
Practical Hadoop
Ecosystem

A Definitive Guide to Hadoop-Related
Frameworks and Tools
—
Deepak Vohra
Foreword by John Yeary

 Practical Hadoop
Ecosystem

 A Definitive Guide to Hadoop-Related
Frameworks and Tools

 Deepak Vohra

Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools

Deepak Vohra

ISBN-13 (pbk): 978-1-4842-2198-3 ISBN-13 (electronic): 978-1-4842-2199-0
DOI 10.1007/978-1-4842-2199-0

Library of Congress Control Number: 2016954636

Copyright © 2016 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: John Yeary and Simon Bisson
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484203989
http://www.apress.com/source-code/

Contents at a Glance

About the Author ...xv

About the Technical Reviewer ...xvii

Foreword ..xix

 ■Part I: Fundamentals .. 1

 ■Chapter 1: Introduction ... 3

 ■Chapter 2: HDFS and MapReduce .. 163

 ■Part II: Storing & Querying ... 207

 ■Chapter 3: Apache Hive ... 209

 ■Chapter 4: Apache HBase .. 233

 ■Part III: Bulk Transferring & Streaming .. 259

 ■Chapter 5: Apache Sqoop .. 261

 ■Chapter 6: Apache Flume .. 287

 ■Part IV: Serializing .. 301

 ■Chapter 7: Apache Avro ... 303

 ■Chapter 8: Apache Parquet .. 325

iii

 ■ CONTENTS AT A GLANCE

iv

 ■Part V: Messaging & Indexing .. 337

 ■Chapter 9: Apache Kafka ... 339

 ■Chapter 10: Apache Solr .. 349

 ■Chapter 11: Apache Mahout .. 377

Index ... 415

Contents

About the Author ...xv

About the Technical Reviewer ...xvii

Foreword ..xix

 ■Part I: Fundamentals .. 1

 ■Chapter 1: Introduction ... 3

Core Components of Apache Hadoop ... 5

Why Apache Hadoop? ... 5

Shortcomings in Current Computing Systems .. 5

How Is Hadoop Better than Other Distributed Computing Systems? .. 6

What Kind of Computations Is Hadoop Suitable For? ... 9

What Kind of Computations Is Hadoop Not Suitable For? ... 9

HDFS Daemons ... 9

NameNode .. 9

Secondary NameNode .. 10

DataNodes .. 12

MapReduce Daemons .. 14

JobTracker .. 14

TaskTracker .. 16

ResourceManager .. 16

NodeManager ... 16

ApplicationMaster ... 17

JobHistory Server ... 17

v

 ■ CONTENTS

vi

Resource Allocations with YARN ... 17

The Workfl ow of the MapReduce Job ... 25

HDFS High-Availability Daemons .. 28

Active NameNode ... 28

Standby NameNode .. 29

JournalNodes.. 29

ZooKeeper .. 30

DataNodes .. 30

Benefi ts and Challenges of HDFS ... 30

HDFS Is Distributed ... 31

Block Abstraction .. 31

Scalable .. 31

Fault-Tolerant ... 31

Data Locality ... 31

Data Coherency .. 31

Parallel Streaming Access to Data.. 32

Large Quantities of Data ... 32

Unstructured Data .. 32

Commodity Hardware ... 32

Portability ... 32

TCP/IP Protocol ... 32

Accessible .. 32

HDFS High Availability .. 32

Single Point of Failure .. 33

Write-Once Model ... 33

Not Optimized for Random Seek .. 33

Local Caching Not Supported ... 33

Commodity Hardware Failure ... 33

Detection of Hardware Failure and Recovery ... 33

 ■ CONTENTS

vii

File Sizes, Block Sizes, and Block Abstraction in HDFS .. 33

Block Sizes ... 33

Block Abstraction .. 37

File Sizes .. 37

HDFS Quotas ... 38

Hadoop Archive ... 38

Data Replication ... 38

Confi guring Replication .. 39

Data Flow in Replication ... 41

Under Replication ... 43

Over Replication ... 44

Misplaced Replicas ... 44

Storage Requirements in Replication ... 44

NameNode Federation .. 45

Use Cases for HDFS Federation .. 48

Data Locality ... 49

Rack-Aware Placement Policy .. 51

Network Topology, Network Bandwidth, and Rack Placement Policy 52

How Does HDFS Store, Read, and Write Files? ... 55

Reading a File ... 55

Writing a File .. 58

Storing a File .. 62

Checksum Verifi cation .. 63

Hadoop Cluster in Data Storage and in Data Processing ... 64

JVM Reusage .. 66

The Old and New APIs .. 70

Data Serialization Options .. 72

Writables .. 72

Avro .. 73

Comparing Sequence Files and Avro .. 74

Thrift ... 75

 ■ CONTENTS

viii

Protocol Buffers .. 75

Comparing Thrift and Protocol Buffers ... 76

Choosing a Serialization Mechanism .. 76

Filesystem Shell Commands for HDFS ... 77

Making a Directory ... 77

Listing Files and Directories ... 77

Putting Files in the HDFS .. 78

Creating a File... 78

Changing Group Associations for Files and Directories .. 78

Changing Permissions of Files ... 79

Changing Owner of Files and Directories ... 79

Copying Files to the Local Filesystem .. 79

Appending to a File ... 80

Copying HDFS Files to STDOUT ... 80

Testing a File .. 80

Counting Files and Directories .. 81

Copying Files in HDFS ... 81

Moving Files Within the HDFS ... 82

Displaying File and Directory Sizes .. 82

Outputting a File in Text Format .. 82

Removing Files and Directories .. 82

Choosing Key and Value Types for MapReduce Jobs ... 83

The Lifecycle of a Mapper and a Reducer in a MapReduce Job ... 84

The Relationship of Input Keys to Output Keys .. 92

Mapper Input/Output Types .. 93

Mapper Input/Output Number of Keys/Values .. 95

Reducer Input/Output Types ... 96

Reducer Input/Output Number of Keys/Values ... 98

Sorting Keys and Values ... 99

Partitioners ... 101

Combiners .. 106

 ■ CONTENTS

ix

Sort and Shuffl e Process .. 112

Shuffl e .. 112

Sort ... 114

MapReduce Job Confi guration and Submission ... 125

Performance-Optimized Confi guration Parameters .. 134

