Materials and Infrastructures 1
Contents

Preface ... xix
Acknowledgments xxiii
Introduction xxv

Part 1. Materials for Infrastructures 1

Chapter 1. Use of an Ultra-wide Band Radar to Detect Slope Movements Along Transport Infrastructures 3
Jean-Pierre MAGNAN, Jean-Paul DURANTHON,
Patrick JOFFRIN, François DEPARDON,
Dominique ALLAGNAT, François LEMAÎTRE,
Philippe EVENAT, Philippe LE STER

1.1. Introduction 3
1.2. Development of transportable ultra wide-band radar 6
1.3. Conclusion 9
1.4. Acknowledgments 9
1.5. Bibliography 9

Chapter 2. Intelligent Compaction Technology for Geomaterials: A Demonstration Project 11
António GOMES CORREIA, Manuel PARENTE

2.1. Introduction 11
2.2. Demonstration project 12
2.2.1. Materials 13
2.2.2. Equipment 13
2.2.3. Foundation evaluation and layer construction 14
2.2.4. Results and discussion .. 16
2.2.5. Soil-rockfill layers ... 16
2.2.6. Soil layer .. 21
2.3. Conclusion ... 23
2.4. Acknowledgments ... 23
2.5. Bibliography .. 24

Chapter 3. Geotechnical Challenges Related to Transport Infrastructures on Sensitive Soft Clay Deposits 27
Vikas THAKUR, Bjorn Kristoffer DOLVA

3.1. Nomenclature .. 27
3.2. Introduction ... 28
3.3. Challenges related to the characterization of sensitive clays 29
 3.3.1. Sample disturbance ... 31
 3.3.2. Strength anisotropy ... 33
 3.3.3. Strain anisotropy .. 34
3.4. Challenges related to the assessment of safety margins 35
3.5. Post-failure assessment .. 37
3.6. Conclusion ... 40
3.7. Acknowledgments ... 40
3.8. Bibliography .. 40

Chapter 4. Performance Control of Bituminous Mixtures with a High RAP Content ... 43
Frédéric DELFOSSE, Ivan DROUADAINE, Stéphane FAUCON DUMONT and Sabine LARGEAUD

4.1. Introduction ... 43
4.2. Impact of the high RAP content in the bituminous mixtures 44
4.3. Normative context ... 45
4.4. Development of a system to measure the blending degree of the RAP ... 47
4.5. Impact of the RAP content on the mechanical properties of the recovered binder ... 49
4.6. Correlation between laboratory and jobsite production 52
4.7. Rheological model ... 53
4.8. Conclusion ... 56
4.9. Bibliography .. 56
Chapter 5. Integration of Materials Science-based Performance Models into PMS

Altred WENINGER-VYCUDIL, Michael WISTUBA, Goran MLADENOVIC, Johan LITZKA, Axel WALTHER and Alexander ALISOV

5.1. Introduction .. 59
5.2. Approach ... 61
5.3. Integration of material-based performance
functions into PMS ... 61
 5.3.1. Background for holistic PMS development 61
 5.3.2. Laboratory testing and structural modeling I 63
 5.3.3. Laboratory testing and structural modeling II 65
5.4. Demonstration case studies 68
5.5. Conclusion .. 71
5.6. Bibliography ... 72

Chapter 6. Decision Aid Model for Asphalt Mixture Choice

Nicolas BUECHE and André-Gilles DUMONT

6.1. Background and objectives 75
6.2. Model architecture ... 76
 6.2.1. Lifecycle inventory and performance
 indicators (model part 1) 76
 6.2.2. Global evaluation (model part 2) 79
6.3. Model implementation and results 81
 6.3.1. Problem description and method 81
 6.3.2. Results summary 82
6.4. Conclusions and perspectives 85
6.5. Bibliography ... 85

Chapter 7. Experimental Study of Binder–Filler Interaction Using the Modified Multiple Stress–Strain Creep Recovery Test

