Vol ume 1

Energy and Environment

Edited by
Michel André and Zissis Samaras
Energy and Environment
Acknowledgments ... xxi

Preface .. xxiii
Bernard JACOB and Jean-Bernard KOVARIK

Introduction ... xxvii
Michel ANDRÉ and Zissis SAMARAS

Part 1. Electromobility and its Implementation 1

Introduction to Part 1 ... 3
Zissis SAMARAS

Chapter 1. Toward a Europe-Wide Interoperable Electromobility System ... 5
Gabriele GIUSTINIANI, Luca PERSIA, Heike BARLAG and Norbert VIERHEILIG

1.1. Background .. 5
1.2. The Green eMotion project partnership and objectives 7
1.3. GeM achievements so far 8
1.3.1. Development of a marketplace as common innovative service platform 8
1.3.2. Improvement in standardization 10
1.3.3. Technical reports and policy recommendations 11
1.3.4. Extensive amount of valuable electromobility data 11
1.3.5. Developments in other areas 12
1.4. Next steps .. 13
1.4.1. Assessment of impact on EVs’ diffusion of support/regulatory measures at local level 13
Chapter 5. The Role and Activities of SMEs in EU R&D Transport Programmes: the Case of Electric Vehicles

David Morris

5.1. Introduction .. 59
5.2. Innovation in the transport market .. 60
5.3. Methodology ... 63
5.4. SME involvement in EU R&D programmes 64
5.5. Strategies employed by SMEs to overcome barriers 69
5.6. Summary ... 70
5.7. Acknowledgments ... 70
5.8. Bibliography .. 71

Part 2. Vehicle and Engine Technologies Development

Introduction to Part 2 .. 75

Zissis Samaras

Nikolaos Kyrtatos

6.1. Introduction .. 78
6.2. Achievements of Hercules-A and Hercules-B. 79
6.3. Objectives of Hercules-C ... 81
6.4. Project HERCULES-C results ... 81
 6.4.1. WPG1: new combustion concepts ... 82
 6.4.2. WPG2: fuel injection models and experiments 83
 6.4.3. WPG4: experimental and modeling studies of fuel injection systems .. 84
 6.4.4. WPG5: new materials and tribology .. 88
6.5. Conclusions ... 90
6.6. Acknowledgments ... 91
6.7. Bibliography ... 91

Chapter 7. Energy Storage System Studies for Heavy Duty Hybrid Electric Vehicles in the EC HCV Project

Mario Conte, Francesco Vellucci, Massimo Ceraolo, Peter Daemon, Giorgio Mantovani, Christian Niklas, Sophie Tintignac and Giancarlo Totti

7.1. Introduction .. 93
7.2. The reference vehicles and the selected energy storage systems (ESS) ... 95
7.3. Dedicated testing procedures ... 96
7.3.1. Abuse testing ... 97

Stephen Jones, Arno Huss, Emre Kural, Alexander Massoner, Edoardo Morra, Christa Simon, Reinhard Tatschl and Christian Vock

10.1. Introduction
10.2. Energy potential analysis with offline simulation
10.3. Analysis of ICT measures for the reduction of CO₂ emissions in urban areas
10.4. Development and implementation of predictive energy management systems for real-life application
10.4.1. Optimal power-split strategy
10.4.2. Coasting assistant algorithm
10.4.3. Introduction of a co-simulation platform
10.4.4. Testbed and real-world tests
10.5. Conclusions and outlook
10.6. Acknowledgments
10.7. Bibliography

Part 3. Energies and Fuels for Transports

Introduction to Part 3

Zissis Samaras

Chapter 11. Measures to Promote the Diffusion of Alternative Fuel Vehicles in EU27

Michael Krail and Wolfgang Schade

11.1. Introduction
11.2. The integrated assessment model ASTRA
11.3. Diffusion of alternative fuel cars
11.4. Policies and scenarios
11.5. Conclusions
11.6. Acknowledgments
11.7. Bibliography
Chapter 12. Creating Prospective Value Chains for Renewable Road Transport Energy Sources up to 2050 in Nordic Countries

