Macrocyclic and Supramolecular Chemistry

How Izatt-Christensen Award Winners Shaped the Field

Editor Reed M. Izatt

耳

Macrocyclic and Supramolecular Chemistry

Macrocyclic and Supramolecular Chemistry

How Izatt–Christensen Award Winners Shaped the Field

Edited by

REED M. IZATT

IBC Advanced Technologies, Inc., American Fork; Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA

WILEY

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Names: Izatt, Reed M., 1926- editor.

Title: Macrocyclic and supramolecular chemistry : how Izatt–Christensen Award winners shaped the field / edited by Reed M. Izatt. Description: Chichester, West Sussex : John Wiley & Sons, Inc., 2016. | Includes bibliographical references and index. Identifiers: LCCN 2016016106| ISBN 9781119053842 (cloth) | ISBN 9781119053866 (epub) | ISBN 9781119053873 (epdf) Subjects: LCSH: Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry. | Supramolecular chemistry–Awards. |

Chemistry-Awards. | Macrocyclic compounds. | Izatt, Reed M., 1926- | Christensen, James J., 1931-

Classification: LCC QD878 .M327 2016 | DDC 541/.226-dc23

LC record available at https://lccn.loc.gov/2016016106

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India

1 2016

Contents

Li	st of (Contribu	tors		XV
Pı	eface				xviii
Ac	cknow	ledgeme	ents		XX
1	The Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry: A 25-Year History (1991–2016)				
	Ree	d M. Iza	tt, Jerald	S. Bradshaw, Steven R. Izatt, and Roger G. Harrison	
	1.1	Introd	uction		1
	1.2	Interna	ational Iza	att-Christensen Award in Macrocyclic and Supramolecular Chemistry	2
	1.3	Interna	ational Sy	mposium on Macrocyclic and Supramolecular Chemistry	4
	1.4	Izatt–C	Christense	n award sponsor: IBC Advanced Technologies, Inc.	6
	1.5	Summ	ary		7
	Refe	erences			8
2	Supramolecular Chemistry with DNA				
	Pongphak Chidchob and Hanadi Sleiman				
	2.1 Introduction				
	2.2	Motifs	in structu	aral DNA nanotechnology	10
		2.2.1	DNA str	ructural properties	10
		2.2.2	The beg	inning of DNA nanotechnology: DNA tile assembly	11
		2.2.3	DNA or	igami and single-stranded tiles	11
		2.2.4	Perspec	tive	13
	2.3	Dynan	nic assem	bly and molecular recognition with DNA	13
	2.4	Suprar	nolecular	assembly with hybrid DNA materials: increasing the letters of the alphabet	14
		2.4.1	Three-d	imensional structures: DNA cages	14
			2.4.1.1	Synthesis	15
			2.4.1.2	Simplified and DNA-minimal design of DNA cages	17
			2.4.1.3	Perspective	17
		2.4.2	Three-d	imensional structures: DNA nanotubes	18
			2.4.2.1	Synthesis	18
			2.4.2.2	Control of nanotube length and stability	18
			2.4.2.3	Temporal growth of DNA assembly	19
			2.4.2.4	Perspective	20

vi	Contents
~ /	contents

		2.4.3 Biolog	ical applications of DNA cages and nanotubes	21
		2.4.3.1	Tools for conditional drug delivery	21
		2.4.3.2	Biological stability and gene-silencing activity	21
		2.4.3.3	Interaction with lipid bilayers	21
		2.4.3.4	Perspective	21
		2.4.4 Effect	of small-molecule insertions on DNA structure and stability	23
		2.4.5 Non-co	ovalent small molecule-mediated DNA assembly	23
		2.4.5.1	Perspective	25
		2.4.6 DNA-	polymer and DNA-lipid conjugates	25
		2.4.6.1	Synthesis	25
		2.4.6.2	Dynamic behavior	25
		2.4.6.3	Sequence-defined DNA-polymer conjugates	27
		2.4.6.4	Perspective	27
		2.4.7 3D org	anization of polymers with DNA nanostructures	27
		2.4.7.1	Perspective	29
		2.4.8 Metal-	-DNA assemblies	29
		2.4.8.1	Strategy for incorporation of metal into DNA	29
		2.4.8.2	Metal–DNA nanostructures	30
		2.4.8.3	Perspective	30
		2.4.9 Gold n	anoparticle–DNA structures	32
	2.5	Conclusion		33
	Refere	ences		34
2		. C. 4 1	Les Dels Deservities her Menne soulle	
3	Anior	n, Cation and	Ion-Pair Recognition by Macrocyclic	20
	and I	D Poor and M	atthew L Langton	30
		D. Deer and Ma	uinew J. Langion	20
	31			
	3.1	Flectrochemics	al molecular recognition	30 38
	3.1 3.2	Electrochemica	al molecular recognition	38 30 30
	3.1 3.2	Electrochemica 3.2.1 Electro 3.2.2 Electro	al molecular recognition ochemical cation recognition	38 39 42
	3.1 3.2 3.3	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts	38 38 39 42 44
	3.1 3.2 3.3	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts ion metal bipyridyl-based macrocyclic receptors for anion	38 38 39 42 44
	3.1 3.2 3.3	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing	38 38 39 42 44
	3.1 3.2 3.3	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interlo	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing	38 38 39 42 44 44
	3.1 3.2 3.3	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interlo 3.3.3 Rotaxa	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions	38 38 39 42 44 44 45 48
	3.1 3.2 3.3 3.4	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interloo 3.3.3 Rotaxa Halogen-bondi	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions ing anion recognition	38 38 39 42 44 44 45 48 55
	3.1 3.2 3.3 3.3 3.4 3.5	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interlo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogn	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions ing anion recognition nition	38 38 39 42 44 44 45 48 55 59
	3.1 3.2 3.3 3.3 3.4 3.5 3.6	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interlo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing ane and catenane host structures for sensing anions ing anion recognition hition self-assembly	38 38 39 42 44 44 45 48 55 59 62
	3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.7	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interloo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions ing anion recognition hition self-assembly	38 38 39 42 44 45 48 55 59 62 67
	3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.7 3.8	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interloo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions Acknowledgen	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions ing anion recognition nition self-assembly nents	38 38 39 42 44 45 48 55 59 62 67 67
	3.1 3.2 3.3 3.3 3.3 3.4 3.5 3.6 3.7 3.8 Refere	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interloo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions Acknowledgen ences	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing ane and catenane host structures for sensing anions ing anion recognition nition self-assembly nents	38 38 39 42 44 44 45 48 55 59 62 67 67 67
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.8 Reference	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interlo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions Acknowledgen ences	al molecular recognition behamical cation recognition behamical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing ane and catenane host structures for sensing anions ing anion recognition nition self-assembly nents	38 38 39 42 44 44 45 48 55 59 62 67 67 67
4	3.1 3.2 3.3 3.3 3.3 3.4 3.5 3.6 3.7 3.8 Reference	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interloo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions Acknowledgen ences	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions ing anion recognition nition self-assembly nents	38 38 39 42 44 45 48 55 59 62 67 67 67 73
4	3.1 3.2 3.3 3.3 3.4 3.5 3.6 3.7 3.8 Reference Mir W	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interloo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions Acknowledgen ences	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing une and catenane host structures for sensing anions ing anion recognition nition . self-assembly nents	38 38 39 42 44 44 45 48 55 59 62 67 67 67 73
4	3.1 3.2 3.3 3.3 3.3 3.4 3.5 3.6 3.7 4 3.8 Reference Mir W 4.1	Electrochemica 3.2.1 Electro 3.2.2 Electro Anion recognit 3.3.1 Transit recogn 3.3.2 Interlo 3.3.3 Rotaxa Halogen-bondi Ion-pair recogr Metal-directed Conclusions Acknowledgen ences Dectives in Mol Vais Hosseini Preamble: drea	al molecular recognition ochemical cation recognition ochemical anion recognition tion and sensing by macrocyclic and interlocked hosts tion metal bipyridyl-based macrocyclic receptors for anion ition and sensing cked host structures for anion recognition and sensing ane and catenane host structures for sensing anions ing anion recognition nition self-assembly nents lecular Tectonics ums and pathway	38 38 39 42 44 44 45 48 55 59 62 67 67 67 67 73 73