Mahmoud ELNASRI, Nick THOM and Gordon AIREY

7.1. Introduction .. 87
7.2. Experimental program 89
 7.2.1. Materials .. 89
 7.2.2. DSR machines .. 90
 7.2.3. Sample preparation 91
7.3. The development of multiple stress–strain
creep recovery test ... 91
<table>
<thead>
<tr>
<th>Chapter 8. Reliability of New Shear Design Equations for FRP-strengthened Concrete Bridge Girders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayman M. OKEIL, Abdeldjelil BELARBI and Daniel A. KUCHMA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Nomenclature</td>
<td>101</td>
</tr>
<tr>
<td>8.2. Introduction</td>
<td>102</td>
</tr>
<tr>
<td>8.3. Shear strengthening using composites</td>
<td>104</td>
</tr>
<tr>
<td>8.3.1. Design of FRP-strengthened concrete beams</td>
<td>104</td>
</tr>
<tr>
<td>8.3.2. Effective FRP strain, ε_{fe}</td>
<td>105</td>
</tr>
<tr>
<td>8.4. Reliability study</td>
<td>106</td>
</tr>
<tr>
<td>8.4.1. Design space</td>
<td>107</td>
</tr>
<tr>
<td>8.4.2. Design parameters as random variables</td>
<td>108</td>
</tr>
<tr>
<td>8.4.3. Reliability formulation and analysis</td>
<td>109</td>
</tr>
<tr>
<td>8.5. Results and discussion</td>
<td>110</td>
</tr>
<tr>
<td>8.6. Conclusions</td>
<td>112</td>
</tr>
<tr>
<td>8.7. Acknowledgments</td>
<td>112</td>
</tr>
<tr>
<td>8.8. Bibliography</td>
<td>112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9. Experimental Investigation and Modeling of the Bond between Aramid Fiber-reinforced Polymer Bars and Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnaud ROLLAND, Sylvain CHATAIGNER, Karim BENZARTI, Marc QUIERTANT, Pierre ARGOUl and Jean-Marc PAUL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td>115</td>
</tr>
<tr>
<td>9.2. Material properties at ambient temperature</td>
<td>116</td>
</tr>
<tr>
<td>9.2.1. Microscopic observations</td>
<td>116</td>
</tr>
<tr>
<td>9.2.2. Tensile tests</td>
<td>117</td>
</tr>
<tr>
<td>9.2.3. Glass transition temperature</td>
<td>118</td>
</tr>
<tr>
<td>9.2.4. Thermal expansion</td>
<td>118</td>
</tr>
<tr>
<td>9.3. Bond tests</td>
<td>119</td>
</tr>
<tr>
<td>9.3.1. Geometry and preparation of the pull-out specimens</td>
<td>120</td>
</tr>
<tr>
<td>9.3.2. Test procedure</td>
<td>120</td>
</tr>
<tr>
<td>9.4. Results</td>
<td>121</td>
</tr>
<tr>
<td>9.5. Modeling</td>
<td>123</td>
</tr>
<tr>
<td>9.5.1. Analytical law</td>
<td>123</td>
</tr>
</tbody>
</table>
Chapter 10. Innovative Use of FRP for Sustainable Precast Concrete Structures

Sami RIZKALLA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. Introduction</td>
<td>129</td>
</tr>
<tr>
<td>10.2. Double-tees</td>
<td>130</td>
</tr>
<tr>
<td>10.3. Precast concrete wall panels</td>
<td>133</td>
</tr>
<tr>
<td>10.3.1. Fully composite sandwich wall panels</td>
<td>133</td>
</tr>
<tr>
<td>10.3.2. Non-composite sandwich wall panels</td>
<td>134</td>
</tr>
<tr>
<td>10.4. Architectural cladding</td>
<td>136</td>
</tr>
<tr>
<td>10.5. Precast concrete piles (CFFT)</td>
<td>136</td>
</tr>
<tr>
<td>10.6. Bridge girders</td>
<td>139</td>
</tr>
<tr>
<td>10.7. Future opportunities</td>
<td>140</td>
</tr>
<tr>
<td>10.8. Conclusions</td>
<td>141</td>
</tr>
<tr>
<td>10.9. Acknowledgments</td>
<td>142</td>
</tr>
<tr>
<td>10.10. Bibliography</td>
<td>142</td>
</tr>
</tbody>
</table>

