STRESS AND ENVIRONMENTAL REGULATION OF GENE EXPRESSION AND ADAPTATION IN BACTERIA

Edited by FRANS J. DE BRUIJN
Stress and environmental regulation of gene expression and adaptation in bacteria

Volume 1
Stress and environmental regulation of gene expression and adaptation in bacteria

Volume 1

Edited by

Frans J. de Bruijn
INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM)
Chemin de Borde Rouge-Auzeville
Castanet-Tolosan
France

WILEY Blackwell
Regulation of gene expression in bacteria plays a key role in their adaptation to ever-changing environments. Transcription is the first level of control that has been described and decades of research have led to a thorough characterization of the transcriptional network, at least for some of the model bacteria such as *Escherichia coli*. However, it is now clear that many genes are subject to post-transcriptional control as well, and small RNAs are a major class of post-transcriptional regulators. Many functions are in fact controlled by mixed regulatory circuits encompassing both transcriptional and post-transcriptional control mediated respectively by proteins or RNAs. The properties of such circuits are just starting to be elucidated. In the regulatory scheme shown on the cover, the involvement of Hfq-binding sRNAs in control of motility and adhesion in enterobacteria is depicted. Positive and negative controls are shown with normal and blunt-end arrows respectively. Asterisks indicate regulatory interactions presumed to be direct. Green triangles highlight feedforward regulatory motifs. The regulatory scheme is found in Figure 5.1.1 in Chapter 5.1 by Maude Guillier et al. For more details see Chapter 5.1.
This work is dedicated to my wife, Cathy Senta-Loys de Bruijn, for her support and interest in the book, and her love and understanding during the hectic editing episodes.
Contents

VOLUME 1

Preface, xiii
Acknowledgements, xiv
List of contributors, xv

1 Introduction, 1
Frans J. de Bruijn

Section 2: Key overview chapters, 3

2.1 Stress-induced changes in transcript stability, 5
Dvora Biran and Eliora Z. Ron

2.2 StressChip for monitoring microbial stress response in the environment, 9
Joy D. Van Nostrand, Aifen Zhou and Jizhong Zhou

2.3 A revolutionary paradigm of bacterial genome regulation, 23
Akira Ishihama

2.4 Role of changes in σ^{70}-driven transcription in adaptation of *E. coli* to conditions of stress or starvation, 37
Umender K. Sharma

2.5 The distribution and spatial organization of RNA polymerase in *Escherichia coli*: growth rate regulation and stress responses, 48
Ding Jun Jin, Cedric Cagliero, Jerome Izard, Carmen Mata Martin, and Yan Ning Zhou

2.6 The ECF classification: a phylogenetic reflection of the regulatory diversity in the extracytoplasmic function σ factor protein family, 64
Daniela Pinto and Thorsten Mascher

2.7 Toxin–antitoxin systems in bacteria and archaea, 97
Yoshihiro Yamaguchi and Masayori Inouye

2.8 Bacterial sRNAs: regulation in stress, 108
Marimuthu Citartan, Carsten A. Raabe, Chee-Hock Hoe, Timofey S. Rozhdestvensky, and Thean-Hock Tang

2.9 Bacterial stress responses as determinants of antimicrobial resistance, 115
Michael Fruci and Keith Poole

2.10 Transposable elements: a toolkit for stress and environmental adaptation in bacteria, 137
Anna Ullastres, Miriam Merenciano, Lain Guio, and Josefa González

2.11 CRISPR–Cas system: a new paradigm for bacterial stress response through genome rearrangement, 146
Joseph A. Hakim, Hyunmin Koo, Jan D. van Elsas, Jack T. Trevors, and Asim K. Bej

2.12 The copper metallome in prokaryotic cells, 161
Christopher Rensing, Hend A. Alwathnani, and Sylvia F. McDevitt

2.13 Ribonucleases as modulators of bacterial stress response, 174
Cátia Bárria, Vânia Pobre, Afonso M. Bravo, and Cecília M. Arraiano

2.14 Double-strand-break repair, mutagenesis, and stress, 185
Elizabeth Rogers, Raul Correa, Brittany Barreto, María Angélica Bravo Núñez, P.J. Minnick, Diana Vera Cruz, Jun Xia, P.J. Hastings, and Susan M. Rosenberg

2.15 Sigma factor competition in *Escherichia coli*: kinetic and thermodynamic perspectives, 196
Kuldeepkumar Ramnaresh Gupta and Dipankar Chatterji