Input and Output Data Paths in a MapReduce Job ... 139

Selecting InputFormat and OutputFormat in a MapReduce Job 141

Input Formats ... 142

Output Formats ... 145

The Order of Operations in a MapReduce Job .. 148

RecordReader, Sequence Files, and Compression ... 150

RecordReader ... 150

Sequence Files ... 154

Compression .. 159

Summary .. 162

 ■Chapter 2: HDFS and MapReduce .. 163

Hadoop Distributed Filesystem .. 164

NameNode .. 164

DataNodes .. 164

MapReduce Framework ... 164

JobTracker .. 165

TaskTracker .. 165

ResourceManager .. 167

NodeManager ... 167

Job HistoryServer ... 167

Setting the Environment ... 167

Hadoop Cluster Modes ... 170

Standalone Mode .. 170

Pseudo-Distributed Mode ... 170

Fully-Distributed Mode ... 170

 ■ CONTENTS

x

Running a MapReduce Job with the MR1 Framework ... 171

Running MR1 in Standalone Mode ... 171

Running MR1 in Pseudo-Distributed Mode ... 178

Running MapReduce with the YARN Framework .. 190

Running YARN in Pseudo-Distributed Mode ... 191

Running Hadoop Streaming ... 202

Summary .. 205

 ■Part II: Storing & Querying ... 207

 ■Chapter 3: Apache Hive ... 209

Setting the Environment ... 210

Confi guring Hadoop .. 212

Confi guring Hive ... 213

Starting HDFS ... 214

Starting the Hive Server ... 214

Starting the Hive CLI ... 214

Creating a Database ... 216

Using a Database ... 216

Creating a Managed Table .. 217

Loading Data Into a Table ... 218

Creating a Table Using LIKE .. 220

Adding Data Into a Table from Queries ... 221

Adding Data Using INSERT INTO TABLE .. 221

Adding Data Using INSERT OVERWRITE .. 223

Creating a Table Using CREATE TABLE AS SELECT ... 225

Altering a Table ... 227

Truncating a Table .. 228

Dropping a Table ... 229

Creating an External Table .. 229

Summary .. 231

 ■ CONTENTS

xi

 ■Chapter 4: Apache HBase .. 233

Setting the Environment ... 234

Confi guring Hadoop .. 236

Confi guring HBase .. 237

Confi guring Hive ... 239

Starting HBase ... 240

Starting the HBase Shell .. 240

Creating an HBase Table .. 241

Adding Data to a Table.. 242

Listing All Tables ... 244

Getting a Row of Data .. 244

Scanning a Table .. 245

Counting the Number of Rows in a Table ... 250

Altering a Table ... 250

Deleting a Table Row .. 251

Deleting a Table Column ... 252

Disabling and Enabling a Table... 253

Truncating a Table .. 254

Dropping a Table ... 254

Determining if a Table Exists .. 254

Creating a Hive External Table Stored By HBase .. 255

Summary .. 257

 ■Part III: Bulk Transferring & Streaming .. 259

 ■Chapter 5: Apache Sqoop .. 261

Installing MySQL Database ... 263

Creating MySQL Database Tables ... 264

Setting the Environment ... 268

Confi guring Hadoop .. 269

 ■ CONTENTS

xii

Starting HDFS ... 271

Confi guring Hive ... 271

Confi guring HBase .. 272

Importing Into HDFS ... 273

Exporting from HDFS .. 277

Importing Into Hive ... 279

Importing Into HBase .. 282

Summary .. 286

 ■Chapter 6: Apache Flume .. 287

Setting the Environment ... 288

Confi guring Hadoop .. 289

Starting HDFS ... 290

Creating an HBase Table .. 291

Confi guring Flume .. 292

Running a Flume Agent .. 294

Confi guring Flume for HBase Sink ... 297

Streaming MySQL Logs to an HBase Sink .. 298

Summary .. 300

 ■Part IV: Serializing .. 301

 ■Chapter 7: Apache Avro ... 303

Setting the Environment ... 303

Creating an Avro Schema ... 305

Creating a Hive-Managed Table ... 306

Creating a Hive (Prior to Version 0.14.0) External Table Stored as Avro 307

Creating a Hive (Version 0.14.0 and Later) External Table Stored as Avro 311

Transferring the MySQL Table Data as an Avro Data File with Sqoop 315

Summary .. 323

 ■ CONTENTS

xiii

 ■Chapter 8: Apache Parquet .. 325

Setting the Environment ... 325

Confi guring Hadoop .. 327

Confi guring Hive ... 328

Starting HDFS ... 329

Creating a Hive-Managed Table ... 329

Creating a Hive External Table .. 330

Hive Version Prior to 0.13.0 .. 331

Hive Version 0.13.0 and Later ... 331

Loading Data Into a Hive External Table ... 332

Listing the Parquet Data File .. 334

Summary .. 335

 ■Part V: Messaging & Indexing .. 337

 ■Chapter 9: Apache Kafka ... 339

Setting the Environment ... 340

Starting the Kafka Server ... 341

Creating a Kafka Topic .. 344

Starting a Kafka Producer .. 345

Starting a Kafka Consumer .. 345

Producing and Consuming Messages .. 346

Summary .. 347

 ■Chapter 10: Apache Solr .. 349

Setting the Environment ... 349

Confi guring the Solr Schema ... 351

Starting the Solr Server .. 354

Indexing a Document in Solr .. 356

Searching a Document in Solr .. 360

Deleting a Document from Solr .. 365

 ■ CONTENTS

xiv

Indexing a Document in Solr with a Java Client ... 368

Creating a Hive-Managed Table ... 369

Creating a Hive External Table .. 371

Loading Hive External Table Data ... 373

Searching a Hive Table Data Indexed in Solr .. 374

Summary .. 376

 ■Chapter 11: Apache Mahout .. 377

Setting the Environment ... 377

Confi guring and Starting HDFS .. 379

Setting the Mahout Environment .. 380

Running a Mahout Classifi cation Sample ... 382

Running a Mahout Clustering Sample .. 384

Developing a User-Based Recommender System with the Mahout Java API............... 385