Part 2. Auscultation and Monitoring

Chapter 11. 3D Extraction of the Relief of Road Surface through Image Analysis

Majdi KHOUDEIR and Benjamin BRINGIER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Introduction</td>
<td>147</td>
</tr>
<tr>
<td>11.2. Photometric models</td>
<td>148</td>
</tr>
<tr>
<td>11.2.1. Lambert’s model</td>
<td>148</td>
</tr>
<tr>
<td>11.2.2. Phong model</td>
<td>149</td>
</tr>
<tr>
<td>11.2.3. Blinn–Phong model</td>
<td>150</td>
</tr>
<tr>
<td>11.2.4. Mixed model</td>
<td>150</td>
</tr>
<tr>
<td>11.3. Extraction of gradient field</td>
<td>151</td>
</tr>
<tr>
<td>11.3.1. The suggested global approach</td>
<td>151</td>
</tr>
<tr>
<td>11.3.2. Gradient extraction based on the Lambertian model</td>
<td>151</td>
</tr>
<tr>
<td>11.3.3. Gradient field of specular area</td>
<td>153</td>
</tr>
<tr>
<td>11.4. Relief extraction</td>
<td>154</td>
</tr>
<tr>
<td>11.4.1. Limits of the classical approach</td>
<td>154</td>
</tr>
<tr>
<td>11.4.2. Results of the suggested approach</td>
<td>155</td>
</tr>
<tr>
<td>11.5. Conclusion and perspectives</td>
<td>157</td>
</tr>
<tr>
<td>11.6. Bibliography</td>
<td>157</td>
</tr>
</tbody>
</table>
Chapter 12. Measurement Error Models (MEMs)
Regression Method to Harmonize Friction Values
from Different Skid Testing Devices

Azzurra EVANGELISTI, Samer W. KATicha,
Edgar del LEÓN IZEPPI, Gerardo W. FLINTSCH,
Mauro D’APUZZO and Vittorio NICOLOSI

12.1. Introduction .. 159
12.2. Objective .. 161
12.3. MEM: background and modeling 161
12.3.1. MEM modeling for pavement friction applications 162
12.4. Data collection .. 165
12.5. Results and analysis .. 166
12.5.1. Repeatability evaluation ... 166
12.5.2. Relationship between two of the same
measuring principles devices .. 166
12.5.3. Relationship between two different
measuring principles devices .. 168
12.6. Conclusion .. 171
12.7. Acknowledgments ... 172
12.8. Bibliography .. 172

Chapter 13. Accurate and Up-to-Date Evaluation
of Extreme Load Effects for Bridge Assessment

Xiaoyi ZHOU, Franziska SCHMIDT,
François TOUTLEMONDE and Bernard JACOB

13.1. Introduction .. 175
13.2. WIM data files ... 178
13.3. Extrapolated values for the considered WIM data 181
13.4. Conclusion .. 182
13.5. Acknowledgments ... 183
13.6. Bibliography .. 183

Chapter 14. Transportation Infrastructure
Monitoring Using Satellite Remote Sensing

Edward HOPPE, Brian BRUCKNO, Elizabeth CAMPBELL,
Scott ACTON, Andrea VACCARI, Michael STUECHELI,
Adrian BOHANE, Giacomo FALORNI and Jessica MORGAN

14.1. Introduction .. 185
14.2. Purpose and scope ... 187
14.3. Methodology ... 187
14.3.1. Selection of processing algorithm 187
Chapter 15. Monitoring of Scour Critical Bridges using Changes in the Natural Frequency of Vibration of Foundation Piles: A Preliminary Investigation

Luke J. PRENDERGAST and Kenneth GAVIN

15.1. Nomenclature ... 199
15.2. Introduction ... 200
15.3. Scour monitoring using fixed instruments 201
15.4. Scour monitoring using structural response measurement . 203
15.5. Field investigation at UCD dense sand test site 204
15.5.1. Field test ... 204
15.5.2. Numerical modeling 205
15.6. Results and conclusions 207
15.7. Acknowledgments 208
15.8. Bibliography ... 208

Chapter 16. Evaluation of Multilayer Pavement Viscoelastic Properties from Falling Weight Deflectometer using Neural Networks

José Manuel GONZALEZ, Josep Maria CARBONELL and Wouter VAN BUISTERVELD

16.1. Nomenclature ... 211
16.2. Introduction ... 212
16.3. Methodology ... 213
16.3.1. Backcalculation process 213
16.3.2. Constitutive model 214
16.3.3. Development of an artificial neural network 215
Chapter 16. Calibration process.