Anu TUOMINEN, Nina WESSBERG, Anna LEINONEN, Annele EEROLA and Simon BOLWIG

12.1. Introduction .. 173
12.2. Theoretical background 174
 12.2.1. The functions of foresight in policy-making 175
 12.2.2. Multi-level perspective to transition 175
 12.2.3. Value chain analysis 176
12.3. Method .. 178
 12.3.1. Energy and transport in MLP framework 178
 12.3.2. An approach for outlining prospective value chains for sustainable energy systems in road transport 179
12.4. Building future contexts for the prospective value chains .. 181
12.5. Analysis of value network actors: a biodiesel case study .. 183
12.6. Discussion and conclusions 185
12.7. Acknowledgments .. 186
12.8. Bibliography .. 186

Chapter 13. The Consequences of Increasing Fuel Prices on Car Travel and Household Budgets

Richard GRIMAL

13.1. A break in trend in car travel: increasing financial constraints and the proximity of saturation 189
13.2. A lagged reaction to rising fuel prices 194
 13.2.1. Model specification 194
 13.2.2. Model estimation 196
 13.2.3. Forecasting car travel 198
13.3. The rise of fuel poverty 200
 13.3.1. Data and methodology 200
 13.3.2. Impacts of rising fuel prices on household budgets and the rationalization of car travel 201
 13.3.3. An increasing vulnerability, especially in areas of diffuse urbanization and among low-income households 203
13.4. Bibliography .. 206

Chapter 14. The Development of an Innovative On-board CNG Storage System for Methane-Fuelled Cars Conducted Within the FP7 EU Project ‘InGAS’

David Mark STORER, Giorgio MENZATO, Michael KLESCHINSKI, Volker STRUBEL, Bernhard KIENER, Jerzy KALET, Pawel GASIOR, Wojciech BLAZEJEWSKI, Georg MAIR and Christian GREGOR

14.1. Development of innovative, low-cost Type IV CNG vessels. 209
14.2. Development of advanced components for the on-board CNG storage and supply system

14.3. Design of CNG storage module

14.4. Integration of CNG storage module in vehicle

14.5. Performance validation

14.6. Considerations regarding production issues

14.7. Conclusions

14.8. Acknowledgments

Chapter 15. Sustainability Assessment of Infrastructure Elements with Integrated Energy Harvesting Technologies

Bijan ADL-ZARRABI, Mohammad HOSEINI, York OSTERMEYER and Holger WALLBAUM

15.1. Background

15.2. Highway E39 in Norway

15.2.1. A summary of feasibility study

15.3. Identification of environmental and economic lifecycle challenges

15.4. Pareto optimized concepts balancing economic and environmental aspects

15.5. Conclusions

15.6. Bibliography

Part 4. Greenhouse Gas Mitigation

Introduction to Part 4

Michel ANDRÉ

Chapter 16. GHG Mitigation Strategy in the European Transport Sector

Wolfgang SCHADE and Michael KRAIL

16.1. Introduction

16.2. Analysis of R&D funding and the innovation systems of the transport modes

16.3. Scoping of GHG reduction measures and technical reduction potentials

16.4. Techno-economic assessment of cost of GHG reduction measures

16.5. Stepwise scenario building and model-based assessment of scenarios and their GHG reduction pathways
16.6. Synthesis on suitable GHG reduction strategy for transport 253
16.7. Conclusions .. 255
16.8. Acknowledgments ... 256
16.9. Bibliography .. 257

Chapter 17. Why do CO₂ Emissions from Heavy Road Freight Transport Increase in Spite of Higher Fuel Prices? .. 259
Inge VIERTH

17.1. Introduction .. 259
17.1.1. Background ... 259
17.1.2. Scope and structure of the chapter .. 260
17.2. Swedish freight transport market .. 260
17.2.1. Freight transport intensity and modal split ... 260
17.2.2. Transport service prices ... 262
17.3. Logistic efficiency of road freight transports ... 263
17.3.1. Vehicle utilization ... 263
17.3.2. Consumed fuel per tonne-km .. 264
17.4. Consumed fuel per vehicle-km .. 265
17.4.1. Measurements to improve fuel efficiency .. 266
17.4.2. Barriers to the implementation of fuel-saving technologies 266
17.4.3. Rebound effect and elasticities of fuel use in respect to fuel price 269
17.5. CO₂-intensity of fuel used in the road freight sector .. 269
17.6. Modeling policy impacts .. 270
17.6.1. Observed elasticities ... 270
17.6.2. Modeled elasticities ... 271
17.7. Conclusions .. 272
17.8. Acknowledgments ... 273
17.9. Bibliography .. 273

