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Given the enormous resurgence in indole ring synthesis over the past decade—highlighted by the power of transition‐metal 
catalysis—there is a need for a comprehensive presentation of the myriad methods for constructing the indole ring: from the 
ancient to the modern and from the well‐known to the obscure. The organization that I have adopted follows that in my two 
earlier reviews on indole ring synthesis,1,2 beginning with an Introduction on the importance of indoles and their role in soci-
ety. Given space limitations, with a few exceptions I do not explicitly cover the synthesis of indolines (2,3‐dihydroindoles), 
oxindoles (indolin‐2‐ones), indoxyls (indole‐3‐ols), isatins (indoline‐2,3‐diones), and azaindoles (pyrrolo[2,3‐x]pyridines). 
However, carbazoles, carbolines, and their fused ring derivatives are covered.

Preface

1 G.W. Gribble, Contem. Org. Syn., 1994, 145–172.
2 G.W. Gribble, J. Chem. Soc., Perkin Trans. 1, 2000, 1045–1075.
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1
Introduction

1.1  Preview

From its early isolation by Baeyer from the reaction of 
indigo with a mixture of sulfuric acid and sulfuric anhydride 
[1], indole—indigo + oleum—has a remarkable history and 
has made a huge impact on society, as we will see in this 
chapter. The reader is referred to several general reviews on 
the chemistry and synthesis of indoles [2–11] and their role 
in society [12]. Reviews devoted solely to indole ring 
synthesis are tabulated in Section 7 in this chapter.

1.2  Indole‐Containing Natural Products

Indole (1) itself has several interesting natural sources, the 
most familiar of which is mammalian feces [13, 14], 
although its toxicity is low (LD

50
 = 1,100 kg/mg in rats) 

[15]. Indole has also been identified in significant amounts 
in flowers (jasmine, narcissus, lilac, Easter lily, lemon 
flower, tuberose, and honeysuckle) and in trace amounts 
in other flowers and foods (clove, orchid, gardenia, coffee 
flower, Daphne odora, tomato, molasses, sesame seed, rye 
bread, cheese, aged casein, and aging fish) [15]. Despite 
its objectionable and pervasive odor at high concentration, 
at low levels indole as been used by perfumers to augment 
fragrances. The odor threshold of indole is 140 parts per 
billion, significantly higher than, for example, methyl 
mercaptan (0.02 ppb) and dimethyl sulfide (0.30–1.00 ppb) 
[15]. Indole is also a component of human sweat [16] and 
breath [17]. Indeed, almost 30% of the volatile head space 
of sweat is due to indole [16]. Along with several other 
odorants, indole is attractive to mosquitos (Anopheles 
gambiae) [18].

Other well‐known indoles that have various natural 
sources are skatole (3‐methylindole) (2), serotonin (3), 
l‑tryptophan (4), tryptamine (5), the plant growth hor‑
mones 3‐indoleacetic acid (6) and 4‐chloro‐3‐indoleacetic 
acid (7) [19], the mushroom hallucinogen psilocin (8), and 
the indole‐derived ancient dyes indigo (9) [20] and Tyrian 
Purple (10) [19] (Scheme 1).

The vast marine environment, which covers 70% of 
Earth’s surface, provides a wealth of naturally occurring 
indoles, and several reviews are available [21–24]. 
According to Hamann, 95% of the marine tropical bio‑
sphere accounts for 34 of the 36 phyla of life on Earth [24]. 
Some recently discovered marine indoles are depicted in 
Scheme  2. Several eusyntyelamides (e.g., D (11)) were 
isolated from the Arctic bryozoan Tegella cf. spitzbergensis 
[25], and the indole 12 was discovered in the marine 
fungus  Aspergillus sydowii [26]. A New Zealand ascid‑
ian Didemnum sp. has furnished the β‐carboline alkaloid 
didemnidine B (13) [27], and the toxin, bunodosine 391 
(14) is part of the venom of the sea anemone Bunodosoma 
cangicum [28]. The Arctic hydrozoan Thuiaria breitfussi 
has yielded the novel breitfussin B (15)  [29]. Tribromoindole 
(16) was found in the red alga Laurencia similis collected 
from Hainan Island, China, along with two other tribro‑
moindoles [30].