2.16 Iron homeostasis and iron–sulfur cluster assembly in *Escherichia coli*, 203
Huangen Ding

2.17 Mechanisms underlying the antimicrobial capacity of metals, 215
Joe A. Lemire and Raymond J. Turner

2.18 Acyl-homoserine lactone-based quorum sensing in members of the marine bacterial Roseobacter clade: complex cell-to-cell communication controls multiple physiologies, 225
Alison Buchan, April Mitchell, W. Nathan Cude, and Shawn Campagna

2.19 Native and synthetic gene regulation to nitrogen limitation stress, 234
Jörg Schumacher
Section 3: One-, two-, and three-component regulatory systems and stress responses, 247

3.1 Two-component systems that control the expression of aromatic hydrocarbon degradation pathways, 249
Tino Krell

3.2 Cross-talk of global regulators in *Streptomyces*, 257
Juan F. Martín, Fernando Santos-Beneit, Alberto Sola-Landa, and Paloma Liras

3.3 NO–H-NOX-regulated two-component signaling, 268
Dhruv P. Arora, Sandhya Muralidharan, and Elizabeth M. Boon

3.4 The two-component CheY system in the chemotaxis of *Sinorhizobium meliloti*, 277
Martin Haslbeck

3.5 Stimulus perception by histidine kinases, 282
Hannah Schramke, Yang Wang, Ralf Heermann, and Kirsten Jung

Section 4: Sigma factors and stress responses, 301

4.1 The extracytoplasmic function sigma factor EcfO protects *Bacteroides fragilis* against oxidative stress, 303
Ivan C. Ndamukong, Samantha Palethorpe, Michael Betteken, and C. Jeffrey Smith

4.2 Regulation of energy metabolism by the extracytoplasmic function (ECF) σ factors of *Arcobacter butzleri*, 311
Irati Martinez-Malaxetxebarría, Rudy Muts, Linda van Dijk, Craig T. Parker, William G. Miller, Steven Huynh, Wim Gaastra, Jos P.M. van Putten, Aurora Fernandez-Astorga, and Marc M.S.M Wösten

4.3 Extracytoplasmic function sigma factors and stress responses in *Corynebacterium pseudotuberculosis*, 321
Thiago L.P. Castro, Nubia Seyffert, Anne C. Pinto, Artur Silva, Vasco Azevedo, and Luis G.C. Pacheco

4.4 The complex roles and regulation of stress response σ factors in *Streptomyces coelicolor*, 328
Jan Kormanec, Beatrica Sevcikova, Renata Novakova, Dagmar Homerova, Bronislava Rezuchova, and Erik Mingyar

4.5 Proteolytic activation of extra cytoplasmic function (ECF) σ factors, 344
Jessica L. Hastie and Craig D. Ellermeier

4.6 The ECF family sigma factor σH in *Corynebacterium glutamicum* controls the thiol-oxidative stress response, 352
Tobias Busche and Jörn Kalinowski

4.7 Posttranslational regulation of antisigma factors of RpoE: a comparison between the *Escherichia coli* and *Pseudomonas aeruginosa* systems, 361
Sundar Pandey, Kyle L. Martins, and Kalai Mathee

Section 5: Small noncoding RNAs and stress responses, 369

5.1 Bacterial small RNAs in mixed regulatory circuits, 371
Jonathan Jagodnik, Denis Thieffry, and Maude Guillier

5.2 Role of small RNAs in *Pseudomonas aeruginosa* virulence and adaptation, 383
Hansi Kumari, Deepak Balasubramanian, and Kalai Mathee

5.3 Physiological effects of posttranscriptional regulation by the small RNA SgrS during metabolic stress in *Escherichia coli*, 393
Gregory R. Richards

5.4 Three rpoS-activating small RNAs in pathways contributing to acid resistance of *Escherichia coli*, 402
Geunu Bak, Kook Han, Daun Kim, Kwang-sun Kim, and Younghoon Lee

5.5 Thermal stress noncoding RNAs in prokaryotes and eukaryotes: a comparative approach, 412
Mercedes de la Fuente and José Luis Martínez-Guitarte

Section 6: Toxin-antitoxin systems and stress responses, 423

6.1 Epigenetics mediated by restriction modification systems, 425
Iwona Mruk and Ichizo Kobayashi

6.2 Toxin–antitoxin systems as regulators of bacterial fitness and virulence, 437
Brittany A. Fleming and Matthew A. Mulvey