The Sample Data .. 386

Creating a Maven Project in Eclipse ... 387

Creating a User-Based Recommender System ... 394

Creating a Recommender Evaluator ... 396

Running the Recommender .. 399

Choosing a Recommender Type ... 401

Choosing a User Similarity Measure ... 403

Choosing a Neighborhood Type .. 405

Choosing a Neighborhood Size for NearestNUserNeighborhood .. 406

Choosing a Threshold for ThresholdUserNeighborhood .. 407

Running the Evaluator .. 409

Choosing the Split Between Training Percentage and Test Percentage ... 412

Summary .. 414

Index ... 415

 About the Author

 Deepak Vohra is a consultant and a principal member of the NuBean.
com software company. Vohra is a Sun-certified Java programmer and
web component developer. He has worked in the fields of XML, Java
programming, and Java EE for over seven years. Vohra is the coauthor
of Pro XML Development with Java Technology (Apress, 2006). He is also
the author of the JDBC 4.0 and Oracle JDeveloper for J2EE Development,
Processing XML Documents with Oracle JDeveloper 11g, EJB 3.0 Database
Persistence with Oracle Fusion Middleware 11g , and Java EE Development
in Eclipse IDE (Packt Publishing). He also served as the technical reviewer
on WebLogic: The Definitive Guide (O’Reilly Media, 2004) and Ruby
Programming for the Absolute Beginner (Cengage Learning PTR, 2007).

xv

 About the Technical Reviewer

 John Yeary is a Principal Software Engineer on Epiphany CRM Marketing
at Infor Global Solutions. John has been a Java evangelist and has been
working with Java since 1995. Yeary is a technical blogger with a focus on
Java Enterprise Edition technology, NetBeans, and GlassFish. He is
currently the Founder of the Greenville Java Users Group (GreenJUG). He
is as instructor, mentor, and a prolific open source contributor.

 John graduated from Maine Maritime Academy with a B.Sc. Marine
Engineering with a concentration in mathematics. He is a merchant
marine officer and has a number of licenses and certifications. When he is
not doing Java and F/OSS projects, he likes to hike, sail, travel, and spend

time with his family. Yeary is also the Assistant Scoutmaster in the Boy Scouts of America (BSA) Troop 767,
and Outdoor Ethics Master Trainer in the Blue Ridge Council of the BSA.

 Organizations and projects:

• Java User Groups Community Leader (Java.net)

• Java Enterprise Community Leader (Java.net)

• JavaOne Technical Content Reviewer: Java Tools and Emerging Languages
(Four Years)

• JavaOne Technical Content Reviewer: Java EE Platform and Frameworks
(Three Years)

• JavaOne 2011, 2013 Planning Committee

• Duke’s Choice Award Selection Committee (2010-2013)

• JavaOne Speaker (2009-2013)

• JCP Member

• Project Woodstock Committer and Maintainer (http://java.net/projects/
woodstock)

• Java Boot Camp Project Owner (http://java.net/projects/certbootcamp)

xvii

http://java.net/projects/woodstock#http://java.net/projects/woodstock
http://java.net/projects/woodstock#http://java.net/projects/woodstock
http://java.net/projects/certbootcamp#http://java.net/projects/certbootcamp

 Foreword

 I want to welcome you to the world of Hadoop. If you are novice or an expert looking to expand your
knowledge of the technology, then you have arrived at the right place. This book contains a wealth of
knowledge that can help the former become the latter. Even most experts in a technology focus on particular
aspects. This book will broaden your horizon and add valuable tools to your toolbox of knowledge.

 When Deepak asked me to write the foreword, I was honored and excited. Those of you who know me
usually find I have no shortage of words. This case was no exception, but I found myself thinking more about
what to say, and about how to keep it simple.

 Every few years, technology has a period of uncertainty. It always seems we are on the cusp of the next
“great” thing. Most of the time, we find that it is a fad that is soon replaced by the next shiny bauble. There
are some moments that have had an impact, and some that leave the community guessing. Let’s take a look
at a couple of examples to make a point.

 Java appeared like manna from the heavens in 1995. Well, that is perhaps a bit dramatic. It did burst on
to the scene and made development easier because you didn’t need to worry about memory management
or networking. It also had this marketing mantra, which was “write once, run anywhere”. It turned out to be
mostly true. This was the next “great” thing.

 Rolling ahead to 1999 and the release of J2EE. Again, we encounter Java doing all the right things. J2EE
technologies allowed, in a standard way, enterprises to focus on business value and not worry about the
technology stack. Again, this was mostly true.

 Next we take a quantum leap to 2006. I attended JavaOne 2005 and 2006 and listened to numerous
presentations of where J2EE technology was going. I met a really passionate developer named Rod Johnson
who was talking about Spring. Some of you may have heard of it. I also listened as Sun pushed Java EE 5,
which was the next big change in the technology stack. I was also sold on a new component-based web UI
framework called Woodstock, which was based on JavaServer Faces. I was in a unique position; I was in
charge of making decisions for a variety of business systems at my employer at the time. I had to make a
series of choices. On the one hand I could use Spring, or on the other, Java EE 5. I chose Java EE 5 because
of the relationships I had developed at Sun, and because I wanted something based on a “standard”.
Woodstock, which I thought was the next “great” thing, turned out to be flash in the pan. Sun abandoned
Woodstock, and well… I guess on occasion I maintain it along with some former Sun and Oracle employees.
Spring, like Java EE 5, turned out to be a “great” thing.

 Next was the collapse of Sun and its being acquired by the dark side. This doomsday scenario seemed to
be on everyone’s mind in 2009. The darkness consumed them in 2010. What would happen to Java? It turned
out everyone’s initial assessment was incorrect. Oracle courted the Java community initially, spent time and
treasure to fix a number of issues in the Java SE stack, and worked on Java EE as well. It was a phenomenal
wedding, and the first fruits of the union were fantastic—Java SE 7 and Java EE 7 were “great”. They allowed a
number of the best ideas to become reality. Java SE 8, the third child, was developed in conjunction with the
Java community. The lambda, you would have thought, was a religious movement.