Chapter 18. A Study on Super Credits and their Impact on Fleet-Average Real-World CO₂ Emissions .. 277
Petros KATSIS, Thomas PAPAGEORGIOU and Leonidas NTZIACHRISTOS

18.1. Introduction .. 277
18.2. Methodology .. 279
18.2.1. E-mobility penetration .. 282
18.2.2. Super credits .. 283
18.3. Simulation. ... 283
18.3.1. Software ... 283
18.3.2. Super credits estimation. ... 285
Chapter 19. A Study on Co-Modality and Eco-Driving Mobility

Sven MAERIVOET, Lars AKKERMANS, Kristof CARLIERS, and Muriel DESAEGER

19.1. Introduction ... 293
19.2. Analyzing the GPS-based mobility data 294
 19.2.1. General information 294
 19.2.2. Extraction of mobility patterns as trip legs and trip chains ... 296
 19.2.3. Calculating CO₂ emissions per trip ... 298
19.3. Assessing modal shift potential 299
 19.3.1. Collecting public transport data 299
 19.3.2. Development of the public transport model 300
 19.3.3. Modal shift analysis 301
19.4. Vehicle choice, technology and automotive service 305
19.5. Conclusions and recommendations 306
19.6. Bibliography ... 307

Chapter 20. Harmonizing Carbon Footprint Calculation for Freight Transport Chains

Alan LEWIS, Verena EHRLER, Heidi AUVINEN, Hedi MAURER, Igor DAVYDENKO, Antje BURMEISTER, Saskia SEIDEL, Andreas LISCHKE, and Jan KIEL

20.1. Introduction ... 309
 20.1.1. Scope and objectives for harmonizing the carbon footprint calculation of freight transport 309
 20.1.2. Objectives ... 311
 20.1.3. The current situation 311
20.2. The basis for standardization 313
 20.2.1. The technical approach 313
 20.2.2. Gaps and ambiguities 315
 20.2.3. The vehicle operation system 316
 20.2.4. Allocation principles 317
 20.2.5. Determination of shipment-level emissions within the full transport supply chain 318
 20.2.6. Addressing the gaps and ambiguities 318
20.3. Working with real-life supply chains .. 318
20.4. Outlook: requirements toward a future structure for the harmonized approach ... 320
20.5. Conclusions ... 322
20.5. Acknowledgments .. 322
20.6. Bibliography .. 322

Chapter 21. Carbon Intensity of French Shippers 325
Christophe RIZET, Cecilia CRUZ, Matthieu DE LAPPARENT and Martine VROMANT

21.1. Introduction: context and objective 325
21.3. Estimating shipper yearly emissions from a typology of shippers ... 328
 21.3.1. Establishing a typology of shippers 328
 21.3.2. Estimating the quantity of freight transport CO$_2$
 emissions per shipper of each type ... 329
 21.3.3. Precision of the estimated quantity of CO$_2$ per shipper 330
21.4. Estimating yearly shipper emissions with a model
 of carbon intensity per tonne shipped 332
 21.4.1. A model of carbon intensity per tonne shipped 332
 21.4.2. Precision of the estimated carbon intensity per tonne 333
 21.4.3. Carbon intensity per shipper ... 334
 21.4.4. Precision of the estimated carbon intensity per shipper 334
21.5. Comparison of carbon intensity per shipper estimated
 by the two methods .. 335
21.6. Carbon intensity, carbon efficiency and the impact
 of a carbon tax on shipper competitiveness 335
21.7. Conclusion ... 337
21.8. Acknowledgments .. 338
21.9. Bibliography .. 338

