devices rely on interfaces for their operation. For example, solar cells operate by converting incident light into free electrons and holes that separate and generate current or voltage in an external circuit. The charge separation requires built-in electric fields that occur at metal–semiconductor or semiconductor–semiconductor interfaces. These will be discussed in later chapters. Transistors without metal gates are another such device. Channel current is controlled instead by molecules that adsorb on this otherwise free surface, exchanging charge and inducing electric fields analogous to that of a gate. Interfaces are also important in devices that generate photons, microwaves, and acoustic waves. These devices require low resistance contacts to inject current or apply voltage to the layer that generates the radiation. Otherwise, power is lost at these contacts, reducing or totally blocking power conversion inside the semiconductor. Semiconductor cathodes that emit electrons when excited by incident photons are also sensitive to surface conditions. Surface chemical treatments of specific semiconductors are required in order to promote the emission of multiple electrons when struck by single photons, useful for electron pulse generation or photomultipliers.

For devices on the quantum scale, surfaces and interfaces have an even larger impact. A prime example is the quantum well, one of the workhorses of optoelectronics. Here a semiconductor is sandwiched between two larger gap semiconductors that localize both electrons and holes in the smaller gap semiconductor. This spatial overlap between electrons and holes increases electron–hole recombination and light emission. Since the quantum well formed by this sandwich is only a few monolayers thick, the allowed energies of electrons and holes inside the well are quantized at discrete energies, which promotes efficient carrier population inversion and laser light emission. Imperfections at the interfaces of these quantum wells introduce alternative pathways for recombination that reduce the desired emission involving the quantized states. Such recombination is even more serious for three-dimensional quantum wells, termed quantum dots. Another such example is the two-dimensional electron gas (2DEG) formed when charges accumulate in narrow interfacial layers, only a few tens of nanometers thick, between two semiconductors. The high carrier concentration, high mobility 2DEG is the basis of high electron mobility transistors (HEMTs). As with quantum wells, lattice defects at the interface can produce local electric fields that scatter charges, reduce mobility, and alter or even destroy the 2DEG region. Yet another quantum-scale structure whose interfaces play a key role is the cascade laser, based on alternating high- and low-bandgap semiconductors. In this structure, charge must tunnel through monolayer thin barrier layers, formed by the higher band gap semiconductors, into quantized energy levels. Here again, efficient tunneling depends on interfaces without significant imperfections that could otherwise introduce carrier scattering.

In addition to carrier scattering and recombination, the alignment of energy levels between constituents is a major feature of interfaces. How energy levels align between a semiconductor and a metal, as well as between two semiconductors, is a fundamental issue that is still not well understood. The interface band alignment determines the barriers to charge transport between constituents and the carrier confinement between them. There are several factors that can play a role: (i) the band structure of the constituents at the junction, (ii) the conditions under which the interface forms, and (iii) any subsequent thermal or chemical processing. Hence, it is important to measure and understand the properties of these interfaces at the microscopic, indeed atomic, level in order to learn and
control how surfaces and interfaces impact electronics. The future of electronics depends on our ability to design, measure, and control the physical properties of these surfaces and interfaces. This book is intended to describe the key properties of these surfaces and interfaces along with the tools and techniques used to measure them.

1.3 Historical Background

1.3.1 Contact Electrification and the Development of Solid State Concepts

The recognition that contacts to materials could be electrically active dates back to the Greco-Roman times and the discovery of triboelectricity, the charge transfer between solids generated by friction – for example, the generation of static electricity by rubbing cat’s fur with amber. Two millennia later, Braun discovered contact rectification, the unequal flow of charge in two directions, by applying positive and negative voltage to metal contacts with selenium [2]. In 1905, Einstein explained the photoelectric effect at metal surfaces based on light as wave packets with discrete energies [3]. This established both the particle behavior of light and the concept of work function, an essential component in the description of energy bands in solids. These energy bands will be discussed in Chapter 2 and form the basis for discussing all the physical phenomena associated with surfaces and interfaces of electronic materials.