6.3 Mechanisms of stress-activated persister formation in *Escherichia coli*, 446
Stephanie M. Amato and Mark P. Brynildsen

6.4 Identification and characterization of type II toxin–antitoxin systems in the opportunistic pathogen *Acinetobacter baumannii*, 454
Edita Sužiedėliénė, Milda Jurėnaitė, and Julija Armalytė

6.5 Transcriptional control of toxin–antitoxin expression: keeping toxins under wraps until the time is right, 463
Barbara Kędzierska and Finbarr Hayes
6.6 Opposite effects of GraT toxin on stress tolerance of *Pseudomonas putida*, 473
Rita Hörak and Hedvig Tamman

Section 7: Stringent response to stress, 479

7.1 Preferential cellular accumulation of ppGpp or pppGpp in *Escherichia coli*, 481
K. Potrykus and M. Cashel

7.2 Global Rsh-dependent transcription profile of *Brucella suis* during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses, 489
Stephan Köhler, Nabil Hanna, Safia Ouahrani-Bettache, Kenneth L. Drake, L. Garry Adams, and Alessandra Occhialini

7.3 The stringent response and antioxidant defences in *Pseudomonas aeruginosa*, 500
Gowthami Sampathkumar, Malika Khakimova, Tevy Chan, and Dao Nguyen

7.4 Molecular basis of the stringent response in *Vibrio cholerae*, 507
Shreya Dasgupta, Bhabatosh Das, Pallabi Basu, and Rupak K. Bhadra

Section 8: Responses to UV irradiation, 517

8.1 UV stress-responsive genes associated with enterobacterial integrative conjugative elements of the ICE SXT/R391 group, 519
Patricia Armshaw and J. Tony Pembroke

8.2 Altered outer membrane proteins in response to UVC radiation in *Vibrio parahaemolyticus* and *Vibrio alginolyticus*, 528
Fethi Ben Abdallah

8.3 Ultraviolet-B radiation effects on the community, physiology, and mineralization of magnetotactic bacteria, 532
Yingzhao Wang and Yongxin Pan

8.4 Nucleotide excision repair system and gene expression in *Mycobacterium smegmatis*, 545
Angelina Cordone

Section 9: SOS and double stranded repair systems and stress, 551

9.1 The SOS response modulates bacterial pathogenesis, 553
Darja Žgur Bertok

9.2 RNAP secondary-channel interactors in *Escherichia coli*: makers and breakers of genome stability, 561
Priya Sivaramakrishnan and Christophe Herman

9.3 How a large gene network couples mutagenic DNA break repair to stress in *Escherichia coli*, 570
Elizabeth Rogers, P.J. Hastings, Maria Angélica Bravo Núñez, and Susan M. Rosenberg

9.4 Double-strand DNA break repair in mycobacteria, 577
Richa Gupta and Michael S. Glickman

Section 10: Adaptation to oxidative stress, 587

10.1 Peroxide-sensing transcriptional regulators in bacteria, 589
James M. Dubbs and Skorn Mongkolsuk

10.2 Regulation of oxidative stress–related genes implicated in the establishment of opportunistic infections by *Bacteroides fragilis*, 603
Felipe Lopes Teixeira, Regina Maria Cavalcanti Pilotto Domingues, and Leandro Araujo Lobo

10.3 Investigation into oxidative stress response of *Shewanella oneidensis* reveals a distinct mechanism, 609
Jie Yuan, Fen Wan, and Haichun Gao

10.4 An omics view on the response to singlet oxygen, 619
Bork A. Berghoff and Gabriele Klig

10.5 Regulators of oxidative stress response genes in *Escherichia coli* and their conservation in bacteria, 632
Herb E. Schellhorn, Mohammad Mohiuddin, Sarah M. Hammond, and Steven Botts

10.6 Hydrogen peroxide resistance in *Bifidobacterium animalis* subsp. *lactis* and *Bifidobacterium longum*, 638
Taylor S. Oberg and Jeff R. Broadbent

Section 11: Adaptation to osmotic stress, 647

11.1 Interstrain variation in the physiological and transcriptional responses of *Pseudomonas syringae* to osmotic stress, 649
Gwyn A. Beattie, Chiliang Chen, Lindsey Nielsen, and Brian C. Freeman