 While the Java drama was unfolding, a really bright fellow named Doug Cutting came along in 2006 and
created an Apache project called Hadoop. The funny name was the result of his son’s toy elephant. Today it
literally is the elephant in the room. This project was based on the Google File System and Map Reduce. The

xix

 ■ FOREWORD

xx

baby elephant began to grow. Soon other projects with cute animal names like Pig, or more even more apt,
Zookeeper, came along. The little elephant that could soon was “the next great thing”.

 Suddenly, Hadoop was the talk of the Java community. In 2012, I handed the Cloudera team a
Duke’s Choice Award for Java technology at JavaOne. Later that year, version 1.0 was released. It was the
culmination of hard work for all the folks who invested sweat and tears to make the foundation of what we
have today.

 As I sit here wondering about Java EE 8 and its apparent collapse, I am reminded that there is still
innovation going on around me. The elephant in the room is there to remind me of that.

 Some of you may be wondering what Hadoop can do for you. Let’s imagine something fun and how we
might use Hadoop to get some answers. Where I live in South Carolina, we have something called a Beer
BBQ 5K. It is a 5K run that includes beer and BBQ at the end, along with music. Some folks will just do the
beer and BBQ. That is fine, but in my case I need to do the run before. So we have data coming in on the
registration; we have demographic data like age and gender. We have geographic data: where they call home.
We have timing data from the timing chips. We have beer and BBQ data based on wristband scans. We have
multiple races in a year.

 Hmm… what can we do with that data? One item that comes to mind is marketing, or planning. How
many women in which age groups attended and what beer did they drink? How many men? Did the level of
physical activity have any effect on the consumption of BBQ and beer? Geographically, where did attendees
come from? How diverse were the populations? Do changing locations and times of the year have different
effects? How does this compare with the last three years? We have incomplete data for the first year, and the
data formats have changed over time. We have become more sophisticated as the race and the available data
have grown. Can we combine data from the race with publicly accessible information like runner tracking
software data? How do we link the data from a provider site with our data?

 Guess what? Hadoop can answer these questions and more. Each year, the quantity of data grows for
simple things like a Beer BBQ 5K. It also grows in volumes as we become more connected online. Is there
a correlation between Twitter data and disease outbreak and vector tracking? The answer is yes, using
Hadoop. Can we track the relationship between terrorists, terrorist acts, and social media? Yes, using…. well,
you get the point.

 If you have read this far, I don’t think I need to convince you that you are on the right path. I want to
welcome you to our community, and if you are already a member, I ask you to consider contributing if you
can. Remember “a rising tide raises all boats,” and you can be a part of the sea change tide.

 The best way to learn any technology is to roll up your sleeves and put your fingers to work. So stop
reading my foreword and get coding!

 —John Yeary
 NetBeans Dream Team

 Founder Greenville Java Users Group
 Java Users Groups Community Leader

 Java Enterprise Community Leader

 PART I

 Fundamentals

3© Deepak Vohra 2016
D. Vohra, Practical Hadoop Ecosystem, DOI 10.1007/978-1-4842-2199-0_1

 CHAPTER 1

 Introduction

 Apache Hadoop is the de facto framework for processing and storing large quantities of data, what is
often referred to as “big data”. The Apache Hadoop ecosystem consists of dozens of projects providing
functionality ranging from storing, querying, indexing, transferring, streaming, and messaging, to list a few.
This book discusses some of the more salient projects in the Hadoop ecosystem.

 Chapter 1 introduces the two core components of Hadoop—HDFS and MapReduce. Hadoop
Distributed Filesystem (HDFS) is a distributed, portable filesystem designed to provide high-throughput
streaming data access to applications that process large datasets. HDFS's main benefits are that it is fault-
tolerant and designed to be run on commodity hardware . Hadoop MapReduce is a distributed, fault-tolerant
framework designed for processing large quantities of data stored in HDFS, in parallel on large clusters using
commodity hardware.

 Chapter 2 introduces Apache Hive, which is a data warehouse for managing large datasets stored in
HDFS. Hive provides a HiveQL language , which is similar to SQL but does not follow the SQL-92 standard
fully, for querying the data managed by Hive. While Hive can be used to load new data, it also supports
projecting structure onto data already stored. The data could be stored in one of the several supported
formats, such as Avro , ORC, RCFile , Parquet , and SequenceFile . The default is TextFile.

 Chapter 3 introduces the Hadoop database called Apache HBase. HBase is a distributed, scalable
NoSQL data store providing real-time access to big data; NoSQL implies that HBase is not based on the
relational data model. HBase stores data in HDFS, thus providing a table abstraction for external clients. An
HBase table is unlike a relational database table in that it does not follow a fixed schema. Another difference
of RDBMS is the scale of data stored; an HBase table could consist of millions of rows and columns. As with
the other Hadoop ecosystem projects, HBase can run on clusters of commodity software.

 Chapter 4 introduces Apache Sqoop, a tool for bulk transfer of data between relational databases such
as Oracle database and MySQL database and HDFS. Sqoop also supports bulk transfer of data from RDBMS
to Hive and HBase.

 Chapter 5 introduces Apache Flume, a distributed, fault-tolerant framework for collecting, aggregating,
and streaming large datasets, which are typically log data, but could be from other data sources such as
relational databases.

 Chapter 6 discusses Apache Avro, a schema based data serialization system providing varied data
structures. Avro provides a compact, fast, binary data format typically used to store persistent data.

 Chapter 7 discusses another data format called Apache Parquet. Parquet is a columnar data storage
format providing complex data structures and efficient compression and encoding on columnar data to any
Hadoop ecosystem project.

 Chapter 8 introduces Apache Kafka, a distributed publish-subscribe messaging system that is fast,
scalable, and durable. As with the other Hadoop ecosystem projects, Kafka is designed to process large
quantities of data and provide high throughput rates.

 Chapter 9 discusses another distributed, scalable, and fault-tolerant framework called Apache Solr.
Solr provides indexing and data integration for large datasets stored in HDFS, Hive, HBase, or relational
databases. Solr is Lucene-based and one of the most commonly used search engines.

http://dx.doi.org/10.1007/978-1-4842-2199-0_1
http://dx.doi.org/10.1007/978-1-4842-2199-0_2
http://dx.doi.org/10.1007/978-1-4842-2199-0_3
http://dx.doi.org/10.1007/978-1-4842-2199-0_4
http://dx.doi.org/10.1007/978-1-4842-2199-0_5
http://dx.doi.org/10.1007/978-1-4842-2199-0_6
http://dx.doi.org/10.1007/978-1-4842-2199-0_7
http://dx.doi.org/10.1007/978-1-4842-2199-0_8
http://dx.doi.org/10.1007/978-1-4842-2199-0_9

CHAPTER 1 ■ INTRODUCTION

4

 Chapter 10 introduces Apache Mahout, a framework for machine learning applications. Mahout
supports several machine-learning systems, such as classification, clustering, and recommender systems.