	4.3	From t	tectons to networks	75
		4.3.1	Inclusion networks: an interplay between concave and convex tectons	79
		4.3.2	H-bonded networks	79
		4.3.3	Neutral 1D helical H-bonded networks	81
		4.3.4	Charge-assisted H-bonded networks	82
		4.3.5	H-bonded networks based on recognition of hexacyanometallates	83
		4.3.6	From hydrogen-bonded networks to core-shell crystals	84
		4.3.7	Coordination networks: an interplay between organic and metallic tectons	84
		4.3.8	Helical coordination networks	84
		4.3.9	Directional 1D coordination networks	85
	4.4	Summ	ary and outlook	87
	4.5	Ackno	wledgements	88
	Refe	erences		88
5	Thr	ee Tales	s of Supramolecular Analytical Chemistry	92
	Mar	garet K.	Meadows and Eric V. Anslyn	
	5.1	Introd	uction	92
	5.2	Citrate	e sensing	93
		5.2.1	Receptor design	93
		5.2.2	Indicator-displacement assays	94
		5.2.3	Soda analysis	95
		5.2.4	Wine analysis	95
		5.2.5	Scotch analysis	97
		5.2.6	Calcium and citrate multianalyte sensing	98
		5.2.7	Dialysis	98
		5.2.8	Conclusion	101
	5.3	Rapid	analysis of enantiomeric excess	101
		5.3.1	Enantioselective indicator-displacement assays	101
			5.3.1.1 <i>ee</i> Analysis with boronic acids	101
			5.3.1.2 <i>ee</i> Analysis of amino acids	104
		5.3.2	ee Determination using circular dichroism	104
			5.3.2.1 CD analysis using metal-to-ligand charge transfer	105
			5.3.2.2 ECCD analysis of alcohols	106
			5.3.2.3 ECCD analysis of amines	108
			5.3.2.4 Adaptation to high-throughput methods	108
		5.3.3	Conclusion	108
	5.4	Differe	ential sensing	109
		5.4.1	Chemometric analysis	110
		5.4.2	An electronic tongue	110
		5.4.3	Phosphopeptide classification	111
		5.4.4	Serum albumin receptors for terpenes	112
		5.4.5	Serum albumin receptors for glycerides	114
		5.4.6	Mitogen-activated protein kinases differentiation	115
		5.4.7	Wine	118
	5.5	Conclu	usion	123
	Refe	erences		123

6	Robust Host–Guest Chemistry of Cucurbit[n]uril: Fundamentals and Applications					
	of tl	ne Synth	etic Receptor Family	127		
	Kim	oon Kin	n, Dinesh Shetty, and Kyeng Min Park			
	6.1	Person	al pathway to the discovery of cucurbit[n]uril and early			
		day de	velopments	127		
	6.2	Structu	res and physical properties of CB[n]	129		
	6.3	Genera	al host–guest chemistry of CB[n]	129		
	6.4	High-a	ffinity host-guest pairs	130		
		6.4.1	High-affinity CB[6]–guest complexes	131		
		6.4.2	High-affinity CB[7]–guest complexes	131		
	6.5	Functi	onalized CBs	133		
	6.6	Applic	ations of high-affinity CB[6] complexes	134		
		6.6.1	Pseudorotaxane formation and biological applications	134		
		6.6.2	Modular multi-functionalities through non-covalent modification	136		
		6.6.3	Hydrogelation through non-covalent crosslinking	136		
	6.7	Applic	ations of high-affinity CB[7] complexes	137		
		6.7.1	Immobilization of biomolecules on a solid surface	137		
		6.7.2	Plasma membrane protein fishing	138		
		6.7.3	Supramolecular velcro system	138		
		6.7.4	Other applications	139		
	6.8	Conclu	isions	140		
	6.9	Ackno	wledgements	141		
	Refe	erences		141		
7	Mol	ooulor	Pagagnition in Riamimatic Pagantars	146		
'	Pata	r C Kni	ing Sam Thompson and Andrew D. Hamilton	140		
	7 1	Molec	ular recognition in biological systems	146		
	7.1	Model	systems to investigate fundamental forces	140		
	1.2	7 2 1	Hydrogen bonding	140		
		7.2.1	Aromatic stacking	147		
		7.2.2	A first foray into mimicry minimalist vancomycin analogues	147		
	73	Pecor	nition of more complex systemsinto the realm of pentides	140		
	1.5	7 3 1	Carboxylic acid hinding	1/10		
		7.3.1	Pantide mimicry as a strategy for the inhibition of a key protein protein interaction:	149		
		1.5.2	nenvitransferases	151		
	74	Δ gene	pronyntansierases Pral approach to pentide mimicry – targeting secondary structure	151		
	7.4	7 4 1	Terphenyle: the first class of $\alpha_{\rm r}$ belix mimic	152		
		7.4.1	The development of next-generation g-helix mimetics	152		
		7.4.3	Approaches to B-strand mimicry	153		
		7.4.1	A sheet templation	154		
	75	7.4.4 Supar	p-sheet templation	154		
	1.5	5 uper-	The B meander	156		
		7.5.1	The p-meanuel	150		
		1.J.Z 752	Willing willing sites through multivalent recentors	150		
		1.3.3 751	Salf assembly of recentors _ binding quaternery structures	150		
	76	1.3.4	sen-assembly of receptors – omonig quaternary structures	130		
	7.U Dafe	outioc	NK	159		
	NUI	101005		100		

.

Contonto	•	
Contents	IX	

8	A Li	fetime Walk in the Realm of Cyclam	165
	Luigi	Fabbrizzi	
	8.1	Synthesis and development of cyclam and related macrocycles	165
	8.2	Macrocyclic effects and the importance of being 14-membered	170
	8.3	Cyclam promotes the redox activity of the encircled metal ion	176
	8.4	Scorpionands: cyclam derivatives with an aggressive tail,	
		biting a chelated metal from the top	180
	8.5	Azacyclams: cyclam-like macrocycles with built-in functionalization	187
	8.6	Conclusion	193
	8.7	Acknowledgements	195
	Refe	rences	196
9	Poro	sity in Metal–Organic Compounds	200
	Alexa	nder Schoedel and Omar M. Yaghi	
	9.1	Introduction	200
	9.2	Werner complexes	201
	9.3	Hofmann clathrates	201
	9.4	Coordination polymers	204
	9.5	Porosity in metal-organic frameworks	209
	9.6	The discovery of MOF-5: the golden age of metal-organic	
		frameworks	211
	9.7	The Cambridge Structural Database – an essential tool for MOF	
		chemists	214
	9.8	Concluding remarks	215
	9.9	Acknowledgement	215
	Refe	rences	215
10	Cycl	odextrin-based Supramolecular Systems	220
	Akira	Harada	
	10.1	Introduction	220
	10.2	Cyclodextrin-containing polymers	220
		10.2.1 Preparation	220
		10.2.2 Cooperativity	222
		10.2.3 Optical resolution by CD	222
	10.3	CD-organometallic complexes	222
	10.4	Complex formation of cyclodextrin with polymers	223
		10.4.1 Macromolecular recognition	223
		10.4.2 Polyrotaxanes	224
		10.4.3 Tubular polymers	224
	10.5	Polymerization by CDs	225
	10.6	Supramolecular polymers	228
	10.7	Side-chain recognition by CDs	230
	10.8	CD-based molecular machines	230
	10.9	Macroscopic self-assembly through molecular recognition	233
		10.9.1 Macroscopic self-assembly	233
		10.9.2 Selectivity	234

X	Contents

10.10	Salf hashing by malagular responsition	225
10.10	Sen-nearing by molecular recognition	233
10.11	Stimuli-responsive polymers	
	10.11.1 Photoresponsive polymers	236
	10.11.2 Redox responsive gel	236
	10.11.3 Metal-ion responsive system	237
10.12	Conclusion	238
Refere	nces	238