Our terrestrial environment also contains a wealth of 
naturally produced indoles, and some recent examples 
are shown in Scheme  3 [31–38]. The novel thiazolyl‐
indole barakacin (17) was found in the ruminal bacte‑
rium Pseudomonas aeruginosa strain Z10 [31]. 
Spirobacillene A (18) was isolated from a culture of 
Lysinibacillus fusiformis KMC003 derived from coal 
mine acidic drainage [32]. The Chinese plant Alocasia 
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macrorrhiza has yielded the five new indole alkaloids 
alocasins A–E (19–23) [33]. Isocyalexin A (24) is the 
first plant‐derived isocyanide to be discovered, isolated 
from rutabaga roots (Braesica napobrassica) [34]. The 
human pathogenic fungus Exophiala dermatitidis gener‑
ates exophialin (25), and 8‐hydroxyexophialin (26) is 
found in cultures of the mutant strain Me1‐1 of Exophiala 

dermatitidis [35]. A component of the dauer larval stage 
pheromone of the nematode Caenorhabditis elegans is 
indole 27 [36]. The novel tryptorheedei B (29) is found 
in the seeds of Entada rheedei, a large woody liana grow‑
ing in tropical Africa and Southeast Asia [38]. The cor‑
responding N‐sulfonyl‐l‐tryptophan (tryptorheedei A) 
accompanies 29.
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4 Indole Ring Synthesis

Carbazoles and the related indolocarbazoles represent a 
huge collection of natural products, and some recently 
discovered examples are shown in Scheme  4. A marine 
Streptomyces sp. SCSIO02999 has yielded four new 
carbazolo‐sesquiterpenes, dixiamycins A (30), B (31), 
oxiamycin (32), and chloroxiamycin (33) [39]. The novel 
β‐carboline 34 is found in the mushroom Mycena metata 
[40], and the extraordinary fradcarbazole A (35) is one of 
three related indolocarbazoles produced by the marine 
Streptomyces fradiae [41]. A series of new carbazole alka‑
loids, clausenawallines G–K (e.g., 36), was isolated from 
twigs of Clausena wallichii, a folk medicine plant distrib‑
uted throughout Southeast Asia [42].

1.3  Biological Activity of Indoles

All indoles probably have some biological activity. Kumar 
and colleagues have briefly tabulated the range of activities 
that indoles possess [43]. More generally, Rosén and 
colleagues compare the chemical space that is occupied by 
natural products and bioactive compounds as a strategic 
starting point for drug discovery [44]. Section 3 presents 
biological activities of indoles, and Section 4 covers those 
bona fide indole‐containing pharmaceuticals.

A growing worldwide problem is drug resistance to 
disease‐inflicting bacteria, such as MRSA (methicillin‐
resistant Staphylococcus aureus) [45, 46]. Several indoles 
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show promise in treating these bacterial infections, such as 
aryloxyindole 37 [47], 2‐aryl‐5‐nitroindole 38 [48], cati‑
onic peptide 39 [49], and pacidamycin D (40) [50]. Biofilm 
infections cause 17 million new cases and up to 550,000 
fatalities per year in the United States. Menthyl indole 41 is 
very active against biofilm formation induced by several 
strains of S. aureus [51] (Scheme 5).

Marine biofouling is a major problem to the shipping 
industry, but not to sponges, many of which produce anti‑
fouling compounds that inhibit settlement and smothering 
by barnacle larvae (Balanus improvisus). Some of these 
indole compounds are shown in Scheme  6. The novel 
cyclopeptide bromobenzisoxalone barettin 42 was isolated 
from the marine sponge Geodia barretti [52], and the 
marine ascidian Stomoza murrayi contains several bromi‑
nated indole‐3‐carbaldehydes such as tribromoindole 43, 
both of which prevent larval settlement or overgrowth by 
other marine species [53]. The physostigmine‐like alkaloid 
urochordamine A (44) from the tunicate Ciona savignyi 
has potent larval settlement and metamorphosis‐promoting 
activity at 2 μg/mL [54]. The Mediterranean gorgonian 
Paramuricea clavata contains several antifouling indoles, 
such as 2‐bromo‐N‐methyltryptamine (45) [55].