11.2 Management of osmotic stress by *Bacillus subtilis*: genetics and physiology, 657
Tamara Hoffmann and Erhard Bremer

11.3 Hyperosmotic response of *Streptococcus mutans*: from microscopic physiology to transcriptomic profile, 677
Lu Wang and Xin Xu

11.4 Defective ribosome maturation or function makes *Escherichia coli* cells salt-resistant, 687
Hyouta Himeno, Takefusa Tarusawa, Shion Ito, and Simon Goto
Section 12: Dessication tolerance and drought stress, 693

12.1 Consequences of elevated salt concentrations on expression profiles in the rhizobium *S. meliloti* 1021 likely involved in heat and desiccation stress, 695
Jan A.C. Vriezen, Caroline M. Finn, and Klaus Nüsslein

12.2 Genes involved in the formation of desiccation-resistant cysts in *Azotobacter vinelandii*, 709
Guadalupe Espín

12.3 Osmotic and desiccation tolerance in *Escherichia coli* O157:H7 and *Salmonella enterica* requires rpoS (σ38), 716
Zach Pratt, Megan Shiroda, Andrew J. Stasic, Josh Lensmire, and C. W. Kaspar

12.4 Desiccation of *Salmonella enterica* induces cross-tolerance to other stresses, 725
Shlomo Sela (Saldinger) and Chellaiah Edward Raja

Section 13: Heat shock responses, 737

13.1 Heat shock response in bacteria with large genomes: lessons from rhizobia, 739
Ana Alexandre and Solange Oliveira

13.2 Small heat shock proteins in bacteria, 747
Martin Haslbeck

13.3 Transcriptome analysis of bacterial response to heat shock using next-generation sequencing, 754
Kok-Gan Chan

13.4 Comparative analyses of bacterial transcriptome reorganisation in response to temperature increase, 757
Bei-Wen Ying and Tetsuya Yomo

13.5 Participation of Ser–Thr protein kinases in regulation of heat stress responses in *Synechocystis*, 766
Anna A. Zorina, Galina V. Novikova, and Dmitry A. Los

Section 14: Chaperonins and stress, 781

14.1 GroEL/ES chaperonin: unfolding and refolding reactions, 783
Víctor V. Marchenkov, Nataliya A. Ryabova, Olga M. Selivanova, and Gennady V. Semisotnov

14.2 Functional comparison between the DnaK chaperone systems of *Streptococcus intermedius* and *Escherichia coli*, 791
Toshifumi Tomoyasu and Hideaki Nagamune

14.3 Coevolution analysis illuminates the evolutionary plasticity of the chaperonin system GroES/L, 796
Mario A. Fares

14.4 ClpL ATPase: a novel chaperone in bacterial stress responses, 812
Pratick Khara and Indranil Biswas

Section 15: Cold shock responses, 827

15.1 Gene regulation by cold shock proteins via transcription antitermination, 829
Sangita Phadtare and Konstantin Severinov

15.2 Metagenomic analysis of microbial cold stress proteins in polar lacustrine ecosystems, 837
Hyunmin Koo, Joseph A. Hakim, and Asim K. Bej

15.3 Role of two-component systems in cold tolerance of *Clostridium botulinum*, 845
Yağmur Derman, Elias Dahlsten, and Hannu Korkeala

15.4 Cold shock CspA protein production during periodic temperature cycling in *Escherichia coli*, 854
David Stopar and Tina Ivancic

15.5 Cold shock response in *Escherichia coli*: a model system to study posttranscriptional regulation, 859
Anna Maria Giuliodori

15.6 New insight into cold shock proteins: RNA-binding proteins involved in stress response and virulence, 873
Charlotte Michaux and Jean-Christophe Giard

15.7 Light regulation of cold stress responses in *Synechocystis*, 881
Kirill S. Mironov and Dmitry A. Los

15.8 *Escherichia coli* cold shock gene profiles in response to overexpression or deletion of CsdA, RNase R, and PNPase and relevance to low-temperature RNA metabolism, 890
Sangita Phadtare