The theory of energy bands in solids was first developed by Wilson [4,5] and forms the basis for interpreting semiconductor phenomena. Siemens et al. [6] and Schottky et al. [7] showed that contact rectification at the interface exhibited behavior that was distinct from that of the semiconductor interior. Subsequently, Mott [8], Davidov [9,10], and Schottky [11–13] each published theories of contact rectification that involved an energy band bending region near the interface. Mott proposed an insulating region between the metal and semiconductor to account for current–voltage features of copper oxide rectifiers. Davidov showed the importance of thermionic work function differences in forming the band bending region. Schottky introduced the concept of a stable space charge in the semiconductor instead of a chemically distinct interfacial layer. Appropriately, this interface concept became the Schottky barrier. Bethe’s theory of thermionic emission of carriers over an energy barrier [14], based partly on Richardson’s earlier thermionic cathode work [15] provided a picture of charge transport across the band bending region that accounted for the rectification process in most experimental situations. These developments laid the foundation for describing barrier formation and charge transfer at semiconductor interfaces.

1.3.2 Crystal Growth and Refinement

The understanding and control of semiconductor properties began with advances in the growth and refinement of semiconductor crystals. Once researchers learned to create crystals with ultrahigh purity (as low as one impurity atom in ten billion) and crystalline perfection, they could unmask the inherent properties of semiconductors, free of effects due to lattice impurities and imperfections, and begin to control these properties in electronic devices. Beginning in the 1940s, crystal pulling and zone-refining techniques became available that could produce large, high-purity semiconductor single crystals.
Figure 1.4 (a) LEC growth of GaAs crystal pulled from a molten bath inside a heated crucible. (Lammers, D. www.semiconductor.net/article/CA6513618.html. Used under CC-BY 3.0 https://creativecommons.org/licenses/by-sa/3.0/deed.en.) (b) Horizontal Bridgman growth of GaAs traveling through the temperature gradient of a furnace.

Figure 1.4a illustrates the liquid encapsulated Czochralski (LEC) method of growing large single crystals from a molten bath in which a seed crystal nucleates larger boules of crystal as the seed is gradually raised out of the melt. Figure 1.4b shows how molten semiconductor constituents are nucleated at a seed over which a furnace is gradually pulled from high to low temperature.

The crystal thus produced is then passed again through a melt zone along its length, causing impurities to segregate from high to low temperature regions in a process termed zone-refining [16]. Numerous other crystal growing techniques such as liquid phase epitaxy (LPE), pulsed laser deposition (PLD), and molecular beam epitaxy (MBE) are now available that are capable of producing multilayer crystal structures with atomic-scale precision. Figure 1.5 illustrates the LPE and MBE methods. These and other techniques are able to create materials not found in nature and having unique properties that enable a myriad of devices.

1.3.3 Transistor Development and the Birth of Semiconductor Devices

Semiconductor surfaces and interfaces have been an integral part of the transistor’s development. Motivated by the need to replace vacuum tubes as amplifiers and switches in telecommunications equipment, researchers at Bell Labs succeeded in demonstrating transistor action in 1947 using closely spaced point contacts on germanium crystals [18]. Figure 1.6 shows this early transistor configuration, which relied on high purity crystals supplied by Purdue University [19] to obtain carrier diffusion lengths long enough to reach between contacts. Contrast this early transistor with the nanoscale device structures pictured in Figure 1.3. Developing this first transistor, Bardeen, Shockley, and Brattain found that gate modulation of the charge and current inside the semiconductor was much weaker than
Figure 1.5 (a) LPE method in which a growth substrate slides under pockets of melted constituents that condense to form a stack of semiconductor layers on the substrate. (b) MBE method in which constituents evaporated from individual crucibles of pure elements deposit layer-by-atomic layer monitored by reflection high energy diffraction (RHEED) on a heated substrate in vacuum. (Barron, W. D http://cnx.org/content/m25712/latest. Used under Creative Commons Attribution 4.0 License.)
expected. This led to the discovery that electric charges immobilized on the semiconductor surface were responsible, which Bardeen correctly interpreted as electronic states localized at the semiconductor interface [20]. By reducing the density of these states and their influence on the field effect pictured in Figure 1.1, Bardeen et al. could demonstrate the transistor action clearly, for which they received the 1956 Nobel Prize. The interface concepts developed with the transistor continue to drive the evolution of future electronics technology. By the early 1950s, semiconductor electronics began to develop rapidly. First came the switch from germanium to silicon, since the native oxide of silicon was much more resistant to water vapor than that of germanium [21]. By 1958, the first integrated circuits appeared [22], based on arrays of transistor circuits on silicon wafers. The 1950s and early 1960s saw the development of many other devices, including photodiodes, sensors, photomultipliers, and light emitting diodes. All required high purity semiconductor as well as refined techniques to form their electrical contacts. This led to the development of high-vacuum technology, including the pumps, chambers, and pressure gauges to be discussed in Chapter 5. These tools could be used to control both the localized states at the transistor’s semiconductor–insulator interface and those at Schottky barriers of the metal–semiconductor junctions found in most of these devices. Early Schottky barrier experiments involved semiconductor crystals cleaved in medium vacuum, $\sim 10^{-6}$ Torr and in a stream of evaporating metal atoms to minimize contamination [23]. This work presaged the use of ultrahigh vacuum (UHV) to obtain atomically-clean surfaces and interfaces.