 The different Apache Hadoop ecosystem projects are correlated, as shown in Figure 1-1 . MapReduce
processes data stored in HDFS. HBase and Hive store data in HDFS by default. Sqoop could be used to bulk
transfer data from a relational database management system (RDBMS) to HDFS, Hive, and HBase. Sqoop
also supports bulk transfer of data from HDFS to a relational database. Flume, which is based on sources and
sinks, supports several kinds of sources and sinks with the emphasis being on streaming data in real time in
contrast to one-time bulk transferring with Sqoop. Flume is typically used to stream log data and the sink
could be HDFS, Hive, HBase, or Solr, to list a few. Solr could be used to index data from HDFS, Hive, HBase,
and RDBMS. HDFS stores data in a disk filesystem and is in fact an abstract filesystem on top of the disk
filesystem. Solr also stores data in a disk filesystem by default, but can also store the indexed data in HDFS.

 Figure 1-1. The Apache Hadoop ecosystem

 Next, we introduce some of the concepts used by Apache Hadoop’s core components HDFS and
MapReduce, and discuss why Hadoop is essential for web-scale data processing and storage.

http://dx.doi.org/10.1007/978-1-4842-2199-0_10

CHAPTER 1 ■ INTRODUCTION

5

 Core Components of Apache Hadoop
 Hadoop has two main components: the Hadoop Distributed Filesystem (HDFS) and MapReduce . The HDFS
is a data storage and data processing filesystem. HDFS is designed to store and provide parallel, streaming
access to large quantities of data (up to 100s of TB). HDFS storage is spread across a cluster of nodes; a
single large file could be stored across multiple nodes in the cluster. A file is broken into blocks, which is an
abstraction over the underlying filesystem , with default size of 64MB. HDFS is designed to store large files
and lots of them.

 MapReduce is a distributed data processing framework for processing large quantities of data,
distributed across a cluster of nodes, in parallel. MapReduce processes input data as key/value pairs.
MapReduce is designed to process medium-to-large files . MapReduce has two phases: the map phase and
the reduce phase. The map phase uses one or more mappers to process the input data and the reduce phase
uses zero or more reducers to process the data output during the map phase. The input files is converted to
 key/value pairs before being input to the map phase. During the map phase, input data consisting of key/
value pairs is mapped to output key/value pairs using a user-defined map() function . The map output data
is partitioned and sorted for input to the reduce phase. The map output data is partitioned such that values
associated with the same key are partitioned to the same partition and sent to the same reducer. During the
reduce phase, the data output from the map phase is processed to reduce the number of values associated
with a key, or using some other user-defined function. The Google implementation of the MapReduce
programming model is discussed at http://static.googleusercontent.com/media/research.google.
com/en//archive/mapreduce-osdi04.pdf .

 Why Apache Hadoop?
 Large-scale computation models have been necessitated by the increasing scale of datasets being generated
and processed. Examples of big data scenarios include large-scale market data being generated for
marketable products, consumer preferences data, market trends data, social media data, and search engine
data.

 Shortcomings in Current Computing Systems
 Different distributed systems overcome the challenges to large-scale computational models differently,
prioritizing some issues more than others, and in the process making trade-offs.

 NFS (Network FileSystem) is the most commonly used distributed filesystem. The design of NFS is very
constrained; it provides remote access to a single logical volume on a single machine. A client has access
to only a portion of the NFS filesystem, which the client can mount on its local filesystem and access as if it
were a local filesystem. One of the main advantages of NFS is that the filesystem is transparent to the client.
NFS has the following disadvantages:

• The data on NFS is stored on a single machine. If the machine fails, the entire
filesystem becomes unavailable.

• All clients access the same remote filesystem, which could overload the NFS.

• Clients must copy the data to the local filesystem before being able to use the data.

 When designing a large-scale system , these basic assumptions that apply to traditional systems have to
be disregarded:

• Hardware must be reliable.

• Machines have identities with explicit communication between them.

http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

CHAPTER 1 ■ INTRODUCTION

6

• A dataset can be stored on a single machine.

• All data is structured data.

 The scale of data involved in big data scenarios is many orders of magnitude larger than in traditional
computational models. Whereas traditional computational models process data in the range of a few MB
to 100s of MB, large-scale computational models process data in the range of 100s of GB to 100s of TB and
even several PB. At such a large scale, the input data won’t fit into a single machine’s memory or disk drive.
Individual machines have limited resources in terms of CPU processor time, RAM, hard disk space, and
network bandwidth. An individual dataset won’t fit into a single machine and won’t be able to be processed
on a single machine. A single disk drive won’t be able to store even the temporary output from processing
large quantities of data, much less store the input data. With multi-gigabyte datasets being transmitted,
network switches will become saturated and the available network bandwidth won’t be sufficient for
the large datasets. With machines on different racks, the network bandwidth between machines on
different racks would be less than the network bandwidth between nodes on the same rack. A large-scale
computational model must be able to manage the resources efficiently. Additional resources may be
required to implement features designed for a large-scale model. For example, if data is to be replicated for
durability, additional disk space becomes a requirement. Synchronizing between multiple machines is an
issue unique to large-scale computational models. Efficient network communication protocols have to be
used to communicate between the different nodes on a large-scale cluster.

 Failure recovery has to be implemented to recover from partial failures. For example, if a machine fails,
the processing of a section of dataset fails. The computation has to be restarted on a different machine, thus
incurring some computation time loss. The computation capacity, proportional to the number of machines
lost, is lost. Failure in some of the components changes the network topology and starting recomputation in
the event of a failure may not be trivial. Some of the related computation previously completed successfully
but not yet used may also be lost in the event of a machine failure.