11	Making the Tiniest Machines			241
	David A. Leigh			
	11.1	Introduction		
		11.1.1	From a macrocyclic receptor for CO_2 to a [2]catenane	241
		11.1.2	From rotaxanes to molecular shuttles	243
		11.1.3	From shuttles to switches: stimuli-responsive molecular shuttles	244
	11.2	Propert	y effects using molecular shuttles	245
		11.2.1	Switching "on" and "off" fluorescence with a molecular shuttle	246
		11.2.2	Rotaxane-based photoresponsive surfaces and macroscopic transport	
			by molecular machines	248
	11.3	Molecu	lar motors and ratchet mechanisms	248
		11.3.1	From molecular switches to molecular motors	249
		11.3.2	A [3]catenane rotary molecular motor	250
		11.3.3	Controlled rotation in either direction: a [2]catenane reversible rotary	
			molecular motor	250
		11.3.4	Molecular information ratchets	250
	11.4	Small n	nolecules that can "walk" along molecular tracks	254
	11.5	Making	g molecules that make molecules	257
	11.6	Outlool	k	257
	11.7	Acknow	vledgements	259
	References			

12	Clipp	Clipping an Angel's Wings			
	Roela				
	12.1	.1 Introduction		261	
	12.2	Molecu	ılar clips	263	
		12.2.1	Synthesis	263	
		12.2.2	Binding properties	265	
		12.2.3	Self-assembly	266	
		12.2.4	Functional clips	268	
		12.2.5	Biomimetic systems	272	
		12.2.6	Porphyrin clips: processive catalysis	274	
	12.3	Molecu	ılar capsules	278	
	12.4	Outlool	k	282	
	12.5	Acknow	wledgements	282	
	Refere	ences		283	

13 From Lanthanide Shift Reagents to Molecular Knots: The Importance						
	of Molecular and Mental Flexibility					
	Jeremy K.M. Sanders					
	13.1	Introduction: 1969–76	288			
	13.2	Metalloporphyrins	289			
		13.2.1 Model photosynthetic systems	289			
		13.2.2 Flexible porphyrin dimers: π - π interactions and model enzymes	290			
		13.2.3 The Anderson butadiyne system	292			
		13.2.4 Chemistry inside cavities	295			
	13.3	Macrocycles based on cholic acid	296			
	13.4	Designed donor-acceptor catenanes	297			
	13.5	Dynamic combinatorial chemistry	298			
		13.5.1 Conception and principles	298			
		13.5.2 Hydrazones	299			
		13.5.3 Disulfides	299			
	13.6	Conclusions	304			
	Refer	ences	305			
1/	Toyou	abyrins: Life Death and Attempts at Resurrection	300			
14	Ionat	han I Sosslor	507			
	14 1	Introduction	309			
	14.2	Early days	309			
	14.3	Starting Pharmacyclics. Inc.	311			
	14.4	Early biological studies of texaphyrins	314			
	14.5	Clinical studies of texaphyrins at Pharmacyclics. Inc.	316			
	14.6	Changes in direction at Pharmacyclics. Inc.	316			
	14.7	Current research efforts involving texaphyrin	317			
	14.8	Texaphyrin-platinum conjugates	318			
	14.9	Acknowledgements	321			
	Refer	ences	321			
15	Maci	ocyclic Coordination Chemistry of Resorcin[4]arenes and Pyrogaliol[4]arenes	325			
	Hars	uta Kumari, Carol A. Deakyne, and Jerry L. Atwood	225			
	15.1		325			
	15.2	History of hydrogen-bonded pyrogaliol[4]arene- and resorcin[4]arene-based nanocapsules	326			
	15.3	Metal-seamed pyrogalio[[4]arene- and resorcin[4]arene-based complexes	327			
		15.3.1 Copper-seamed pyroganol[4]arene nexamers	327			
		15.3.2 Zinc-seamed pyroganol(4)arene dimers	329			
		15.3.5 Zinc-seamed pyroganoi(4)arene telhering complexes	220			
		15.3.4 Copper-seamed c-memyipyroganoi[4]arene dimer coordination polymers	220 220			
		15.3.5 Gamuni-seamed pyroganon[4]arene dimers and haveman	222 222			
		15.5.0 Inicket-seathed pyroganol(4)arene dimers and nexamers	221 221			
		15.3.9 Iron seemed pyrogallol[4]arene panotubes	334 335			
		15.3.0 Holmium soomed nurgeallol[4]arene dedeemer	333 225			
		13.3.7 Hommuni-seamed pyroganol[4]arene dodecamer	555			

		15.3.10 Insulin-enclosing hydrogen-bonded resorcin[4]arene nanocapsules	336
		15.3.11 Zinc-seamed pyrogallol[3]resorcin[1]arene dimer	338
		15.3.12 Ionic dimeric Cs-containing pyrogallol[4]arene nanocapsule	338
		15.3.13 Zirconium, silver, and iron-seamed resorcin[4]arene complexes	338
		15.3.14 Manganese and cobalt complexes enclosed within resorcin[4]arenes	340
	15.4	Concluding remarks	342
	Refe	rences	342
16	Dyna	umic Control of Recognition Processes in Host–Guest Systems	
	and l	Polymer–Polymer Interactions	346
	Seiji	Shinkai	
	16.1	Introduction	346
	16.2	Dynamic control of crown ether functions by chemical and physical signals	347
	16.3	Stereochemical studies of calix[n]arene derivatives	351
	16.4	Ion and molecule recognition by functionalized calix[n]arenes and their	
		application to super Na ⁺ -sensors and novel [60]fullerene isolation	
		methods	351
	16.5	Molecular design of novel sugar-sensing systems using boronic acid-diol	
		macrocyclization	352
	16.6	From molecular machines to allosteric effects	353
	16.7	From allosteric effects to aggregation-induced emission (AIE)	354
	16.8	Extension of cooperative actions to polymeric and biological systems	356
	16.9	Summary	357
	16.10	Acknowledgements	357
	Refe	rences	357
17	Catio	on Binders, Amphiphiles, and Membrane Active Transporters	360
	Geor	ge W. Gokel, Saeedeh Negin, Joseph W. Meisel, Mohit B. Patel,	
	Mich	ael R. Gokel, and Ryan Cantwell	
	17.1	Introduction	360
	17.2	Conceptual development of lariat ethers for transport	361
	17.3	Recognition of the ability of lariat ethers to form membranes	363
	17.4	Use of lariat ethers to demonstrate cation $-\pi$ interactions	365
	17.5	Development of synthetic cation channels based on crown ethers	367
	17.6	Development of synthetic anion channels based on amphiphilic peptides	370
	17.7	Membrane active amphiphiles as biologically active and applicable compounds	371
	17.8	Conclusion	373
	Refe	rences	373
18	Supr	amolecular Technology	377
	Davi	d N. Reinhoudt	
	18.1	Introduction	377
	18.2	Chemical sensing	378
	18.3	Membrane transport	379
	18.4	Nonlinear optical materials	380
	18.5	Supramolecular technology for nanofabrication	380
	References		