Part 5. Air Pollution ... 339

Introduction to Part 5 .. 341
Michel ANDRÉ

Chapter 22. Impact of FAME Content on the
Regeneration Frequency of Diesel Particulate Filters (DPFs) 345
Kenneth D. ROSE, Heather HAMJE, Dimitris KATSAOUNIS, Christos SAMARAS, Savas GEIVANIDIS and Zissis SAMARAS

22.1. Introduction .. 345
22.2. Experimental setup .. 347
Chapter 23. Exhaust Aftertreatment Potentials of Advanced Coupled NSC-SCR System

Thomas WITTKA, Bastian HOLDERBAUM and Thomas KÖRFER

23.1. Introduction 357
23.2. Description of investigated exhaust system and fuel reformer performance .. 359
23.3. Discussion of results and aftertreatment potentials of investigated exhaust system .. 363
23.4. Summary 369
23.5. Acknowledgments 370
23.6. Bibliography 370

Chapter 24. Power Controlled Microwave Reactor for the Removal of NOx and SOx from the Exhaust of Marine Diesel Engines

Maysam ABBOD, Radu BELECA, David PEIRCE, Lionel GANIPPA, Nadarajah MANIVANNAN and Wamadeva BALACHANDRAN

24.1. Introduction 373
24.2. Non-thermal plasma experimental set-up using diesel car engine .. 375
24.2.1. Experimental results. 377
24.3. MW power control 378
24.4. Non-thermal plasma experimental set-up using 40 kW marine engine .. 380
24.5. Practical implementation 383
24.6. Conclusions..................................... 383
24.7. Bibliography 384

Chapter 25. Quantification of Non-Exhaust Particulate Matter Emissions from Road Transport

Ilias VOITSIS, Leonidas NTZIACHRISTOS, Christos SAMARAS and Zissis SAMARAS

25.1. Introduction 385
25.2. Methodology 386
25.3. Database of road non-exhaust EFs ... 388
 25.3.1. PM10, PM2.5, organic matter and elemental carbon 388
 25.3.2. Metals ... 389
 25.3.3. PAHs ... 390
 25.3.4. Resuspension. .. 391
 25.3.5. Particle number ... 394
 25.4. Conclusions ... 395
 25.5. Acknowledgments ... 396
 25.6. Bibliography .. 396

Chapter 26. COPERT Micro: a Tool to Calculate Vehicle Emissions in Urban Areas .. 401

Christos SAMARAS, Leonidas NTZIACHRISTOS and Zissis SAMARAS

 26.1. Introduction ... 401
 26.2. Methodology ... 402
 26.2.1. Input data: interaction with the traffic model 402
 26.2.2. Vehicle classification .. 403
 26.2.3. Emission factors .. 405
 26.2.4. Equations: calculation procedure 406
 26.3. Software application ... 408
 26.3.1. Software development ... 408
 26.3.2. User interface .. 408
 26.4. Results and applications .. 410
 26.4.1. Athens emissions inventory ... 410
 26.4.2. Emissions inventory of the Municipality of Pilea-Hortiatis 412
 26.5. Conclusions ... 413
 26.6. Bibliography .. 414

Chapter 27. Traffic and Vehicle Fleet Statistics for the Calculation of Air Pollutant Emissions from Road Transport in France .. 417

Michel ANDRÉ, Marion CARTERET and Anaïs PASQUIER

 27.1. Introduction ... 417
 27.2. Data needed for estimating pollutant emissions from road transports .. 419
 27.3. A typical approach for determining fleet composition 419
27.4. Detailed assumptions and data for France 420
 27.4.1. Registration data, engine and vehicle size, and equipment 421
 27.4.2. Crucial statistics: survival probability and annual mileage 423
 27.4.3. Prospective trends ... 425
 27.5. Comparing different estimations for France 425
 27.6. The French vehicle fleet composition: some highlights 427
 27.7. Local observations and vehicle fleet variability 429
 27.8. Other data required for emission calculation 431
 27.9. Discussion and conclusions 432
 27.10. Acknowledgments .. 432
 27.11. Bibliography .. 433