 Data durability is an issue in a large-scale computational model. If a machine is lost, the data stored on
the machine is also lost. If replicas of the lost data are available, the data is recoverable, but if no replicas are
available, the data is not durable.

 With large datasets, the probability of some sections of datasets getting corrupted increases. Data
corruption detection has to be implemented to provide data reliability and data availability. If data
corruption is not detected, computation could be erroneous. If data corruption is not addressed, some data
may be lost and not available for computation.

 Large-scale computation requires that the input data be distributed across multiple machines and
processed in parallel on different machines. One of the results of using multiple machines is that the
probability of failure increases; the more machines there are in the cluster, the more likely one of those
machines will fail. Failures could get cascaded. Machine failure and program recovery is an issue in large-
scale models only, as with a single-machine model recovery of the program is not an option; if the machine
fails, the program fails.

 Failure of some of the components in a large-scale system is inevitable and the failure is also likely to
happen more often. Examples of partial failures include failure of network switches and routers , high network
traffic, hard drive failure on individual machines, running out of memory and disk space , and data corruption.
In a large-scale computational model, the rest of the components are expected to continue to function.

 Scalability of a large-scale computation model is another issue. If more and more computational units
are added, as in a distributed system, the computational model should scale well.

 How Is Hadoop Better than Other Distributed Computing Systems?
 A distributed system in the context of data computation is a system in which computation is distributed
across a set of machines instead of using a single machine. Why are distributed systems required? If the scale
of data has increased, why can’t the capacities of individual machines also increase proportionally? New
processors with multi-CPU cores (dual-core, quad-core, or more) provide multiple threads to process more

CHAPTER 1 ■ INTRODUCTION

7

data in parallel, but the processor speed diminishes slightly, due to thermal requirements, with an increase
in the number of CPU cores per processor. For example, a dual-core processor may have a speed of 3.5GHz,
while a quad-core processor has 3.0GHz. Even if a single-machine with thousands of CPU cores is built, it
would not be feasible for individual hard drives to read data fast enough to be processed in parallel on the
multi-CPU core processors. An individual hard disk drive has a limited read speed in the range of 60-100MB/
sec. For example, if a 12-core processor is used on a single machine with multiple I/O channels, data is input
to the machine at the rate of 1200MB/sec (assuming an upper range rate). A 10TB dataset would take 2.3
hours to read the data. If 100 similar machines are used, the 10TB is read in 1.38 minutes. This demonstrates
the advantage of using multiple machines in a distributed system.

 Grid computing is not new. Other distributed grid systems such as MPI, PVM, and Condor have been used
in the past. The grid emphasis is to distribute the workload. Data stored in NetApp filer or SAN drives used
in conjunction with several compute nodes. Sharing is slow on most of the single-storage based distributed
systems . In contrast, Hadoop distributes the data on several nodes instead of storing it in a single file.

 Some reliability demands on distributed systems that support large-scale computational models are:

• Support partial failure. Must support graceful decline in application performance
rather than a full halt.

• Data recoverability. If components fail, their workload must be taken up by the
functioning machines.

• Individual recoverability. A full restart should not be required. If a node fails, it
should be able to restart and rejoin the cluster.

• Consistency . Concurrent operations or partial failures should not cause externally
visible nondeterminism.

• Scalability . The distributed system should be able to take an increased load without
performance degradation or complete failure. A graceful decline in performance is
still preferred over complete failure. An increase in the number of machines should
provide a proportionate increase in the capacity.

 Hadoop is a large-scale distributed processing system designed for a cluster consisting of hundreds or
thousands of nodes, each with multi-processor CPU cores. Hadoop is designed to distribute and process
large quantities of data across the nodes in the cluster. Hadoop does not require any special hardware and is
designed for commodity hardware. Hadoop may be used with any type of data, structured or unstructured.
Hadoop is not a database, nor does Hadoop replace traditional database systems. Hadoop is designed to
cover the scenario of storing and processing large-scale data, which most traditional systems do not support
or do not support efficiently. Hadoop can join and aggregate data from many different sources and deliver
results to other enterprise systems for further analysis.

 Hadoop is designed to process web-scale data in the order of hundreds of GB to 100s of TB, even to
several PB. Hadoop provides a distributed filesystem that breaks up the input data and distributes the data
across several nodes in a cluster. Hadoop processes the distributed data in parallel using all the machines
(nodes) in the cluster. Data is processed on the same node as the data is stored if feasible, as a result
providing data locality. Not having to move large amounts of data for computation reduces the network
bandwidth usage. Hadoop is designed for commodity hardware in which component failure is expected
rather than an exception, and Hadoop provides automatic detection and recovery of failure and other design
implementations such as replicating data across the cluster for durability. If one machine fails, a data replica
on another machine can be used.

 Considering the differences in the network bandwidth between nodes on the same rack and nodes on
different racks, Hadoop uses a rack-aware placement policy when creating a new file, reading from a file, or
processing input data.

CHAPTER 1 ■ INTRODUCTION

8

 To make data durable, Hadoop replicates stored data . If a machine fails and the data on the machine
is lost, a replica of the data is used, and the data is re-replicated to its replication level. Making redundant
copies of data adds to the disk space requirements, and as a result only a fraction of disk space is actually
being used to store a single copy of the data. For data reliability, Hadoop uses checksum verification on
the data stored in its filesystem. If corrupt data is found, it is not used and a replica of the data is used
instead. Corrupt data replicas are replaced with non-corrupt data and the corrupt data is removed from the
filesystem. A data scanner runs periodically and automatically to scan for corrupt data.

 Hadoop provides recovery in the event of computation failure. A failed computation is performed again,
sometimes even having to re-compute related computation. If some of the disk drives fail, computation may
be able to continue with the other disk drives.