Contents	xiii
contento	

19	Synthesis of Macrocyclic Complexes Using Metal Ion Templates			383	
	Dary	le H. Bu	sch		
	19.1	1 Introduction			
	19.2	Macroo	cycle synthesis	384	
		19.2.1	The first planned macrocycle	384	
		19.2.2	Theoretical considerations	385	
		19.2.3	Oxygen carriers and enzyme mimics	385	
	Refer	rences		386	
20	Serei	ndipity		388	
	Paul	R. McGa	onigal and J. Fraser Stoddart		
	20.1	0.1 Serendipity in scientific discovery			
	20.2 Donor-acceptor charge transfer interactions		-acceptor charge transfer interactions	390	
		20.2.1	Introduction	390	
		20.2.2	Mechanically interlocked molecules	392	
			20.2.2.1 Molecular switches	394	
			20.2.2.2 Molecular electronic devices	396	
			20.2.2.3 Drug delivery systems	396	
		20.2.3	Lock-arm supramolecular ordering (LASO)	398	
	• • •	~	20.2.3.1 Emergent ferroelectric properties	398	
	20.3	Cyclod	lextrins (CDs)	400	
		20.3.1		400	
		20.3.2	Cyclodextrin Metal-Organic Frameworks (CD-MOFs)	401	
			20.3.2.1 CO ₂ Sequestration and sensing	403	
		20.2.2	20.3.2.2 Chromatographic separations	404	
		20.3.3	Selective interactions with gold salts	406	
			20.3.3.1 Second-sphere coordination	407	
	20.4	Consta	20.3.3.2 A greener solution in the isolation of gold	408	
	20.4 Defer	4 Conclusions and outlook			
	Kelei	ences		411	
21	Evolu	ution of	Zn ^{II} –Macrocyclic Polyamines to Biological Probes	115	
	Fiich	i Kimura	Tohry Koike and Shin Aoki	415	
	21.1	Introdu	iction	415	
	21.1	Zinc er	nzyme models from Zn^{II} macrocyclic polyamine complexes	415	
	21.2	21.2.1	The CA-minicking anion affinity of model 11	417	
		21.2.2	The CA-mimicking sulfonamide inhibition of model 11	418	
		21.2.3	Development of new Zn^{II} fluorophores and apoptosis sensors	418	
		21.2.4	From the Zn^{II} -aldolase model to aldol synthesis catalyst	419	
		21.2.5	Reaction of Zn ^{II} -macrocyclic polyamines with phosphomono-, di-,	,	
			and triesters	421	
		21.2.6	A dinuclear Zn^{II} phosphomonoesterase model 29	421	
		21.2.7	Development of "Phos-tag" for protein phosphorylation analysis	422	
		21.2.8	Cooperative phosphate dianion recognition by multiple Zn ^{II} -cvclens	422	
		21.2.9	Discovery that guanidine is a Zn ^{II} -binding ligand at neutral pH	423	

		21.2.10	¹¹ B NMR sensing of Zn ^{II} ion <i>in vitro</i> and <i>in vivo</i> using phenylboronic		
			acid-pendant cyclen	425	
		21.2.11	From the β -lactamase model to development of new magnetic		
			beads device for purification of thiol-containing biomolecules	426	
	21.3	Zn ^{II} –cyc	lens for selective recognition of nucleobases (thymine and uracil)		
		and man	ipulation of genes	427	
		21.3.1	Recognition of thymine and uracil in single- and double-stranded synthetic		
			nucleic acids	428	
		21.3.2	Recognition of thymine in native DNA	429	
		21.3.3	Recognition of AT-rich TATA box DNA	430	
		21.3.4	Simple detection of single nucleotide polymorphisms (SNP) by Zn ^{II} -cyclen		
			polyacrylamide gel electrophoresis (PAGE)	430	
		21.3.5	Recognition of TpT with <i>bis</i> (Zn ^{II} –cyclen) 59 and TpTpT with		
			tris(Zn ^{II} -cyclen) 60	431	
		21.3.6	Inhibition of photo[2+2] cycloaddition and promotion of photosplitting of		
			the <i>cis</i> -syn-cyclobutane thymine dimer	431	
		21.3.7	Potent inhibition of HIV-1 TAR RNA –TAT peptide binding	433	
	21.4	New supramolecular assemblies with Zn ^{II} -cyclen			
		21.4.1	Supramolecular cuboctahedron cages	434	
		21.4.2	Supramolecular trigonal prisms	437	
		21.4.3	Supramolecular catalysts mimicking dimetallic phosphomonoesterases	437	
	21.5	Acknow	ledgements	438	
	Refer	rences		438	
22	Cont	ractile an	d Extensile Molecular Systems: Towards Molecular Muscles	444	
	Jean-	Pierre Sa	uvage, Vincent Duplan, and Frédéric Niess		
	22.1	Preambl	e: the Izatt-Christensen award and Jean-Pierre Sauvage	444	
	22.2	Introduc	tion	446	
	22.3	Interlock	king ring compounds	447	
		22.3.1	Transition metal-based system	447	
		22.3.2	Cyclodextrin-type molecular muscles	450	
		22.3.3	Donor-acceptor based systems coupled to protonation/deprotonation processes	453	
		22.3.4	Other muscle-like systems based on the mechanical bond	455	
	22.4	Non-inte	erlocking compounds	456	
		22.4.1	A contractile and extensible molecular figure-of-eight	456	
	22.5	Conclusion			
	22.6	Acknow	ledgements	461	
	Refer	rences		461	

Index

465

List of Contributors

Eric V. Anslyn

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA

Shin Aoki

Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan

Jerry L. Atwood

Department of Chemistry, University of Missouri– Columbia, Columbia, MO, USA

Paul D. Beer

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

Jerald S. Bradshaw

IBC Advanced Technologies, Inc., American Fork; Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA

Daryle H. Busch

Department of Chemistry, University of Kansas, Lawrence, KS, USA

Ryan Cantwell

Center for Nanoscience, Departments of Chemistry & Biochemistry and Biology, University of Missouri–St. Louis, St. Louis, MO, USA

Pongphak Chidchob

Department of Chemistry, McGill University, Montreal, Québec, Canada

Carol A. Deakyne

Department of Chemistry, University of Missouri– Columbia, Columbia, MO, USA

Vincent Duplan

Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg et CNRS, Strasbourg, France

Johannes A.A.W. Elemans

Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands

Luigi Fabbrizzi

Dipartimento di Chimica, Università di Pavia, Pavia, Italy

George W. Gokel

Center for Nanoscience, Departments of Chemistry & Biochemistry and Biology, University of Missouri–St. Louis, St. Louis, MO, USA

Michael R. Gokel

Center for Nanoscience, Departments of Chemistry & Biochemistry and Biology, University of Missouri–St. Louis, St. Louis, MO, USA

Andrew D. Hamilton

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

Akira Harada

Graduate School of Science, Osaka University, Osaka, Japan

xvi List of Contributors

Roger G. Harrison

Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA

Mir Wais Hosseini

Institut Le Bel, Université de Strasbourg & CNRS, Strasbourg, France

Reed M. Izatt

IBC Advanced Technologies, Inc., American Fork; Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA

Steven R. Izatt

IBC Advanced Technologies, Inc., American Fork, UT, USA

Kimoon Kim

Center for Self–assembly and Complexity, Institute for Basic Science (IBS); Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

Eiichi Kimura

Hiroshima University, Hiroshima, Japan

Peter C. Knipe

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

Tohru Koike

Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan

Harshita Kumari

James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA

Matthew J. Langton

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

David A. Leigh

School of Chemistry, The University of Manchester, Manchester, UK

Paul R. McGonigal

Department of Chemistry, Durham University, Durham, UK

Margaret K. Meadows

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA

Joseph W. Meisel

Center for Nanoscience, Departments of Chemistry & Biochemistry and Biology, University of Missouri–St. Louis, St. Louis, MO, USA

Saeedeh Negin

Center for Nanoscience, Departments of Chemistry & Biochemistry and Biology, University of Missouri–St. Louis, St. Louis, MO, USA

Frédéric Niess

Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg et CNRS, Strasbourg, France

Roeland J.M. Nolte

Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands

Kyeng Min Park

Center for Self–assembly and Complexity, Institute for Basic Science (IBS); Department of Nanomaterials Science and Engineering, University of Science and Technology (UST), Pohang, Republic of Korea

Mohit B. Patel

Department of Biology, University of Missouri– St. Louis, St. Louis, MO, USA

David N. Reinhoudt

MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands

Alan E. Rowan

Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia

Jeremy K.M. Sanders

University Chemical Laboratory, University of Cambridge, Cambridge, UK

Jean-Pierre Sauvage

Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg et CNRS, Strasbourg, France

Alexander Schoedel

Department of Chemistry, University of California; Materials Sciences Division, Lawrence Berkeley National Laboratory; Kavli Energy Nanoscience Institute, Berkeley, CA, USA

Jonathan L. Sessler

Department of Chemistry, The University of Texas at Austin, Austin, TX, USA

Dinesh Shetty

Center for Self–assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea

Seiji Shinkai

Institute for Advanced Study, Kyushu University, Fukuoka; Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), Fukuoka; Department of Nanoscience, Faculty of Engineering, Sojo University, Kumamoto, Japan

Hanadi Sleiman

Department of Chemistry, McGill University, Montreal, Québec, Canada

J. Fraser Stoddart

Department of Chemistry, Northwestern University, Evanston, IL, USA

Sam Thompson

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

Omar M. Yaghi

Department of Chemistry, University of California, Berkeley; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Preface

The International Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry was initiated in 1991. It recognizes excellence in these fields of chemistry and is presented annually at the International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC). Recipients are representative of those who are doing fine work in this vibrant and expanding field of chemistry, which has developed into one of the most active and promising research areas in science.