Part 6. Noise and Vibration .. 435

Introduction to Part 6 ... 437
Michel ANDRÉ

Chapter 28. AQUO European Collaborative
Project – Development of Methods and Indicators
for the Assessment of Shipping Noise Footprint
on Underwater Environment and Impact on Marine Life 439
Christian AUDOLY, Céline ROUSSET, Thomas FOLEGOT,
Michel ANDRÉ, Lanfranco BENEDETTI and Eric BAUDIN

 28.1. Introduction ... 439
 28.2. Overview of AQUO project .. 440
 28.3. Needs and policies ... 442
 28.3.1. Overview of the existing regulatory framework 442
 28.3.2. Actions conducted by organizations involved in the maritime sector ... 443
 28.3.3. Ship traffic and its evolution 444
 28.3.4. Spatial distribution of marine species 445
 28.4. Noise footprint characterization 445
 28.4.1. Result from a bibliographic analysis 446
 28.4.2. Bio-acoustic criteria ... 446
 28.4.3. Proposed definitions ... 447
 28.4.4. Test case to illustrate the idea of noise footprints 449
 28.5. Methodology for the derivation of noise mitigation guidelines 450
 28.6. Conclusions and ongoing actions 452
 28.7. Acknowledgments .. 453
 28.8. Bibliography ... 453
Chapter 29. Reduction of the Underwater Radiated Noise by Ships: New Shipbuilding Challenge. The Vessels “Ramón Margalef” and “Ángeles Alvariño” as Technological References of How to Build Silent Vessels

Publio BELTRÁN PALOMO, Raul SALINAS MULLOR and Alfonso MORENO RODRÍGUEZ

29.1. Introduction .. 456
29.2. Case study: “Ramón Margalef” and “Ángeles Alvariño” 461
 29.2.1. Introduction ... 461
 29.2.2. Description and main particulars of the vessels. 462
 29.2.3. The methodology: N&V integrated management 462
 29.2.4. Sea trial tests: results 465
29.3. Conclusions .. 470
29.4. Acknowledgments .. 472
29.5. Bibliography .. 472

Chapter 30. Mitigation of Ground Vibrations from Freight Trains

Patrick VANHONACKER and Hamid MASOUMI

30.1. Introduction .. 475
30.2. Vibrations from freight trains 476
30.3. Decomposing the vibration problem 477
30.4. Numerical modeling .. 478
30.5. Mitigation measure at the source 479
 30.5.1. Track geometry correction by tamping 479
 30.5.2. Rail roughness and grinding 480
 30.5.3. Track structure system 481
30.6. Mitigation measure in propagation path 485
30.7. Conclusions .. 489
30.8. Acknowledgements .. 489
30.9. Bibliography .. 489

Chapter 31. ACOUTRAIN: Virtual Certification of Acoustic Performance for Freight and Passenger Trains

Nicolas FURIO, Maria STARNBERG, Estelle BONGINI, David THOMPSON, Ulf ORRENIUS and Nathalie CUNY

31.1. Introduction .. 491
 31.1.1. Current noise conformity assessment 492
 31.1.2. The simplified evaluation method 492
31.2. Acoutrain: a European research project 493
 31.2.1. The simplified evaluation method in Acoutrain. 494
 31.2.2. Virtual testing concept in Acoutrain 496
 31.2.3. VT-approaches and first recommendations 498
Chapter 32. Additional Efficient Warning Sounds for Electric and Hybrid Vehicles. 501

Etienne PARIZET, Ryan ROBART, Perceval PONDROM, Jean-Christophe CHAMARD, Guillaume BAUDET, David QUINN, Karl JANSSENS and Manfred HAIDER

32.1. Introduction. 501
32.2. Detectability 502
 32.2.1. Procedure. 503
 32.2.2. Results 504
32.3. Sound meaning 505
 32.3.1. Procedure. 506
 32.3.2. Results 506
32.4. Unpleasantness 508
 32.4.1. Procedure. 508
 32.4.2. Results 508
32.5. Conclusion 509
32.6. Acknowledgments 510
32.7. Bibliography 510

List of Authors 511

Index .. 519
Acknowledgments

The European Commission (DG-MOVE and DG-RTD), the Conference of European Road Directors (CEDR), the European Road Transport Research Advisory Council (ERTRAC), the European Rail Research Advisory Council (ERRAC) and the European Technology Platform WATERBORNE-TP are acknowledged for their support and active contribution to the Programme Committee of TRA2014, in charge of reviewing and selecting the papers presented at the conference, which forms the main input of this volume.