Antifungal activity is seen with indole RWJ‐61907 
(46), which inhibits the growth of Saccharomyces cerevi-
siae and Candida albicans [56]. The N‐methylcryptolepine 
salt 47 shows activity against Cryptococcus neoformans 
and C. albicans, two fungi associated with human immu‑
nodeficiency virus (HIV) and acquired immunodefi
ciency syndrome (AIDS), and Aspergillus flavus [57]. 
Antiparasitic activity is observed for several indole diami‑
dines, such as 48, which is active against Trypanosoma 
brucei rhodesiense and Plasmodium falciparum [58]. The 
glycosyl‐isoindigo derivative 49 is active in vitro against 
Trypanosoma brucei rhodesiense, Trypanosoma cruzi 
Tulahuen (Chagas disease), Plasmodium falciparum 
(malaria), and Leishmania donovani (leishmaniasis [59]) 
(Scheme 7).

The final stage of HIV disease is AIDS. At the end of 
2011 some 34 million people were living with HIV world‑
wide, and 1.7 million AIDS‐related deaths were reported 
in 2011 [60]. Although these figures are lower than they 
were ten years ago, HIV drugs are still in great demand. 
Several indole derivatives show promise in this area 
(Scheme 8). Notably, indolyl aryl sulfones (e.g., 50 [61], 
51 [62], 52 [63]), indole‐3‐sulfonamides (e.g., 53 [64]), 
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6 Indole Ring Synthesis

and pyrano[3,4‐b]indoles (e.g., 54 [65]), are active as 
potent non‐nucleoside reverse transcriptase inhibitors 
(50–53), and 54 is a selective hepatitis C virus (HCV) 
RNA polymerase inhibitor. The development of predic‑
tive quantitative structure–activity relationship (QSAR) 
models for anti‐HIV indolyl aryl sulfones has been 
described [66].

A number of indoles and carbazoles possess antiinflam‑
matory activity (Scheme 9). Thus, indoles 55–57 are three 
of several cyclooxygenase (COX) inhibitors based on the 
structure of thalidomide [67]. Whereas 55 shows no COX‐1 
activity and only weak COX‐2 activity, indole 56 displays 
potent COX‐1 activity and modest COX‐2 activity. Indole 
57 shows strong inhibition of both enzymes. Several 
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2‐phenyl‐3‐(sulfonylphenyl)indoles (e.g., 58) are potent 
and selective COX‐2 inhibitors and possess higher activity 
than celecoxib [68]. Likewise, indole Schiff base 59 is a 
highly selective COX‐2 inhibitor (IC

50
 = 0.32 μM; COX‐1, 

IC
50

 > 100 μM) [69]. Furo[3,2‐b]indole FI–302 (60) is a 
nonulcerogenic antiinflammatory compound with potency 
superior to that of the nonsteroidal antiinflammatory drugs 
(NSAIDs) mepirizole and tiaramide [70]. The carbazole 
carprofen (61) is a multitarget‐directed ligand that inhibits 
COX‐1, COX‐2, and a fatty acid amide hydrolase (FAAH), 
and it is the starting point for the synthesis of many ana‑
logues [71]. Several indomethacin derivatives have been 
designed and synthesized to evaluate their inhibitory 
effects on COX, P‐glycoprotein, and multidrug resistance 
[72]. Indole 62 is a potent inhibitor of matrix metallopro‑
teinase–13 (MMP‐13), a protein that functions in cartilage 
homeostasis [73]. The Streptomyces sp. HKI0231 indoles 
0231A (63) and 0231B (64) are inhibitors of 3α‐hydrox
ysteroid dehydrogenase, an enzyme involved in inflamma‑
tory processes [74, 75], and thus may be excellent lead 
structures as new antiinflammatory agents. The novel pros‑
taglandin D

2
 receptor antagonist 65 was developed for the 

treatment of allergic rhinitis, an inflammatory disease [76].

Cancer and cardiovascular disease not withstanding, 
obesity and diabetes are major global health problems. 
Several indoles have potential activity in this area 
(Scheme 10). Indoles 66 and 67 show significant antidys‑
lipidemic activity and weight loss in hyperlipidemic rats, 
and these compounds represent a new class of hypolipi‑
demic and antiobesity agents [77]. Tetracyclic indole 68 is 
a melanin‐concentrating hormone receptor 1 (MCHR1) 
antagonist and is effective in reducing food intake in rats 
and monkeys [78]. N‐Benzoylindole 69 is a potent liver X 
receptor (LXRβ) agonist and may exhibit antidiabetic 
activity of type 2 diabetes by reversing cholesterol accu‑
mulation and raising plasma high‐density lipoprotein cho‑
lesterol (HDL) levels [79]. As a peptidomimetic agonist for 
the human orphan receptor BRS–3, indole 70 may find use 
in the treatment of obesity [80].