In 2016, the 25th International Izatt–Christensen Award will be presented at the 11th ISMSC in Seoul, Korea. I conceived the idea of a book featuring chapters from Award recipients in August 2015. Wiley editor Sarah Higginbotham agreed that the idea was sound and 21 recipients of the Award agreed to prepare the chapters found in this volume. In Chapter 1, recipients of the Award from 1991 to 2016 are given, together with titles of their ISMSC presentations.

The work presented in this volume covers a wide range of subject matter. This range reflects the growth of the field during the past half century. Several chapters present historical aspects providing insight into the beginnings of work on macrocyclic and supramolecular chemistry in the 1960s. A recurring theme in the chapters is molecular recognition, which has played an important role from the beginning and has led investigators along many different paths. This diversity is evident in the work presented in the various chapters.

Backgrounds of the award recipients are varied and their contributions to the field are different. Not all authors present up-to-date research results although the book contains many of these. Several of the authors are retired and not as active in research as they once were. However, their contributions were cutting-edge and a review of their work and, perhaps, how their studies added to our present knowledge base is of great interest. I feel that it is important for the younger generation to have an appreciation for origins of the science they now enjoy and of the people who created it. How better can this be obtained than through reading first-hand accounts of the work of those who went before. The material in this book provides an opportunity to convey much useful information to the next generation. It has thrilled me to see the continuing enthusiasm of students and young faculty members in this field. This interest is expressed each year in locations worldwide by the large number of enthusiastic young people who attend the ISMSC meetings where the Izatt–Christensen Award is made. I suspect that most of these individuals have little knowledge of the history behind the chemistry presented at these symposia. This book will fill that void to some degree.

The authors are prominent among those whose contributions have shaped, and continue to shape, macrocyclic and supramolecular chemistry. Prospects for the future in this rapidly developing field are part of many chapters. Coincident with the development in the 1960s and 1970s of the concept of molecular recognition into the current rapidly expanding field of supramolecular chemistry was the following statement by Richard Feynman (*Eng. Sci.* 1960, 23, 22–36; 1965 Physics Nobel Laureate) about rearranging atoms at the molecular level.

What would the properties of materials be if we could really arrange the atoms the way we want them? They would be very interesting to investigate theoretically. I can't see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.

I believe that this prediction of Feynman's has seen its fulfillment in the demonstrated ability of scientists, including those in supramolecular chemistry, to do exactly what he describes. Design at the molecular level has enabled the production of hosts with impressive selectivity for guest molecules. In the pages of this volume, many examples are given and I predict that the reader will have fun discovering them. One of the chapters is titled "Serendipity." Several authors use the word serendipity to describe some of their findings. Charles J. Pedersen's discovery of crown ethers (Chapter 1) was an example of serendipity. The future of macrocyclic and supramolecular chemistry is bright with opportunity even though we cannot *see exactly what will happen*.

Reed M. Izatt, Provo, Utah March 2016

Acknowledgements

I appreciate and thank the authors of each chapter who have worked diligently to deliver high-quality content for this volume. I have enjoyed the constant guidance of a terrific set of Wiley editors who have provided help whenever it was needed for me and for the authors. My computer-literate daughter, Anne Marie Izatt, has been of immeasurable assistance throughout this editing experience. Knowing she was there when needed, which was often, brought me great comfort. Finally, I thank my wife, Janet, for her patience, understanding and support throughout the preparation of this book. Janet has been a valuable sounding-board and has made many helpful suggestions.

> Reed M. Izatt March 2016

1

The Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry: A 25-Year History (1991–2016)

Reed M. Izatt,^{1,2} Jerald S. Bradshaw,^{1,2} Steven R. Izatt,¹ and Roger G. Harrison²

¹IBC Advanced Technologies, Inc., American Fork, UT, USA ²Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA

1.1 Introduction

The Izatt–Christensen Award (I–C Award) recognizes excellence in macrocyclic and supramolecular chemistry. It has been presented annually since 1991 by the International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC). A common theme to both of these fields is molecular recognition. The search for underlying principles governing molecular recognition or how molecules recognize each other began in earnest in the early 1960s. Working independently, several individuals who later became prominent in the emerging fields of macrocyclic chemistry and supramolecular chemistry, made important early contributions to molecular recognition. Four of these were Charles J. Pedersen (1904–1989), Daryle H. Busch, Jean-Marie Lehn, and Donald J. Cram (1919–2001). Prior to the 1960s, no concentrated effort had been made to investigate chemical selectivity involving macrocyclic compound interactions with metal ions or other guest molecules [1].

Charles Pedersen while employed at du Pont serendipitously discovered the compound that later came to be known as dibenzo-18-crown-6 (DBI8C6). Pedersen isolated DBI8C6 in a 0.4% yield from a "brownish goo" while attempting to prepare a completely different compound [2]. The decision to expend the effort needed to isolate, purify, and characterize the compound that became known as DBI8C6 represents a true example of scientific creativity and luck. The story of Pedersen's discovery, reported in 1967, his identification of the many new cyclic polyether macrocyclic compounds he synthesized, his characterization of their selective complexation with alkali metal ions, and his own account of the events surrounding the discovery make fascinating reading [2, 3].

Macrocyclic and Supramolecular Chemistry: How Izatt–Christensen Award Winners Shaped the Field, First Edition. Edited by Reed M. Izatt.

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

2 Macrocyclic, Supramolecular Chemistry: Izatt–Christensen Award Winners

Daryle Busch remembers that his first ideas of synthesizing macrocycles occurred while a graduate student with John Bailar at the University of Illinois in the early1950s. His account of these first ideas of forming macrocycles from bidentate amines involved in copper(II) chelation illustrates the workings of a creative mind. It was several years later in 1962, as a Professor of Inorganic Chemistry at Ohio State University, that he reported the first synthesis of a macrocycle using a metal template [1, 5] He received the I–C Award in 1994 and is the author of a chapter in this book [4], in which he gives a first-hand account of his work.

Jean-Marie Lehn reported the synthesis of macrobicyclic polyethers containing three polyether strands joined by two bridgehead nitrogen atoms [6] in 1969, shortly after Pedersen's initial paper. Lehn later coined the term, "supramolecular chemistry," to describe the broadening of the scope of host–guest chemistry which he and his research group had spearheaded [7]. To quote Professor Lehn, "Beyond molecular chemistry, supramolecular chemistry aims at constructing highly complex, functional chemical systems from components held together by intermolecular forces." These components can be visualized as host–guest systems bonded by intermolecular forces, which are much weaker than covalent chemical bonds. The guest systems may include organic guests as well as metal ions. The number and variety of hosts synthesized has expanded far beyond macrocyclic compounds. Lehn has provided an account of his early work [7].

Donald Cram was a prominent organic chemist in the 1960s. John Sherman [8], one of his Ph.D. students, describes him as "definitely old school. Eccentric. Hard driven. Strong-willed. Spirited. Fearless." Cram's accomplishments included a major research program in organic chemistry, co-author of three major organic chemistry textbooks, and instructor at UCLA of several generations of organic chemistry students. His first acquaintance with macrocyclic chemistry was recorded by Roeland Nolte who remembers [9] that during a stay as a visiting scientist in Cram's laboratory at UCLA in 1981, Cram told him "after reading Pedersen's paper he had become so excited that he had made the decision to completely change his research program." Nolte goes on to say, "After having seen the potential of host–guest chemistry and the way it was approached by Cram, i.e., by designing compounds with the help of space-filling (CPK) models, we became fascinated and concluded that we should start a line of research in the Netherlands in which this new type of chemistry was incorporated." This attitude was contagious, and transfer of the excitement to others was responsible for the explosion of interest in macrocyclic chemistry, which characterized the field in the 1970s and 1980s.