16.4. Calibration process.
16.4.1. Input data: load function and deflection curves.
16.4.3. Calibration process results.
16.6. Conclusions.
16.7. Acknowledgments.

Chapter 17. Accuracy of Ground-penetrating Radar in Pavement Thickness Evaluation: Impact of Interpretation Errors
Anne Lalague, Matthew A. Lebens and Inge Hoff

17.1. Introduction.
17.1.2. Research objective.
17.2. Ground-penetrating radar technology.
17.2.1. Measuring principle.
17.2.2. GPR systems.
17.3. Data collection and interpretation.
17.3.1. GPR measurements.
17.3.2. Soil sample collection.
17.3.3. Calibration.
17.3.4. Data interpretation.
17.4. Results.
17.4.1. Hot mix asphalt layer.
17.4.2. Base layer.
17.5. Discussion and conclusion.
17.6. Bibliography.

Chapter 18. Full-scale Test on Prefabricated Slabs for Electrical Supply by Induction of Urban Transport Systems
Mai-Lan Nguyen, Pierre Hornych, Jean-Pierre Kerzreho and Sergio Perez

18.1. Introduction.
18.2. Design of the full-scale test.
18.3. Construction of the full-scale test and solution for installation of the prefabricated slabs.
18.3.1. Procedure for installation of the slabs A, B, C and D.
18.3.2. Procedure for installation of slab E.
18.4. Test conditions and parameters measured during the test 245
 18.4.1. Test conditions ... 245
 18.4.2. Parameters measured during the test 246
18.5. First results and interpretation 247
 18.5.1. Deflections of concrete slab pavement measured at joints 247
 18.5.2. Vertical subgrade strains under the prefabricated slabs 249
 18.5.3. Horizontal strains at the bottom of the prefabricated slab ... 250
18.6. Conclusions and perspectives 251
18.7. Bibliography .. 252

Part 3. Durability and Maintenance Repair 253

Chapter 19. The Poroelastic Road Surface (PERS): Is the 10 dB Reducing Pavement within Reach? 255
Luc Goubert, Hans Bendtsen, Anneleen Berriers, Björn Kalman and Darko Kokot

 19.1. Introduction .. 255
 19.2. The PERSUADE project 257
 19.3. Mix design ... 258
 19.4. Safety issues .. 260
 19.5. Cost–benefit analysis ... 261
 19.6. Test tracks on the road 262
 19.6.1. Test tracks in Denmark 262
 19.6.2. Test tracks in Belgium 265
 19.6.3. Test tracks in Slovenia 266
 19.7. Conclusions ... 267
 19.8. Acknowledgments ... 267
 19.9. Bibliography .. 267

Chapter 20. Modeling Subjective Condition Data of Asphalt Surfaced Urban Pavements 269
Rayya Hassain, Oliver Lin and Amutha Thananjeyan

 20.1. Introduction .. 269
 20.2. Regression and Markov chain modeling 270
 20.3. Data description and preparation 271
 20.3.1. Calculation of SIR 272
 20.4. Modeling using deterministic regression analysis 273
20.5. Modeling surfacing deterioration using Markov chains 274
20.5.1. Number of states 274
20.5.2. State vector ... 275
20.5.3. Stage or duty cycle definition 276
20.5.4. The transition probability matrix 276
20.6. Markov models for sample AC network 279
20.6.1. Validation of Markov models 281
20.6.2. Markov models using initial vector and
average condition values 281
20.7. Comparison of models 283
20.8. Conclusions .. 284
20.9. Acknowledgments ... 284
20.10. Bibliography ... 284

Chapter 21. Modeling of Aging of Low-noise Road Surfaces 287
Gijsjan VAN BLOKLAND, Ronald VAN LOON
and Christiaan TOLLENAAR

21.1. Introduction ... 287
21.2. Noise reduction over time 289
21.3. Mechanisms of noise reducing surfaces 292
21.4. Deterioration process 294
21.5. Parameters .. 295
21.6. Discussion .. 297
21.7. Acknowledgments .. 299
21.8. Bibliography ... 299