Serotonin (5-hydroxytryptamine [5‐HT], 3) receptors 
play an essential role in mediating neurotransmission and 
in so doing they influence memory, learning, sleep, aggres‑
sion, anxiety, appetite, mood, and other neurological func‑
tions [81, 82]. These dozen or so receptors are targets for 
drugs to treat depression, pain, psychosis, sleep, learning 
disorders, insulin secretion, epilepsy, schizophrenia, and 
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Scheme 8  Representative HIV Active Indoles
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other biological dysfunction. Several indoles bind to vari‑
ous 5‐HT receptors (Scheme  11), including the drug 
sumatriptan (Section  4). A review of the 5‐HT receptor 
subtype 5‐HT

6
 has appeared [83]. Indole 71 is remarkably 

selective as an agonist toward 5‐HT
1D

 versus 5‐HT
1A

 [84], 
and 72 is a potent and selective 5‐HT

6
 receptor antagonist 

having subnanomolar inhibition of the production of ade‑
nylate cyclase [85]. Indole 73 also has very high and selec‑
tive affinity for 5‐HT

6
 as an agonist [86], and 74 is a 

selective antagonist for 5‐HT
6
 [87].

In addition to the anticancer indole alkaloids vinblastine 
and vincristine, discussed in the next section, many indoles 
display antitumor activity. Space does not allow complete 
coverage of these studies. Indole‐3‐carbinol (Scheme  12, 
75), found in vegetables of genus Brassica (kale, cauli‑
flower, broccoli, turnip, collard, and others), its acid‐ and/or 
enzymatic‐induced dimer, 3,3′‐diindolylmethane (76), and 
its trimer, 2‐(indol‐3‐ylmethyl)‐3,3′‐diindolylmethane (77), 
inhibit cancer cell proliferation and induce apoptosis in sev‑
eral cell lines [88–91]. However, one study reports that 
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3,3′‐diindolylmethane (76) is a liver carcinogen in trout by 
an estrogenic pathway [92]. A more potent inhibitor of 
human colon cancer cell proliferation than 75 is 4‐methox‑
yindole‐3‐carbinol (78), which is a metabolite of 4‐meth‑
oxyglucobrassicin formed during ingestion [93]. The novel 
5‐hydroxy tetraindole 79 (SK228) induces G

2
 arrest and 

apoptosis in human breast cancer cells [94], and several 
indoles of type 80 inhibit cell proliferation of human colon 
cells (HT–29), human ovarian cells (SK–OV–5), and c‐src 
kinase activity [95]. Indolyl imidazole 81 is a potent inhibi‑
tor of aromatase (CYP19) (IC

50
 = 11.5 nM), suggesting 

activity against breast cancer [96]. Indole‐7‐carboxamide 82 
is a potent inhibitor of the serine–threonine kinase (IKK‐β), 
which regulates an important signaling pathway [97].

An important strategy for the treatment of cancer is the 
modulation of microtubule assembly either by preventing 
its disassembly or by blocking tubulin polymerization, and 
an excellent review is available that discusses several 
indole leads [98]. For example, Silvestri and colleagues 
report that arylthioindoles are potent inhibitors of tubulin 
polymerization [99–101]. For example, 84 inhibits the 

growth of MCF‐7 cells at IC
50

 = 13 nM [99], and 85 is the 
most potent antitubulin agent discovered thus far [101] 
(Scheme  13). A number of indole‐3‐carbaldehydes and 
their corresponding imines inhibit tubulin polymerization 
and inhibit the growth of breast cancer cells; for example, 
imine 86 (MCF‐7, IC

50
 = 27 nM; MDA‐MB 231, IC

50
 = 6 

nM) [102]. 5′‐Methoxyindirubin (87) induces cell death in 
human neuroblastoma cells (IMR‐32, SK‐N‐SH, NB‐39) 
without affecting normal cells (NHDF and HUVEC) [103].