As was the case with Nolte, many of the I–C Award winners spent time in the laboratories of Donald Cram, Daryle Busch, or Jean-Marie Lehn. A number of researchers, including one of us (RMI) and James J. Christensen, had close contact with Charles Pedersen, who influenced our early work in macrocyclic chemistry [10]. The influence of these early pioneers on the field through their own work and the work they inspired in others has been remarkable. The list of I–C Award recipients includes many of the early workers in the field who had close association with these individuals.

1.2 International Izatt–Christensen Award in Macrocyclic and Supramolecular Chemistry

In 1991, Jerald S. Bradshaw and Steven R. Izatt, President of IBC Advanced Technologies, Inc. (IBC), conceived the idea that it would be appropriate to initiate an annual award, titled the Izatt–Christensen Award, recognizing the vision of Reed M. Izatt and James J. Christensen in organizing the First Symposium on Macrocyclic Chemistry in 1977. From 1977 to 1991, the field had broadened, resulting in the design, synthesis and characterization of increasingly more complex organic ligands and their application to new fields of chemistry that were scarcely envisioned decades earlier. This trend is illustrated by the titles of the lectures presented by the I–C awardees.

The I–C Award was instituted in 1991 by IBC. This competitive annual award recognizes excellence in macrocyclic chemistry and is given to individuals who have not received a major award in chemistry. The awardee receives a small honorarium and a travel grant, provided by IBC, and is expected to present an invited lecture at the Symposium in the year of the award. The recipients of the I–C Award from 1991 through 2016 are listed in Table 1.1, together with the locations and titles of their Award lectures.

Year	Awardee	Location	Title of Award Lecture
1991	Jean-Pierre Sauvage	Sheffield, UK	Synthetic Molecular Knots
1992	Eiichi Kimura	Provo, Utah	Role of Zinc(II) in Zinc Enzymes
1993	J. Fraser Stoddart	Enschede, The Netherlands	Self-Assembly in Unnatural Product Synthesis
1994	Daryle H. Busch	Lawrence, Kansas	A Sampling of Multi-receptor Supramolecular Systems
1995	David N. Reinhoudt	Jerusalem, Israel	Synthesis and Self-assembly of Supramolecular Structures for Switches and Sensors
1996	George W. Gokel	Montecatini, Terme, Italy	Synthetic Models for Cation Channel Function
1997	Alan M. Sargeson	Seoul, Korea	Outer-sphere Electron Transfer Reactions of Macro-bicyclic Complexes
1998	Seiji Shinkai	Turtle Bay, Oahu, Hawaii	Dynamic Control of Ion and Molecule Recognition Processes in Macrocyclic Host- guest Systems
1999	Fritz Vögtle	Barcelona, Spain	Rotaxanes, Catenanes, Pretzelanes–Template Synthesis and Chirality
2000	Jerry L. Atwood	St. Andrews, UK	Macrocycles as Building Blocks for Large Supramolecular Assemblies
2001	Jonathan L. Sessler	Fukuoka, Japan	Novel Polypyrrole Macrocycles
2002	C. David Gutsche	Park City, Utah	The Cornucopia of Calixarene Chemistry
2003	Jeremy K. M. Sanders	Gdansk, Poland	The Ins and Outs of Templating: A Dynamic Future for Macrocyclic Chemistry
2004	Makoto Fujita	Cairns, Australia	Self-assembly and Function of Metal-linked Macrocyclic and Cage-like Molecular Frameworks
2005	Kenneth N. Ravmond	Dresden, Germany	Chemistry in Chiral, Nanoscale Flasks
2006	Roeland J. M. Nolte	Victoria, Canada	Supramolecular Catalysts and Materials from Macrocyclic Building Blocks
2007	David A. Leigh	Salice Terme, Italy	Exercising Demons: Synthetic Molecular Motors and Machines
2008	Akira Harada	Las Vegas, Nevada	Cyclodextrin-based Supramolecular Architectures, Dynamics, and Functions
2009	Omar M. Yaghi	Maastricht, The Netherlands	Reticular Chemistry and Frameworks Replete with Large Macrocycles
2010	Luigi Fabbrizzi	Nara, Japan	Put the Anion into the Cage–If You Can
2011	Andrew D. Hamilton	Brighton, UK	Protein Surface Recognition: A Supramolecular Approach to Controlling Biological Function
2012	Kimoon Kim	Otago, New Zealand	Cucurbituril-based Functional Materials
2013	Eric V. Anslyn	Arlington, Virginia	Three Short Stories of Analytical Supramolecular Chemistry
2014	Mir Wais Hosseini	Shanghai, China	Perspectives in Molecular Tectonics
2015	Paul D. Beer	Strasbourg, France	Interlocked Host Molecules for Anion Recognition and Sensing
2016	Hanadi Sleiman	Seoul, Korea	Supramolecular Chemistry with DNA: Towards Biological and Materials Applications

 Table 1.1
 Izatt-Christensen Awardees in Macrocyclic and Supramolecular Chemistry 1991–2016

1.3 International Symposium on Macrocyclic and Supramolecular Chemistry

The First Symposium on Macrocyclic Compounds was organized by Reed M. Izatt and James J. Christensen and was held August 15–17, 1977 at Brigham Young University (BYU) in Provo, Utah [11]. Seventy-nine persons attended, 13 of them from ten countries outside of the USA. Of those attending from the USA, 23 were from BYU. Sixteen of the attendees came from 13 industrial companies. Twenty-eight universities were represented. The expenses for the symposium totaled \$9500. The Provo symposia were held annually through 1981.

Izatt and Christensen envisioned the value of an annual symposium to provide a forum for the presentation and discussion of research activities in the field of macrocyclic chemistry. They saw a need in this new and rapidly evolving field to bring together persons from a variety of chemical and non-chemical fields who had an interest in macrocyclic chemistry, but who were not personally acquainted with each other. It was already apparent that the number of workers in the field was increasing rapidly and that interest spanned chemistry, physics, biology, and pharmacy. It was felt that an annual symposium could be the means to catalyze growth in the field and lead to the exploration of new areas of chemistry. It was visualized that both theoretical and experimental aspects of the properties and behavior of synthetic and naturally occurring macrocyclic compounds would be covered in a series of invited lectures as well as accepted contributed papers.

In 1980, the First European Symposium on Macrocyclic Compounds was held in Basel, Switzerland with Thomas Kaden as Chair. In 1982, the Second European Symposium on Macrocyclic Compounds was held in Strasbourg, France. At this meeting, informal discussions were held on the possibility of combining these two meetings into an annual symposium, which would be international in nature. It was agreed that the 1983 Symposium on Macrocyclic Compounds in Provo and the 1984 European Symposium in Stirling, Scotland would be held as scheduled. The 1985 meeting in Provo would be the first to be held under the new title of International Symposium on Macrocyclic Chemistry (ISMC). The ISMC meetings were held on an annual basis from 1985 until 2005.

In the early 2000s, it was recognized by several individuals that the fields of macrocyclic and supramolecular chemistry were growing together and becoming intertwined. As a result, it was proposed that the conferences in the two areas, the ISMC and the International Symposium on Supramolecular Chemistry (ISSC) be combined. Scientists found themselves attending both conferences to learn of new findings and meet colleagues. Also, it was evident that macrocycles were being used in many supramolecular structures, as can be seen in many of the chapters in this book. The committees for the two conferences decided to join the two conferences into one, to be called the International Symposium on Macrocyclic and Supramolecular Chemistry (ISMSC). Thomas Fyles from the University of Victoria organized the first joint meeting, which was held in June 2006 in Victoria, British Columbia, Canada. The ISMSC meetings continue the tradition of previous meetings of having excellent presenters who present groundbreaking discoveries in the fields of macrocyclic and supramolecular chemistry.