Chapter 22. Evaluation of Load-carrying Capacity of Asphalt Superstructures from Deflection Measurements 301
J. Stefan BALD and Anh-Duc NGUYEN

22.1. Nomenclature ... 301
22.2. Introduction .. 302
22.3. Theoretical analysis ... 303
 22.3.1. Implementation of plate theory for
determining deflection at surface of an asphalt structure 303
 22.3.2. Interpretation the load behavior of asphalt
pavement slab as load distributing layer of superstructure 306
 22.3.3. Back-calculation for evaluating FWD
data of asphalt structure using regression method 309
22.4. Validation of theoretical analysis ... 310
 22.4.1. Experimental data ... 310
 22.4.2. Verification of the regressive back-calculated mechanical parameters ... 312
 22.5. Conclusion and recommendation ... 314
 22.6. Bibliography .. 315

Chapter 23. Durable Pothole Repairs .. 317
Cliff Nicholls, Kathrin Kubanek, Carsten Karcher, Andreas Hartmann, Adewole Adesiyun, Aleksander Pavc, Jozef Komacka and Erik Nielsen
 23.1. Introduction .. 317
 23.2. Definition of the term “pothole” .. 318
 23.3. Tests and evaluation methods for use in the laboratory and in situ ... 319
 23.4. Existing standards, techniques, materials and experience with them on the European market 320
 23.5. Experience from trial sections .. 322
 23.6. Laboratory tests ... 325
 23.6.1. Materials tested ... 325
 23.6.2. Cold asphalts .. 325
 23.6.3. Analysis of results .. 327
 23.6.4. Synthetic binders ... 328
 23.7. Whole lifecycle costs and benefits .. 329
 23.8. Conclusions ... 331
 23.9. Acknowledgments .. 332
 23.10. Bibliography ... 332

Chapter 24. Application of Multicriteria Assessment for the Selection of At-grade Intersections .. 335
Jan Hradil, Michal Uhlik and Petr Slaby
 24.1. Introduction .. 335
 24.2. MCA application in the choice of at-grade intersections ... 336
 24.2.1. MCA fundamentals .. 336
 24.2.2. MCA alternatives ... 337
 24.2.3. Decision tree ... 338
 24.2.4. Evaluated criteria in MCA ... 339
 24.2.5. Weight of criteria ... 341
Chapter 27. Selecting a Road Network Maintenance Strategy to Achieve the Operator’s Objectives. 381
Pierre HANKACH and Philippe LEPERT

27.1. Introduction 381
27.2. Maintenance strategies 382
 27.2.1. Definition 382
 27.2.2. Computing evaluation criteria 383
 27.2.3. Evolution models of distress indicators 384
27.3. Choosing a maintenance strategy 385
27.4. An ELECTRE III-based approach 386
 27.4.1. Introduction 386
 27.4.2. Pseudo-criteria 387
 27.4.3. Concordance and discordance indices 388
 27.4.4. Degree of credibility 389
 27.4.5. Distillation procedures 390
27.5. Example 391
27.6. Conclusion 393
27.7. Bibliography 394

List of Authors 397

Index 409

Contents for Volume 5B 411
The transport sector is very much concerned about environmental adaptation and mitigation issues. Most of these are related to the objective of curbing GHG emission by 20% by 2020, alternative energy and energy savings, sustainable mobility and infrastructures, safety and security, etc. These objectives require the implementation of advanced research works, to develop new policies, and to adjust education and industrial innovations.

The theme and slogan of the Transport Research Arena held in Paris (TRA2014) were respectively: “Transport Solutions: From Research to Deployment” and “Innovate Mobility, Mobilise Innovation”. Top researchers and engineers, as well as private and public policy and decision–makers, were mobilized to identify and take the relevant steps to implement innovative solutions in transport. All surface modes were included, including walking and cycling, as well as cross modal aspects.