A large number of naturally occurring indoles display 
antitumor activity, but only a limited number can be illus‑
trated here (Scheme 14). Cultures of Aspergillus ochraceus 
WC76466 produce stephacidins A (88) and B (not shown), 
both of which are selective inhibitors of prostate LNCaP 
cells, and they also show activity against a panel of 
other  tumor cell lines [104]. The Panamanian soil 
microbe   Nocardia aerocolonigenes (now reclassified as 
Saccharothrix aerocolonigenes) produces rebeccamycin 
(89) and 4′‐deschlororebeccamycin (90), which have 
potent anticancer activity [105, 106] and an analogue is in 
human cancer trials (Section  4). A deepwater Palauan 
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sponge, Plakortis nigra, produces several plakortamines, 
the most active of which against HCT‐116 human cancer 
cells is plakortamine B (91) [107]. The New Zealand ascid‑
ian Pycnoclavella kottae contains the indoles kottamides 
A–E [108, 109], one of which, kottamide D (92), inhibits 
the proliferation of HL60 cancer cells [108]. Pyrindamycin 
A (= duocarmycin C

2
) (93) is a potent antitumor metabolite 

from Streptomyces SF2582 [110, 111]. The New Zealand 
sponge Latruncula sp. has yielded several discorhabdins, 
such as discorhabdin A (94), having potent cytotoxic activ‑
ity [112]. A terrestrial Streptomyces sp. has furnished 
akashins A–C (e.g., 95), which have antitumor activity 
against several human cancer cell lines [113].

In addition to the major diseases we have discussed, 
numerous other disease conditions and biological 
syndromes are affected by indoles. For example, several 
β‐carbolines show acetylcholinesterase activity [114], and 
the natural nostocarboline (96), from the freshwater cyano‑
bacterium Nostoc 78‐12A, has butyrylcholinesterase 
inhibitory activity comparable to that of galanthamine, a 
drug approved for the treatment of Alzheimer’s disease 
(Scheme 15) [115]. Several synthetic indirubins are inhibi‑
tors of glycogen synthase kinase‐3 (GSK‐3), a kinase 
involved in abnormal hyperphosphorylation of proteins and 
the production of β‐amyloid peptides and neurofibrillary 
tangles, a cascade of events thought to develop into 
Alzheimer’s disease. One such active GSK‐3 inhibitor is 
indirubin 97. These indirubins also inhibit cyclin‐dependent 
kinases (CDKI/cyclin B and CDK5/p25) [116]. Dibro
mocarbazole P7C3 (98) is a neuroprotective synthetic com‑
pound that could find utility in the protection of the 
hippocampus, the degeneration of which is associated with 
Alzheimer’s disease [117, 118]. Thus, P7C3 and analogues 
protect newly born neurons from apoptosis, and thus they 
may represent a new therapy for Alzheimer’s patients.

A new set of dihydroindoles, related structurally to 
the  neuroprotective stobadine, has been developed that 
diminishes the toxicity of stobadine. For example, 
hexahydro‐1H‐pyrido[4,3‐b]indole 99 displays improved 
neurological efficacy over that of stobadine [119]. 
A new human neurokinin‐1 (hNK

1
) receptor antagonist, 

2‐arylindole 100, is one of several simple compounds that 
exhibit both good receptor‐binding affinity and brain pen‑
etration. The hNK

1
 receptor in the central nervous system 

is a potential target for the treatment of depression, anxi‑
ety, and drug‐induced emesis [120]. A collection of tetra‑
cyclic indoles, such as 101, possesses anticonvulsant 
activity [121], and 4,6‐dichloroindole 102 inhibits con‑
vulsions induced by N‐methyl‐d‐aspartate (NMDA) in 
mice. This potent in vivo antagonist acts at the strychnine‐
insensitive glycine‐binding site [122]. A similar indole 
with excellent affinity for the glycine site of the NMDA 
receptor is 2‐indolecarboxylic acid 103 [123].

The new cannabimimetic phenylacetylindole cannabipi‑
peridiethanone (Scheme  16, 104) is an adulterant found 
along with two other previously known synthetic cannabi‑
noids, JWH‐122 (105) and JWH‐081 (106), in a Japanese 
herbal product [124]. These illegal designer drugs have 
potent affinity for the cannabinoid CB

1
 and CB

2
 receptors. 

Huffman and colleagues have developed structure–activity 
relationships at both of these receptors for 3‐(1‐naphthoyl)
indoles [125]. For example, one compound, JWH‐416 
(107), has the desirable combination of very good CB

2
 

affinity but low CB
1
 affinity, although many others are also 

selective for the former receptor [125]. A review of this 
area is available [126]. A study of the melatoninergic 
binding site MT

3
 has found that 4‐nitroindole melatonin 
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