After being held in Canada, the meeting moved to Italy (2007) and was hosted by Luigi Fabbrizzi. Next, the meeting went back to North America and to Las Vegas, Nevada (2008) and was hosted by Jonathan Sessler and Eric Anslyn. Again it returned to Europe to Maastricht, The Netherlands (2009) and was hosted by Roeland Nolte and Alan Rowan. Asia came next with the meeting in Nara, Japan (2010) hosted by Makoto Fujita and Yoshihisa Inoue. Back to Europe the meeting went to Brighton, United Kingdom (2011) under Philip Gale. After the United Kingdom, it went to Otago, New Zealand (2012) where Sally Brooker hosted it. Next it went to Arlington, Virginia (2013), where Lyle Isaacs, Jeffery Davis, and Amar Flood were hosts. After Virginia, it went to Shanghai, China (2014) hosted by Zhanting Li. The 10th meeting was in Strasbourg, France (2015), where it was hosted by Luisa De Cola. The 2016 meeting will be held in Seoul, Korea under the direction of Kimoon Kim, Jong Seung Kim, and Juyoung Yoon. Future meetings are scheduled to be held in the United Kingdom, Canada, and Italy.

Table 1.2 Symposia involving Macrocyclic and Supramolecular Chemistry (1977–2016). Abbreviations used: ISMC (International Symposium on Macrocyclic Chemistry); ISMSC (International Symposium on Macrocyclic and Supramolecular Chemistry)

Year	Title	Location	Dates	Chair(s)
1977	First Symposium on Macrocyclic Compounds	Provo, Utah	15–17 August	R.M. Izatt, J.J. Christensen
1978	Second Symposium on Macrocyclic Compounds	Provo, Utah	14–16 August	R.M. Izatt, J.J. Christensen
1979	Third Symposium on Macrocyclic Compounds	Provo, Utah	6-8 August	R.M. Izatt, J.J. Christensen
1980	First European Symposium on Macrocyclic Compounds	Basel, Switzerland	2–4 July	T.A. Kaden
1980	Fourth Symposium on Macrocyclic Compounds	Provo, Utah	11–13 August	R.M. Izatt, J.J. Christensen
1981	Fifth Symposium on Macrocyclic Compounds	Provo, Utah	10–12 August	R.M. Izatt, J.J. Christensen
1982	Second European Symposium on Macrocyclic Compounds	Strasbourg, France	30 August–1 September	M-J. Schwing
1983	Seventh Symposium on Macrocyclic Compounds	Provo, Utah	8–10 August	R.M. Izatt, J.J. Christensen
1984	Third European Symposium on Macrocyclic Compounds	Stirling, UK	29–31August	R.W. Hay, R.M. Clay
1985	XISMC	Provo, Utah	5–7 August	R.M. Izatt. I.I. Christensen
1986	XI ISMC	Florence, Italy	1–4 September	P. Paoletti L. Fabbrizzi
1987	XII ISMC	Hiroshima, Japan	20–23 July	E. Kimura
1988	XIII ISMC	Hamburg, Germany	4-8 September	A. Knöchel
1989	XIV ISMC	Townsville, Australia	25–28 June	L.F. Lindoy
1990	XV ISMC	Odessa, Ukraine	3-8 September	S.A. Andronati, V.P. Kukhar, N.G. Lukyanenko
1991	XVI ISMC	Sheffield, UK	1–6 September	J.F. Stoddart, D. Fenton
1992	XVII ISMC	Provo, Utah	9–14 August	R.M. Izatt, J.S. Bradshaw
1993	XVIII ISMC	Enschede, The Netherlands	27 June–2 July	D.N. Reinhoudt
1994	XIX ISMC	Lawrence, Kansas	12–17 June	D.H. Busch, K. Bowman- James
1995	XX ISMC	Jerusalem, Israel	2–7 July	A.Shanzer, D. Meyerstein
1996	XXI ISMC	Montecatini Terme, Italy	23–28 June	P. Paoletti, A. Bianchi
1997	XXII ISMC	Seoul, Korea	3–8 August	S.J. Kim
1998	XXIII ISMC	Turtle Bay, Oahu, Hawaii	7–12 June	J.L. Sessler, E.V. Anslyn
1999	XXIV ISMC	Barcelona, Spain	18–23 July	J. Casabo, E. Garcia- España
2000	XXV ISMC	St. Andrews, UK	2–7 July	R.W. Hay (posthumous) M. Schröder

(Continued)

Year	Title	Location	Dates	Chair(s)
2001	XXVI ISMC	Fukuoka, Japan	15–20 July	S. Shinkai
2002	XXVII ISMC	Park City, Utah	23–27 June	J.D. Lamb
2003	XXVIII ISMC	Gdansk, Poland	13–18 July	J.F. Biernat
2004	XXIX ISMC	Cairns, Australia	4–8 July	L.F. Lindoy, F.R. Keene
2005	XXX ISMC	Dresden, Germany	17–21 July	K. Gloe
2006	1st ISMSC	Victoria, Canada	25–30 June	T.M. Fyles
2007	2nd ISMSC	Salice Terme, Italy	24–28 June	L. Fabbrizzi
2008	3rd ISMSC	Las Vegas, Nevada	13–18 July	E.V. Anslyn, J.L. Sessler
2009	4th ISMSC	Maastricht, The	21–25 June	R.J.M. Nolte, A.E. Rowan
		Netherlands		
2010	5th ISMSC	Nara, Japan	6–10 June	M. Fujita, Y. Inoue
2011	6th ISMSC	Brighton, UK	2–7 July	P.A. Gale
2012	7th ISMSC	Otago, New	29 January–2	S.A. Brooker
		Zealand	February	
2013	8th ISMSC	Arlington, Virginia	7–11 July	A.H. Flood, J.T. Davis
			,	L.D. Isaacs
2014	9th ISMSC	Shanghai, China	7–11 June	Z. Li
2015	10th ISMSC	Strasbourg, France	28 June–2 July	L. De Cola
2016	11th ISMSC	Seoul, Korea	10–14 July	K. Kim, J.S. Kim, J. Yoon

Table 1.2(Continued)

From the first joint meeting in 2006, the ISMSC has attracted top scientists and many students interested in the fields of macrocyclic and supramolecular chemistry, as was the case in its predecessor meetings. Presentations on molecular machines, metal organic frameworks, and supramolecular polymers as well as traditional topics such as host–guest binding and new macrocycles have been given. The 2015 ISMSC meeting in Strasbourg, France attracted 550 participants, two thirds of whom were students. The number of students attending the Symposium has always been high. For example, at the 8th ISMSC in Virginia, over 50% of the 350 attendees were students. Attendance at the meeting is normally around 350 as it was at the 3rd ISMSC in Las Vegas, Nevada, and at the 6th ISMSC in Brighton, U.K. The attendance at the 5th ISMSC in Nara, Japan was over 420. At the 2015 ISMSC in Strasbourg, the number of speakers was 50 and the number of poster presentations was 200. The large number of students in attendance at the symposia augurs well for the future of the field. The interest that characterized the early development of the field in the 1960s and 1970s continues to stimulate young people today. A summary of the symposia held from 1977 through 2016 is given in Table 1.2. Symposium titles, chairs, locations, and dates are presented.

1.4 Izatt–Christensen award sponsor: IBC Advanced Technologies, Inc.

IBC shares a common interest with the ISMSC in promoting molecular recognition as a guiding principle in developing new chemistry. This interest stems from a strong belief that scientific and engineering excellence in this field should be encouraged and will result in untold benefits for future generations. IBC has made an important contribution to the ISMSC for 25 years by providing financial support for the I–C Award. The chapters in this book provide insight into the way I–C Award winners have influenced progress in the fields of macrocyclic and supramolecular chemistry over this period.

The study of molecular recognition over the past half century has led to important discoveries and many applications, particularly in the medical, pharmacological, metallurgical and radiochemical sciences. The

1987 Nobel Prize in Chemistry was awarded to Charles Pedersen, Donald Cram, and Jean-Marie Lehn for "development and use of molecules with structure-specific interactions of high selectivity [12]." Two of the founders of IBC (Izatt and Bradshaw) received the American Chemical Society National Award in Separations Science and Technology in 1996 [13]. Inscribed on the award plaque were the words: "For advancing the separations science of metals and for new technology to forward industrial-scale recovery of metals from aqueous solutions." Many of the I–C Award recipients have received significant prizes and/or awards for their contributions to understanding and advancing the concepts of molecular recognition.