1.3.4 Surface Science and Microelectronics

The use of ultrahigh vacuum technology with chamber pressures of 10^{-10} Torr or less began in the late 1960s and marked the birth of surface science as a field that spans multiple disciplines and that continues to grow. With the ability to prepare clean surfaces and maintain their cleanliness for long periods of time, researchers were now able to study a wide
range of electronic, chemical, and atomic structural phenomena. Beginning in the 1970s, much of this work aimed to understand the nature of surface and interface states that could account for the insensitivity of transistors to applied bias voltage. For the oxide interface with silicon, researchers found that careful surface cleaning and precise high temperature gas ambient annealing – processes developed using surface science techniques – could reduce interface state densities by orders of magnitude. By the mid-1970s, the materials science or microelectronic metallurgy of the various electronic material interfaces helped refine the monolithic (extended surface) electronic circuitry on silicon wafers. This work was instrumental in understanding and predicting the interfacial reactions at silicon–metal interfaces, for example, Figure 1.2a [24,25].

Another major challenge was the insensitivity of band bending and Schottky barriers to different metals at the metal–semiconductor interface. This was attributed to surface or interface states that “pinned” the semiconductor Fermi level in a narrow range of energies within the band gap. Initial studies of metal contacts to compound semiconductors suggested that the ionicity of the semiconductor played a role in creating such states [26], and theoretical calculations of the abrupt surface termination of the bulk crystal structure supported this. However, surfaces of many compound semiconductors, particularly those prepared without steps or other defects, exhibited an absence of such states in the semiconductor band gap. Instead, measurements of the bonding structure at many compound semiconductor surfaces revealed atomic rearrangements that served to remove surface states from within the semiconductor band gap. Theoretical studies confirmed that these surface atomic rearrangements or reconstructions in general minimized bond energies and removed such intrinsic surface states from the semiconductor band gap.

Other models to account for this Fermi level pinning were: (i) adsorbate bonding that forms electrically-active defects at the semiconductor surface; (ii) wave function tunneling that forms localized states close to the interface; (iii) chemical reactions that produce interfacial layers with new dielectric properties and/or defects. During this period, literally thousands of studies, both experimental and theoretical, were devoted to testing these models of Fermi level pinning. While metal deposition on one type of III-V semiconductor exhibited barrier insensitivity for many adsorbates, researchers found that the same compounds grown with higher crystalline perfection could exhibit wide barrier height ranges. Wave function tunneling based on intrinsic semiconductor properties provided a mechanism for theoretical predictions of barriers heights and their systematics for different semiconductors with an inert metal [27–30]. However, experimental results show serious inconsistencies with predicted barrier height values for both ionic [31] and covalent semiconductors [32].

Starting in the late 1980s, researchers found that metals deposited on semiconductors could produce chemical reactions, even near room temperature [33,34]. Surface science techniques were uniquely capable of detecting such reactions even though such reactions and atomic rearrangement often took place on a monolayer scale. The chemical composition of these reactions, the diffusion of atoms out of the semiconductor lattice, and the correlation of their reactivity with Schottky barrier heights suggested that such reactions produced native point defects within the semiconductor where atoms had outdiffused [35,36]. Such defects are electrically active and mobile and can segregate near surfaces and interfaces [35,37]. They also have energy levels that can account for reported Fermi level pinning energies of different semiconductors [36].
The 1980s saw the invention and development of the scanning tunneling microscope (STM). With this instrument, researchers were now able to image the arrangement of individual atoms on semiconductor surfaces, resolving many questions previously unanswered by less direct techniques. Derived from STM in the 1990s, atomic force microscopy (AFM) provided a new way to measure surface morphology on a nanometer scale and to probe semiconductors and insulators lacking the conductivity required for STM. Also related to the STM was ballistic electron energy microscopy (BEEM), which revealed heterogeneous electronic features across semiconductor surfaces that reflected multiple local Schottky barrier heights within the same macroscopic contact. These insulator–semiconductor and metal–semiconductor studies also provided insights into the mechanisms controlling heterojunction band offsets, which establish the basic properties of many micro- and opto-electronic devices.