Policies, technologies and behaviors must be continually adapted to new constraints, such as climate change, the diminishing supply of fossil fuels, the economic crisis, the increased demand for mobility, safety and security, i.e. all the societal issues of the 21st Century. Transport infrastructures and materials, modal share, co-modality, urban planning, public transportation and mobility, safety and security, freight, logistics, ITS, energy and environment issues are the subject of extensive studies, research works and industrial innovations that are reported in this series of books.

This book is part of a set of six books called the Research for Innovative Transports set. This collection presents an update of the latest academic and applied research, case studies, best practices and user perspectives on transport carried out in Europe and worldwide. The presentations made during TRA2014 reflect on them. The TRAs are supported by the European Commission (DG-MOVE and DG-RTD), the Conference of European Road Directors (CEDR), and the modal European
platforms, ERRAC (rail), ERTRAC (road), WATERBORNE, and ALICE (freight), and also by the European Construction Technology Platform (ECTP) and the European Transport Research Alliance (ETRA).

The volumes are made up of a selection of the best papers presented at TRA2014. All papers were peer reviewed before being accepted at the conference, and were then selected by the editors for the purpose of the present collection. Each volume contains complementary academic and applied inputs provided by highly qualified researchers, experts and professionals from all around the world.

Each volume of the series covers a strategic theme of TRA2014.

Volume 1, Energy and Environment, presents recent research works around the triptych “transports, energy and environment” that demonstrate that vehicle technologies and fuels can still improve, but it is necessary to prepare their implementation (electro-mobility), think about new services and involve enterprises. Mitigation strategies and policies are examined under different prospective scenarios, to develop and promote alternative fuels and technologies, multi-modality and services, and optimized transport chains whilst preserving climate and the environment. Evaluation and certification methodologies are key elements for assessing air pollution, noise and vibration from road, rail and maritime transports and their impacts on the environment. Different depollution technologies and mitigation strategies are also presented.

Volume 2, Towards Innovative Freight and Logistics, analyzes how to optimize freight movements and logistics, introduces new vehicle concepts, points out the governance and organization issues, and proposes an assessment framework.

Volumes 3 and 4 are complementary books covering the topic of traffic management and safety.

Volume 3, Traffic Management, starts with a survey of data collection processes and policies and then shows how traffic modeling and simulation may resolve major problems. Traffic management, monitoring and routing tools and experience are reported and the role of traffic information is highlighted. Impact assessments are presented.

Volume 4, Traffic Safety, describes the main road safety policies, accident analysis and modeling. Special focus is placed on the safety of vulnerable road users. The roles of infrastructure and ITS on safety are analyzed. Finally railway safety is focused upon.
Volume 5, *Materials and Infrastructures*, split into two sub-volumes, investigating geotechnical issues, and pavement materials’ characterization, innovative materials, technologies and processes, and introducing new techniques and approaches for auscultation and monitoring. Solutions to increase the durability of infrastructures and to improve maintenance and repair are shown, for recycling as well as for ensuring the sustainability of the infrastructures. Specific railways and inland navigation issues are addressed. A focus is put on climate resilient roads.

Volume 6, *Urban Mobility and Public Transport*, highlights possible innovations in order to improve transports and the quality of life in urban areas. Buses and two-wheelers could be a viable alternative in cities if they are safe and reliable. New methodologies are needed to assess urban mobility through new survey protocols, a better knowledge of user behavior or taking into account the value of travel for public transport. The interactions between urban transport and land planning are a key issue. However, these interactions have to be better assessed in order to propose scenarios for new policies.

Bernard JACOB, Chair of the TRA2014 Programme Committee

Jean-Bernard KOVARIK, Chair of the TRA2014 Management Committee

March 2016
Acknowledgments

The European Commission, DG MOVE and RTD, the Conference of European Road Directors (CEDR), the European Road Transport Research Advisory Council (ERTRAC), the European Rail Research Advisory Council (ERRAC) and the European technology platform WATERBORNE-TP are acknowledged for their support and active contribution to the Programme Committee of the TRA2014, in charge of reviewing and selecting the papers presented at the conference, which forms the main input of this volume.

The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR) is acknowledged for having organized the TRA2014, in which 600 high-quality papers were presented, successfully.

Anne Beeldens, Pierre Marchal, Manuel Pereira, and Jon Krokeborg; coordinators of the topic on Materials and Infrastructure; all the other members of the Programme Committee; the reviewers who actively contributed to review and select the papers; and the authors who wrote them are acknowledged for their great job that produced the material for this volume.