The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR) is acknowledged for having organized the TRA2014, in which 600 high-quality papers were presented successfully.

Yves Amsler, Gianfranco Burzio, Panos Papaioannou and Mark Robinson, the coordinators of the topics on Mobility and Safety, all the other members of the Programme Committee, the reviewers who actively contributed to the review and selection of the papers, and the authors who wrote them are acknowledged for their great job that produced the material for this volume.

Joëlle Labarrère, Secretary of the Programme Committee of TRA2014, is acknowledged for her valuable help to the editors and for her support to this volume production.
The transport sector is very much concerned about environmental adaptation and mitigation issues. Most of these are related to the objective of curbing GHG emission by 20% by 2020, alternative energy and energy savings, sustainable mobility and infrastructures, safety and security, etc. These objectives require the implementation of advanced research work to develop new policies, and to adjust education and industrial innovations.

The theme and slogan of the Transport Research Arena held in Paris (TRA2014) were respectively: “Transport Solutions: From Research to Deployment” and “Innovate Mobility, Mobilise Innovation”. Top researchers and engineers, as well as private and public policy and decision-makers, were mobilized to identify and take the relevant steps to implement innovative solutions in transport. All surface modes were included, including walking and cycling, as well as cross modal aspects.

Policies, technologies and behaviors must be continually adapted to new constraints, such as climate change, the diminishing supply of fossil fuels, the economic crisis, the increased demand for mobility, safety and security, i.e. all the societal issues of the 21st Century. Transport infrastructures and materials, modal share, co-modality, urban planning, public transportation and mobility, safety and security, freight, logistics, ITS, energy and environment issues are the subject of extensive studies, research work and industrial innovations that are reported in this series of books.

This book is a part of a set of six volumes called the Research for Innovative Transports set. This collection presents an update of the latest academic and applied research, case studies, best practices and user perspectives on transport carried out in Europe and worldwide. The presentations made during TRA2014 reflect on them. The TRAs are supported by the European Commission (DG-MOVE and DG-RTD),
the Conference of European Road Directors (CEDR) and the modal European platforms, ERRAC (rail), ERTRAC (road), WATERBORNE, and ALICE (freight), and also by the European Construction Technology Platform (ECTP) and the European Transport Research Alliance (ETRA).

The volumes are made up of a selection of the best papers presented at the TRA2014. All papers were peer reviewed before being accepted at the conference, and they were then selected by the editors for the purpose of the present collection. Each volume contains complementary academic and applied inputs provided by highly qualified researchers, experts and professionals from all around the world.

Each volume of the series covers a strategic theme of TRA2014.

Volume 1, *Energy and Environment*, presents recent research work around the triptych “transports, energy and environment” that demonstrate that vehicle technologies and fuels can still improve, but it is necessary to prepare their implementation (electromobility), think about new services and involve enterprises. Mitigation strategies and policies are examined under different prospective scenarios, to develop and promote alternative fuels and technologies, multi-modality and services, and optimized transport chains while preserving climate and the environment. Evaluation and certification methodologies are key elements for assessing air pollution, noise and vibration from road, rail and maritime transports, and their impacts on the environment. Different depollution technologies and mitigation strategies are also presented.

Volume 2, *Towards Innovative Freight and Logistics*, analyzes how to optimize freight movements and logistics; it introduces new vehicle concepts, points out the governance and organization issues, and proposes an assessment framework.

Volumes 3 and 4 are complementary books covering the topic of traffic management and safety.

Volume 3, *Traffic Management*, starts with a survey of data collection processes and policies and then shows how traffic modeling and simulation may resolve major problems. Traffic management, monitoring and routing tools and experience are reported and the role of traffic information is highlighted. Impact assessments are presented.