IBC was founded in 1988 by, and named after, Reed M. Izatt, Jerald S. Bradshaw, and James J. Christensen, three early workers in the field. These professors received much stimulus from contacts in the macrocyclic and supramolecular chemistry community. They made use of the ideas evolving in this scientific community during the 1970s and 1980s to design and prepare ligands with high affinity and high selectivity for specific metal ions in the presence of other competing metal ions that often have chemical properties very similar to those of the target metal ion. The resulting high selectivity of the ligands enabled IBC to develop a series of products (trade named SuperLig® and AnaLig®) using solid-supported ligands that could perform difficult metal ion separations at both the process and analytical scales [14]. The term Molecular Recognition Technology (MRT) was formulated in 1989 by Steven R. Izatt, President and CEO of IBC, to describe the practical application of molecular recognition in engineered systems for which customers receive value (i.e., for which they will pay money). MRT is well known today in extractive metallurgy [15–17] radionuclide separations [18], and chemical analysis [19]. Some early successes of MRT were its adoption by Impala Platinum Limited to process the palladium produced at its Springs Refinery in South Africa; its adoption by Tanaka Kikinzoku, Kogyo K.K. in Japan to recover rhodium from spent precious metal wastes [16, 17]; and the development, by IBC, 3M and Argonne National Laboratory, of Empore[™] Rad Disks [18] marketed worldwide by 3 M for analysis of radionuclides such as Sr and Ra. This development of Rad Disks was recognized by R&D 100 awards in 1996 and 1999 as well as the Federal Laboratory Consortium Award for Excellence in Technology Transfer in 1997 [18]. A hallmark of these processes is that they are based on green chemistry principles [15–17] resulting in significant economic and environmental advantages to the customer. The latest achievement made using MRT has been the demonstrated green chemistry separation in early 2015 of individual rare earth metals at the laboratory scale [20, 21]. Scale-up of the REE separations is underway and a pilot plant is expected to be operational in early 2016 [21, 22] that will be capable of producing individual rare earth metals at >99% recovery and >99% purity, with minimal waste generation.

IBC is committed to the principles of supramolecular chemistry which are central to the development of its highly selective separation systems that operate at the molecular level. Continuing support by IBC of the I–C Award is predicated on the belief that there are individuals in the macrocyclic and supramolecular chemistry community that will visualize and carry to fruition applications that will benefit society. The experience of IBC and the ideas expressed in this volume may be of value in stimulating others to commercialize their findings to the benefit of the larger community.

1.5 Summary

Twenty-five scientists have received the I–C Award since its inception in 1991. These individuals have made remarkable contributions to the fields of macrocyclic and supramolecular chemistry. The generosity of IBC in funding the Award and the willingness of ISMSC to host the Awardees at their annual symposia have made the Award possible. The ISMSC and its predecessor symposia have made significant contributions to the development of the fields of macrocyclic and supramolecular chemistry over the past nearly four decades. These symposia have provided a venue for the presentation of new results, for the discussion of new ideas, and for the development of new collaborations among researchers young and old. As the meetings move from

country to country, opportunity is afforded for younger scientists to meet and interact with senior scientists in the field. The scientific programs of the Symposium have changed over the years and reflect the changing nature of the field. A strength of macrocyclic and supramolecular chemistry that has emerged over the decades has been its use in the hands of creative and skilled scientists to explore new areas of chemistry, as exemplified by the I–C Awardees. For example, the creation of host molecules of predesigned shapes enables one to mimic, on the molecular scale, components of simple machines such as molecular on–off switches, molecular axles, and molecular wires. Macrocycles pre-designed to interact selectively with target inorganic or organic guests have also had an important impact in separations chemistry. The future of the macrocyclic chemistry field is limited only by the imagination and creativity of its practitioners. It is expected that the ISMSC will continue to play an important role in facilitating personal interactions, exchanges of ideas, and the discovery of new chemistry.

References

- 1. Melson, G.A. (1979) General Introduction, In *Coordination Chemistry of Macrocyclic Compounds*, Melson, G.A. (Ed), Plenum Press, New York.
- (a) Pedersen, C.J. (1967) Cyclic polyethers and their complexes with metal salts, *Journal of the American Chemical Society*, 89, 7017–7036; (b) Pedersen, C.J. (1970) New macrocyclic polyethers, *Journal of the American Chemical Society*, 92, 391–394.
- (a) Izatt, R.M. (2007) Charles J. Pedersen: Innovator in macrocyclic chemistry and co-recipient of the 1987 Nobel Prize in Chemistry, *Chemical Society Reviews*, 36, 143–147; (b) Izatt, R.M., Bradshaw, J.S. (1992) Charles J. Pedersen (1904–1989), Nobel Laureate in Chemistry (1987), *Journal of Inclusion Phenomena and Molecular Recognition Chemistry*, 12, 1–6; (c) Izatt, R.M., Bradshaw, J.S. (Eds) (1992) *The Pedersen Memorial Issue*. *Advances in Inclusion Science*, Vol. 7.
- 4. Busch, D.H. (2016) Synthesis of macrocyclic complexes using metal ion templates, This volume, Chapter 19.
- (a) Thompson, M.C., Busch, D.H. (1962) Chemical & Engineering News, *September* 17, 57; (b) Thompson, M.C., Busch, D.H. (1964) Reactions of coordinated ligands. IX. Utilization of the template hypothesis to synthesize macrocyclic ligands *in situ, Journal of the American Chemical Society*, 86, 3651–3656.
- (a) Dietrich, B., Lehn, J.-M., Sauvage, J.-P. (1969) Diaza-polyoxa-macrocycles et Macrobicycles, *Tetrahedron Letters*, 2885–2888;
 (b) Dietrich, B., Lehn, J.-M., Sauvage, J.-P. (1969) Les Cryptates, *Tetrahedron Letters*, 2889–2892.
- 7. Lehn, J.-M. (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry, *Chemical Society Reviews*, **36**, 151–160.
- 8. Sherman, J.C. (2007) Donald J. Cram, Chemical Society Reviews, 36, 148–150.
- 9. Nolte, R.J.M., Rowan, A.E., Elemans, J.A.A.W. (in press) Clipping angel's wings, This volume, Chapter 12.
- (a) Izatt, R.M., Rytting, J.H., Nelson, D.P., Haymore, B.L., Christensen, J.J. (1969) Binding of alkali metal ions by cyclic polyethers: Significance in ion transport processes, *Science*, **164**, 443–444; (b) Izatt, R.M., Nelson, D.P., Rytting, J.H., Haymore, B.L., Christensen, J.J. (1971) A calorimetric study of the interaction in aqueous solution of several uni- and bi-valent metal ions with the cyclic polyether dicyclohexyl-18-crown-6 at 10, 25, and 40°, *Journal of the American Chemical Society*, **93**, 1619–1623.
- 11. Izatt, R.M., Pawlak, K., Bradshaw, J.S. (2005) Contributions of the International Symposium on Macrocyclic Chemistry to the development of macrocyclic chemistry, In *Macrocyclic Chemistry: Current Trends and Future Perspectives*, Gloe, K. (Ed), Springer, Dordrecht.
- 12. Nobel Foundation (1987) The Nobel Prize in Chemistry 1987, <http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/>, accessed February 14, 2016.
- 13. Izatt, R.M., Bradshaw, J.S. (1996) Joint recipients of the 1996 American Chemical Society Award in Separations Science and Technology, *Chemical & Engineering* News, January **22**, 56.
- Izatt, R.M., Bruening, R.L., Bruening, M.L., Tarbet, B.J., Krakowiak, K.E., Bradshaw, J.S., Christensen, J.J. (1988) Removal and separation of metal ions from aqueous solutions using a silica-gel-bonded macrocycle system, *Analytical Chemistry*, 60, 1825–1826.