Joëlle Labarrère, secretary of the Programme Committee of TRA2014, is acknowledged for her valuable help to the editors and for her support to prepare this volume.

Francesca La Torre

Professor Francesca La Torre is a Full Professor of roads, railways and airports at the University of Florence (Italy). She has been working in the field of transportation infrastructures for over 20 years. She obtained her PhD in 1998 at the University of Rome and she served as an assistant researcher at the University of
Illinois at Urbana-Champaign (USA). She is a member of the EC Horizon 2020 advisory group for “Smart, Green and Integrated Transport” and the infrastructures representative for academia in ERTRAC.

Jean-Michel Torrenti

Jean Michel Torrenti is the R&D director of the Materials and Structures Department of IFSTTAR. He is also professor at Ecole Nationale des Ponts et Chaussées. His research concerns mechanics of concrete and its coupling with durability aspects: behavior of concrete at early age, creep, leaching. It is applied to model the behavior of structures such as bridges, nuclear power plants and nuclear waste storage. He is the co-author of several books concerning concrete and concrete structures.

Bernard Jacob

Bernard Jacob, chair of the Programme Committee of TRA2014, is deputy scientific director for transport, infrastructures and safety with IFSTTAR. His research works are in bridge and road safety, traffic loads on bridges, heavy vehicles and weigh-in-motion. He has coordinated a number of European and International research projects. He is an active member in several scientific and technical committees (OECD/ITF, PIARC, TRB, etc.) and provided expertise to the European Commission. He is professor at Ecole Nationale des Travaux Publics de l’Etat and the president of the International Society for WIM (ISWIM). He has published more than 100 scientific papers and edited 10 published volumes of international projects and conference proceedings.
Introduction

The infrastructures of the future will have to be sustainable, seamless, resilient and durable, will respect the principles of circular economy and will have to be easy to monitor and manage. New technologies are currently available or under development to reduce the carbon footprint of infrastructures and to increase the overall sustainability and recyclability of transport while maintaining the utility and value of the infrastructures. However, the impact of these new solutions will only be effective once these are thoroughly disseminated and extensively deployed.

This volume presents a series of the most promising solutions and aims at disseminating them to improve the performances and efficiency of materials and infrastructures, through a choice of updated papers from the TRA2014 Conference. Selection is primarily based on a quality criterion, also taking into account the geographical diversity of papers in order to restore the originality and richness of current research.

I.1. Main findings

The papers contained in this volume demonstrate how technological solutions and new design and management methodologies can be implemented in different surface transport modes (roads, railways and waterways) to increase transport sustainability by improving infrastructures design, maintenance, recyclability and management. Both theoretical research and practical case studies explore topics such as characterization of pavements, bridges and soils, use of recycled and warm mix asphalts as well as high-performance materials to increase durability or to reduce the noise impact.
New management techniques for improving infrastructure resilience both roads and railways is a very timely topic that has been selected by the European Commission and the U.S. Department of Transportation as the subject of further Euro-American cooperation. This topic is extensively covered in this volume for a number of different transport modes.

Road infrastructures are typically “low technology” structures but timely, cost-effective and seamless monitoring is essential for the implementation of effective maintenance and management concepts. New solutions for pavement and soil characterization are being developed by implementing seamless technologies. These range from well-established techniques, such as ground penetrating radars (GPR) and weigh-in-motion (WIM) techniques, to innovative radar remote sensing techniques.

The development of new pavement materials is always a key topic for road and airport engineers and the implementation of recycled materials and warm mix asphalt will be the standard solution of the future. However, there is still a strong need for understanding the long-term performance of these materials in situ and for developing performance models that the designers can implement for adopting these technologies. This volume will help the designers and road managers interested in implementing these solutions and presents different case studies that will make the potential users feel more confident.

It is interesting to observe that infrastructure performances often conflict and therefore solutions such as porous asphalt, that can be very effective for noise reduction, is more sensitive to climatic changes due to the effect of freeze-thaw cycles.