Volume 4, *Traffic Safety*, describes the main road safety policies, accident analysis and modeling. Special focus is placed on the safety of vulnerable road users. The roles of infrastructure and ITS in safety are analyzed. Finally railway safety is focused upon.
Volume 5, *Materials and Infrastructures*, is split into two sub-volumes, investigating geotechnical issues and pavement materials’ characterization, innovative materials, technologies and processes and introducing new techniques and approaches for auscultation and monitoring. Solutions to increase the durability of infrastructures and to improve maintenance and repair are presented, for recycling as well as for ensuring the sustainability of the infrastructures. Specific railways and inland navigation issues are addressed. A focus is put on climate resilient roads.

Volume 6, *Urban Mobility and Public Transport*, highlights possible innovations in order to improve transports and the quality of life in urban areas. Buses and two-wheelers could be a viable alternative in cities if they are safe and reliable. New methodologies are needed to assess urban mobility through new survey protocols, a better knowledge of user behavior or taking into account the value of travel for public transport. The interactions between urban transport and land planning are a key issue. However, these interactions have to be better assessed in order to propose scenarios for new policies.

Bernard JACOB, Chair of the TRA2014 Programme Committee
Jean-Bernard KOVARIK, Chair of the TRA2014 Management Committee
March 2016
I.1. Introduction

Transport systems are facing an impossible dilemma today: on one hand they must satisfy an increasing demand of mobility for a growing world population and an intensification of the goods exchanges, while on the other hand, they are also supposed to decrease their energy requirements and shift to non-fossil fuels (rarefaction and climatic impacts), while preserving or even improving the environment, decreasing the impacts of noise and air pollution on living beings, fauna and flora, to be precise. Besides that, transports have a unique opportunity to evolve in a changing world, with new services (vehicle sharing or in self-service), technologies like intelligent transportation systems (ITS), communication, etc., and also requirements including fast delivery, reliability, improved accessibility, etc.

In this book, recent research and application works – that were presented during the 5th Conference of Transport Research Arena, Paris, France, held on 14–17 April 2014 – are reported around the triptych: “transports, energy and environment”.

Successively, works will be reported on the progress and potential of electromobility and the conditions of its implementation (Part 1), the recent developments of vehicle and engine technologies for optimizing their operation while decreasing their energy needs and their environmental impacts (Part 2). Renewable and alternative energies are studied from both their technological and implementation points of view in Part 3.

Introduction written by Michel André and Zissis Samaras.
The next three parts adopt rather an environmental perspective, with respect to climate change and of the mitigation of transportation-related greenhouse gases (Part 4) and the issues of air and noise pollution due to transports in Parts 5 and 6.

As a prelude to this scientific and technical reporting, we propose a brief contextual overview, regarding the energy, environment and transport sectors, and their connections taking into account appropriate and coherent policies, towards the development of sustainable transport systems. This overview will be followed by a brief summary of the research works reported in the following chapters.

I.2. Context

I.2.1. Consistent and coordinated energy and environmental policies are needed in Europe

One of the major European concerns is increased oil and gas prices due to geopolitical instability that may endanger EU economic performance [BER 14]. This requires the development of sound energy policy which should take into account environmental issues such as climate change, air quality, noise and other related impacts. As underlined in the Green Paper on a European strategy for sustainable, competitive and secure energy by the European Commission in 2006, Europe has to put energy policy high on the EU agenda if it is to achieve its economic, social and environmental objectives. The EU must exploit its position as the world’s second largest energy market and as a world leader in demand management and the promotion of renewable energy sources. Improving energy efficiency and focusing on regionally sourced renewables will also benefit energy security by leading to lower imports of fuel, making countries less reliant on foreign supplies. Moreover, it will result in a more diverse energy mix and improve the resilience of national or regional energy systems.

I.2.2. Co-benefits between energy and environment can be achieved

It is important to note that significant co-benefits can be produced for health, quality of life, or even ecosystems and the economy by linking energy policies with those for climate change and environmental protection (on that subject, see for instance [WES 13, MCC 13, RAO 13, RAF 13, ALG 13]). Switching to clean energy would pay for itself, almost immediately, because actions to reduce greenhouse gas emissions reduce co-emitted air pollutants too, thus bringing co-benefits for air quality and human health, as well as for natural environment and ecosystems.