 Other distributed systems such as HTCondor (formerly Condor) also provide a high-throughput,
parallel computational model. Hadoop is unique in its simplified programming model (MapReduce), which
allows quick development and running of distributed applications. Hadoop is also unique in its ability to
efficiently and automatically distribute data and computation code across the multiple machines in the
cluster, as a result utilizing the parallelism provided by multi-CPU cores effectively. HTCondor does not
distribute data automatically and a separate SAN (Storage Area Network) is required for the purpose. While
the programming model in Hadoop does not require communication between independent processes
running in parallel on a subset of the dataset, in HTCondor communication between multiple commute
nodes must be managed with a communication system such as MPI (Message Passing Interface). Individual
nodes in Hadoop also communicate with each other, but the communication is implicit in contrast to the
more traditional distributed systems in which data has to be marshaled explicitly over sockets or through
MPI buffers using application code. In Hadoop, explicit communication between nodes is not permitted.
In Hadoop, partitioning of data is implemented using a built-in partitioner and shuffling of data between
different phases of data processing is also implemented implicitly without user-defined application code.

 Individual machines in Hadoop are more independent of each other than in other distributed systems,
which makes failure recovery more favorable, since a failure of a single machine does not affect other
machines in the distributed system. Multiple user programs do not need to communicate with each other
and failure of a process does not affect other processes running in parallel on other machines (in machine
failure) or even the same machine (in process failure).

 Hadoop provides a linear scalability as the scale of data stored and processed increases and as
additional resources are added. A Hadoop application developed for a 12-machine cluster can be scaled
nearly linearly to hundreds and thousands of machines without much modification. The performance of
the Hadoop platform does not degrade with an increase in the scale of data or an increase in the number of
machines.

 Other distributed programming systems, such as HTCondor , MPI, and PVM, may perform better or
comparably at a small scale, but do not scale well with an increased dataset load or increased number of
machines. For example, MPI performs better than Hadoop with a small number of machines up to 12, but if
the number of machines is increased to several tens or hundreds and the data processed is increased, a lot
of refactoring such as modifying the application program is required. The performance of other distributed
systems such as MPI degrades (or does not increase linearly) at a large scale. Other distributed systems may
also have some design limitations at a large scale, which makes their scaling limited.

 While MapReduce MRv1 is designed to run only MapReduce applications, YARN (Yet Another Resource
Negotiator) or MRv2 supports running other applications besides MapReduce. Motivations for MapReduce
are data processing of large datasets (> 1TB) , massively parallel (hundreds or thousands of CPUs), and easy
to use without having to code communication between nodes. The reduce phase does not start until the map
phase has completed, which could put a limit on the job progress rate if a few of the map processes are slow.
If some slow map phase processes are slowing down, the whole job the master daemon runs redundant
copies of slow moving processes and uses the results from the redundant process that completes first. In
MapReduce, data processing is divided into two phases: the map phase and the reduce phase. The only
communication between different processes is copying the output from the map phase to the reduce phase.
The master daemon assigns tasks based on location of data; the map phase tasks run on the same machine

CHAPTER 1 ■ INTRODUCTION

9

(or the same rack) as the machine with the data. Map task input is divided into input splits, which are sized
based on the block size. Individual input splits are processed by separate processes in parallel. Processes
are independent of each other. The master daemon detects failure in a process and reruns failed processes.
Restarting processes does not require communication with other processes. MapReduce is functional
programming with distributed computing. MR factors out reliability concerns from application logic.
With MapReduce, a user or developer does not have to implement system level details of synchronization,
concurrency, hardware failure, inter-node communication, process failure, and failure recovery.

 What Kind of Computations Is Hadoop Suitable For?
 Hadoop is suitable for iterative jobs such as graph algorithms. Each iteration must read or write data to disk.
I/O and latency cost of an iteration is high.

 What Kind of Computations Is Hadoop Not Suitable For?
 Hadoop is not suitable for:

• Applications that need shared state or coordination. MapReduce tasks are
independent and are shared-nothing. Shared state requires scalable state store.

• Low-latency applications .

• Small datasets.

• Finding individual records.

 HDFS Daemons
 The HDFS daemons are the NameNode , Secondary NameNode , and DataNode .

 NameNode
 The NameNode is the master daemon in the HDFS. NameNode ’s function is to maintain the HDFS namespace
metadata, which includes the filenames, directory names, file permissions, directory permissions, file-
to-block mapping, block IDs, and block locations in RAM. The metadata is kept in RAM for fast access.
 NameNode stores the metadata information in a fsimage file in the NameNode ’s local filesystem. The stored
namespace state does not include the block locations. The block locations are kept only in memory and
when the NameNode starts, the block locations are constructed from the block lists sent by DataNodes when
they join the NameNode and also in periodic reports. NameNode does not directly read or write to the HDFS.
When a client requests a file to read, the NameNode provides the client with the block locations of the file and
the client reads the file directly. When a client creates a new file, the NameNode provides the client with a list
of block locations ordered by distance from the client and the client writes to the blocks directly.

 NameNode also keeps an edit log of all the transactions made in the HDFS namespace that would alter
the namespace, such as creating a file, deleting a file, and creating block replicas. The edits log is also
stored by the NameNode local filesystem as EditLog file. The modifications information in NameNode RAM is
flushed to the edit log on the NameNode disk periodically. When the NameNode starts, it starts in Safe mode,
during which the edit log is applied to the image file fsimage to create a new fsimage file, which is stored.
The NameNode exits the safe mode and starts with an empty edits file. The edit log is also check-pointed
periodically by the Secondary NameNode .

CHAPTER 1 ■ INTRODUCTION

10

 In CDH5, the NameNode namespace URI is configured in the configuration property fs.defaultFS in
 core-default.xml .

 <property>
 <name>fs.defaultFS</name>
 <value> hdfs://<namenode host>:<namenode port>/</value>
 </property>

 Another important property that must be configured is dfs.permissions.superusergroup in hdfs-
site.xml . It sets the UNIX group whose users are to be the superusers for HDFS.

 <property>
 <name>dfs.permissions.superusergroup</name>
 <value>hadoop</value>
 </property>

 The NameNode stores the namespace metadata fsimage file and the edit log file in directories configured
using the dfs.namenode.name.dir property in hdfs-site.xml . At least two directories are recommended to
be configured for the NameNode , preferably one on the NFS mount.

 <property>
 <name>dfs.namenode.name.dir</name>
 <value>/data/1/dfs/nn,/nfsmount/dfs/nn</value>
 </property>

 The dfs.namenode.http-address on the NameNode specifies the HTTP address for the NameNode web UI
to listen on.