Durability and maintenance are core issues for road researchers with the final aim in mind that the road of the future will have to be “Forever Open”. However, local authorities are often faced with the issue of effective day to day maintenance. Infrastructure research too often focuses on highly trafficked motorways or primary road networks; therefore, it is extremely important that a research effort be specifically devoted to develop guidelines for the maintenance and repair of low volume roads, which represent a large portion of the whole road networks.

Railway and road infrastructures issues are usually tackled as separate but the recent work conducted by the joint roadmap for cross-modal transport infrastructure innovation toward a performing infrastructure has recently shown that a number of infrastructure research issues are cross-modal and therefore lessons can be learned across modes. This is clearly shown in this volume in which resilience to climatic changes covers both roads and railways and integrated modes are needed to achieve a truly resilient transport system.
This volume will be of interest not only for the research community and in higher education but also for professionals in the area of infrastructure design and management as well as economic and institutional decision makers. They will find state-of-the-art studies of key research issues, new advanced methods and illustrative case studies.

Volume 5 of the Research for Innovative Transports set is divided into two sub-volumes containing three parts each: five parts focus on roads but cover potentially cross-modal topics dealing with materials for infrastructures, auscultation and monitoring, durability and maintenance repair, recycling and sustainability issues and climate resilient roads. One part is specifically devoted to railways and inland navigation.

Sub-volume 1 contains parts 1–3. Part 1 deals with geotechnical issues and pavement materials’ characterization. In this part researchers and practitioners can find new test methods and materials characterization techniques for non-conventional materials including recycled asphalt mixtures, warm mix asphalts but also fiber reinforced concrete materials.

Part 2 presents novel and high-tech solutions to monitor and assess pavement conditions to assist road authorities in this key management activity. These techniques include 3D mapping, remote sensing, GPR evaluation of pavement structural capacity and WIM monitoring solutions. The reader will also find a highly specialized study on integrating the electrical supply cables for public transport, for creating an electromagnetic induction field, in a prefabricated concrete slab.

Part 3 deals with the key road management issues of durability and maintenance repair. The recurrent theme of noise reduction has been tackled and designers and road authorities will be able to consider and compare the effectiveness of different solutions including non-conventional materials. Attention is also paid to noise issues in non-conventional analysis locations as level intersections in urban and rural areas. A very important issue for road managers is pothole repair. The guidelines developed in the POTHOLE project will be extremely helpful for local authorities looking for effective maintenance solutions.

Sub-volume 2 contains parts 4–6. Part 4 addresses recycling and sustainability issues, presenting case studies and full-scale tests. Asphalt recycling is a core issue for reducing the carbon footprint of transportation infrastructure. Road administrations and designers will find a very interesting overview of three transnational research projects on this topic as well as a case study from Slovenia.

Part 5 analyzes railways and inland navigation issues. New concepts for low maintenance and resilient infrastructure as well as optimizing operation and
intermodal integration within the global transport system are proposed for technicians dealing with resilient infrastructure in any transport mode. Highly specialized railway experts will find studies on clip stiffness and on new innovative solutions for transition zones between the “normal” open tracks and “rigid” track sections. Waterways researchers will find an interesting new management approach to deal with suspended sediments.

Part 6 focuses on a key infrastructure issue of the future: resilience to extreme climatic conditions. Input from three continents (Australia, Europe and North America) highlight that this global issue needs trans-national solutions. An interesting overview of two transnational projects (RIMAROCC and SWAMP) introduces the topic followed by specific solutions adopted by single countries. The effect of climatic changes on pavements is assessed to answer questions of specialized pavement engineers.

1.2. Conclusions

This volume provides an insight on research, best practices and transport policies with a focus on state-of the-art advances in the fields of infrastructures and materials. The progress made in the implementation of new materials in pavement design as well as the evolution in the process of data collection and assessment, modeling and management, assisting academics, transport professionals, practitioners and decision makers to a better understanding of the current and future trends are demonstrated.

Future infrastructure monitoring techniques will be seamless, and this volume shows that there is a significant shift of the research world in this direction. These solutions now need to become current practices to really improve the transport system.

Reducing the infrastructure carbon footprint and increasing its resilience is possible but road managers and designers need to have design and management tools as well as case studies that will allow them to gain more confidence in the adoption of new and less impacting solutions.