1.4 Next Generation Electronics

New electronic materials and device architectures have emerged over the past two decades where surfaces and interfaces play an integral role. These include: high dielectric constant (hi-K) insulators, complex oxides, magnetic semiconductors, spin conductors and insulators, nano-scale and quantum-scale structures, two-dimensional (2D) semiconductors, and topological insulators. All of these new materials and device architectures pose challenges for researchers and technologies because of their ultra-small dimensions. In turn, these dimensions magnify the effects of diffusion and reaction that can occur with the very high temperatures and chemically reactive environments that such materials may encounter. As with previous generations of electronic development, we expect a synergy between the science and technology of electronic materials. This dual track of progress will again involve an interplay between growth, characterization, device design and testing that will require many of the techniques described in this book.

This chapter aimed to motivate the study of electronic materials’ surfaces and interfaces. Their properties influence band structure, charge densities and electronic states on a scale ranging from microns down to atomic layers. Although these phenomena exist on a microscopic scale, they manifest themselves electrically on a macroscopic scale. Indeed they already dominate electronic and optical properties of current electronics. Coupled with this “race to the bottom” are atomic and nanoscale techniques to characterize the electronic, chemical, and geometric properties of these electronic material structures. This introductory book aims to provide the essential framework to understand the physical properties of electronic material surfaces and interfaces and the techniques developed to measure them.

1.5 Problems

1. Give one example each of how surface and interface techniques have enabled modern CMOS (complementary metal-oxide semiconductor) technology (a) structurally, (b) chemically, and (c) electronically.
2. Name three desirable solar cell properties that could be affected by interface defects.
3. Name three interface effects that could degrade quantum well operation.
4. As electronics shrinks into the nanoscale regime, actual numbers of atoms become significant in determining the semiconductor’s physical properties. Consider a 0.1 μm Si field effect transistor with a 0.1 × 0.1 μm² cross-section and a doping concentration of 10¹⁷ cm⁻³. How many dopant atoms are in the channel region? How many dopant atoms are there altogether?

5. Assume the top channel surface has 0.01 trapped electrons per unit cell. How many surface charges are present? How much do they affect the channel’s bulk charge density?

6. Even small numbers of interface states inside electronic devices can have large effects. For a GaAs field effect transistor with gate length 0.2 μm with a 0.1 μm thick × 0.5 μm wide cross-section and doping density of 5 × 10¹⁷ cm⁻³, how many dopant atoms are in the channel region? How many atoms are there altogether? If there are 0.02 electrons per unit cell at the gate–channel interface, how many electrons are there altogether? How large an effect can these interface states have on the transistor properties? Explain.

7. What fraction of atoms is within one lattice constant of the channel surfaces?

8. Figure 1.2a indicates that reaction products can form between metal contacts and Si. Describe the advantages of depositing multilayers of Ti rather than Au on this surface if a submonolayer of air molecules is present at the Si surface prior to deposition.

9. Figure 1.4 illustrates the complexity of the transistor chip structure. Describe three interface effects that could occur in these structures that could degrade electrical properties during microfabrication.

10. Si emerged as the material of choice for microelectronics. (a) Give five reasons why. (b) What feature of the Si/SiO₂ is the most important for device operation and why?

11. Give two reasons and two examples why GaAs, InP and many other III-V compound semiconductors are used for quantum-scale optoelectronics.

12. Which would you choose for high power, high-frequency transistors, GaAs or GaN?

References

7. Schottky, W., Störmer, R., and Waibel, F. (1931) On the rectifying action of cuprous oxide in contact with other metals. Z. Hochfrequenztechnik, 37, 162.
18. Courtesy of AT&T Archives and History Center.