 <property>
 <name>dfs.http.address</name>
 <value>0.0.0.0:50070</value>
 </property>

 If HDFS high availability is not used, the NameNode is a single point of failure (SPOF) in the HDFS. The
failure of the NameNode causes the HDFS become unavailable until the NameNode is restored. If HDFS high
availability is not used, a Secondary NameNode is typically used.

 Secondary NameNode
 Since all the file modifications that alter the HDFS namespace are kept in the edits log, which is check-
pointed by the NameNode only once at startup, the edits file could get very large during the operation of
 NameNode and take up extra disk space. Another disadvantage of a large edits log file is that when the
 NameNode starts and checkpoints the edits log to the fsimage file, the check-pointing could take a long time,
resulting in delay in the NameNode starting in functional mode.

 The Secondary NameNode ’s function is to make periodic checkpoints of the edits log to the fsimage
file while the NameNode is running. When an edits log file has been check-pointed, it is cleared and as result
occupies less disk space on the NameNode . With periodic check-pointing of the edits log, the edits log does
not grow in size as much. When NameNode starts, it does not take as much time to checkpoint the edits log to
the fsimage image, as the edits log is relatively smaller. As a result, the NameNode startup is faster.

CHAPTER 1 ■ INTRODUCTION

11

 The Secondary NameNode makes a new checkpoint using an interval configured in the hdfs-default.
xml property dfs.namenode.checkpoint.period , which has a default setting of 3600 secs (1 hour). Another
checkpoint setting that overrides dfs.namenode.checkpoint.period is dfs.namenode.checkpoint.txns ,
which specifies the number of transactions (the default value is 1,000,000 transactions) after which a
checkpoint must be made regardless of whether the dfs.namenode.checkpoint.period interval has been
exceeded or not. Secondary NameNode polls the NameNode periodically to find the number of uncheck-
pointed transactions, as configured in dfs.namenode.checkpoint.check.period ; the default is every 60
seconds. When a checkpoint is to be made, Secondary NameNode downloads the fsimage file and the edits
log from the NameNode and stores the temporary copies of the two in two sets of directories configured by
the dfs.namenode.checkpoint.dir property and the dfs.namenode.checkpoint.edits.dir property
respectively in hdfs-default.xml .

 The default value of both of these configuration properties is file://${hadoop.tmp.dir}/dfs/
namesecondary . The number of copies of the fsimage file and the edits log the Secondary NameNode keeps
is configured in the dfs.namenode.num.checkpoints.retained property; the default is two copies. The
maximum network bandwidth for image transfer between the NameNode and the Secondary NameNode
may be limited using the dfs.image.transfer.bandwidthPerSec property in hdfs-default.xml . A value
of 0 (the default) implies that throttling is disabled. The image transfer bandwidth is limited so that the
 NameNode can carry out its normal operation. The image transfer may be timed out using the dfs.image.
transfer.timeout property with a default value of 600000ms (10 minutes). Secondary NameNode applies the
checkpoint and uploads the fsimage file back to the NameNode , as shown in Figure 1-2 .

 Figure 1-2. Check-pointing by secondary NameNode

 As mentioned, a NameNode applies a checkpoint of the edits log to the fsimage file on NameNode startup.
The checkpoint on NameNode startup is based on the number of transactions stored in the edits log. The
number of transactions stored in the edits log are not exactly those that represent previously uncheck-
pointed transactions. Some extra transactions are stored as configured in the dfs.namenode.num.extra.
edits.retained property, the default extra transactions being 1000000. Another configuration property that
affects extra edit logs stored is the dfs.namenode.max.extra.edits.segments.retained , which specifies
the number of extra edit log segments stored. The default is 10000. If the number of extra transactions as
set in dfs.namenode.num.extra.edits.retained makes the extra edit segments exceed the setting in dfs.
namenode.max.extra.edits.segments.retained , the value set in the latter is used to limit the number of
extra transactions stored.

CHAPTER 1 ■ INTRODUCTION

12

 Secondary NameNode check- pointing could fail when loading the fsimage file or when applying the
edits log. If the Secondary NameNode checkpoint fails, it retries x number of times as configured in dfs.
namenode.checkpoint.max-retries . The default is three retries.

 A cluster can have only one NameNode and one Secondary NameNode . On a production cluster, the
 Secondary NameNode should be located on a different node than the NameNode for two reasons:

• The Secondary NameNode on a separate node does not take up the much-needed
RAM required by the NameNode .

• The Secondary NameNode on a separate node makes the HDFS more fault-tolerant
because if the NameNode fails, the fsimage file can be re-created from the copy stored
on the Secondary NameNode node.

 To configure the Secondary NameNode , add the name of the Secondary NameNode host to the conf/
slaves file and set a NameNode address for the Secondary NameNode to connect to for check-pointing. Use the
following setting for dfs.namenode.http-address on the Secondary NameNode node.

 <property>
 <name>dfs.namenode.http-address</name>
 <value><namenode.host.address>:50070</value>
 </property>

 If the NameNode loses all copies of the fsimage file and edits log, it may import the latest checkpoint
stored in the dfs.namenode.checkpoint.dir directory using the following command.

 hadoop namenode -importCheckpoint

 An empty dfs.namenode.name.dir directory is required to import the checkpoint prior to running the
preceding command.

 DataNodes
 The DataNode is a slave daemon for storing the HDFS data. Data is broken into blocks and stored on the
 DataNode s. The blocks are replicated using a replication factor, as configured in the dfs.replication
property in hdfs-default.xml ; the default replication is 3 . The block size is configured in the dfs.blocksize
property in hdfs-default.xml , with the default value being 128MB. The HDFS blocks are an abstraction
over the underlying filesystem of the DataNode . The directories in which the DataNode stores the blocks are
configured in the dfs.datanode.data.dir property in hdfs-default.xml .

 <property>
 <name>dfs.datanode.data.dir</name>
 <value>/data/1/dfs/dn,/data/2/dfs/dn,/data/3/dfs/dn</value>
 </property>

 By default, if any of the data volumes (directories) fails, the DataNode shuts down, but a certain number
of failed volumes may be tolerated using the dfs.datanode.failed.volumes.tolerated property, which
has a default value of 0 .

 <property>
 <name>dfs.datanode.failed.volumes.tolerated</name>
 <value>1</value>
 <final>true</final>
 </property>