Section 16: Adaptation to acid stress, 897

16.1 Acid-adaptive responses of *Streptococcus mutans*, and mechanisms of integration with oxidative stress, 899
Robert G. Quivey Jr., Roberta C. Faustoferri, Brendaliz Santiago, Jonathon Baker, Benjamin Cross, and Jin Xiao
<table>
<thead>
<tr>
<th>Section 16: Adaptation to acid stress, 903</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2 Acid survival mechanisms in neutralophilic bacteria, 911</td>
</tr>
<tr>
<td>16.3 Two-component systems in sensing and adapting to acid stress in Escherichia coli, 927</td>
</tr>
<tr>
<td>16.4 Sr1909, a novel two-component response regulator involved in acid tolerance in Synechocystis sp. PCC 6803, 935</td>
</tr>
<tr>
<td>16.5 Comparative mass spectrometry–based proteomics to elucidate the acid stress response in Lactobacillus plantarum, 944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 17: Adaptation to nitrosative stress, 953</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Transcriptional regulation by thiol-based sensors of oxidative and nitrosative stress, 955</td>
</tr>
<tr>
<td>17.2 Haemoglobins of Mycobacterium tuberculosis and their involvement in management of environmental stress, 967</td>
</tr>
<tr>
<td>17.3 What is it about NO that you don’t understand? The role of heme and HcpR in Porphyromonas gingivalis’s response to nitrate (NO$_3$), nitrite (NO$_2$), and nitric oxide (NO), 976</td>
</tr>
<tr>
<td>17.4 Di-iron RICs: players in nitrosative-oxidative stress defences, 989</td>
</tr>
<tr>
<td>17.5 The Vibrio cholerae stress response: an elaborate system geared toward overcoming host defenses during infection, 997</td>
</tr>
<tr>
<td>17.6 Ensemble modeling enables quantitative exploration of bacterial nitric oxide stress networks, 1009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 18: Adaptation to cell envelope stress, 1015</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 The Cpx inner membrane stress response, 1017</td>
</tr>
<tr>
<td>18.2 New insights into stimulus detection and signal propagation by the Cpx-envelope stress system, 1025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 19: Iron homeostasis, 1065</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Iron homeostasis and environmental responses in cyanobacteria: regulatory networks involving Fur, 1067</td>
</tr>
<tr>
<td>19.2 Interplay between O$_2$ and iron in gene expression: environmental sensing by FNR, ArcA, and Fur in bacteria, 1079</td>
</tr>
<tr>
<td>19.3 The iron–sulfur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa, 1090</td>
</tr>
<tr>
<td>19.4 Transcriptional analysis of iron-responsive regulatory networks in Caulobacter crescentus, 1103</td>
</tr>
<tr>
<td>19.5 Protein–protein interactions regulate the release of iron stored in bacterioferritin, 1109</td>
</tr>
<tr>
<td>19.6 Protein dynamics and ion traffic in bacterioferritin function: a molecular dynamics simulation study on wild-type and mutant Pseudomonas aeruginosa BfrB, 1118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 20: Metal resistance, 1131</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Nickel toxicity, regulation, and resistance in bacteria, 1133</td>
</tr>
<tr>
<td>20.2 Metabolic networks to counter Al toxicity in Pseudomonas fluorescens: a holistic view, 1145</td>
</tr>
</tbody>
</table>
20.3 Genomics of the resistance to metal and oxidative stresses in cyanobacteria, 1154
Corinne Cassier-Chauvat and Franck Chauvat

20.4 Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria, 1165
Jiangxin Wang, Gang Wu, Lei Chen, and Weiwen Zhang

20.5 The extracytoplasmic function sigma factor–mediated response to heavy metal stress in Caulobacter crescentus, 1171
Rogério F. Lourenço and Suely L. Gomes

20.6 Metal ion toxicity and oxidative stress in Streptococcus pneumoniae, 1184
Christopher A. McDevitt, Stephanie L. Begg, and James C. Paton

Section 21: Quorum sensing, 1195

21.1 Quorum sensing and bacterial social interactions in biofilms: bacterial cooperation and competition, 1197
Yung-Hua Lai and Xiao-Lin Tian

21.2 Recent advances in bacterial quorum quenching, 1206
Kok-Gan Chan, Wai-Fong Yin, and Kar-Wai Hong

21.3 LuxR-type quorum-sensing regulators that are antagonized by cognate pheromones, 1221
Stephen C. Winans, Ching-Sung Tsai, Gina T. Ryan, Ana Lidia Flores-Mireles, Esther Costa, Kevin Y. Shih, Thomas C. Winans, Youngchang Kim, Robert Jedrzejczak, and Gekleng Chhor

21.4 Adaptation to environmental stresses in Streptococcus mutans through the production of its quorum-sensing peptide pheromone, 1232
Delphine Dufour, Vincent Leung, and Céline M. Lévesque

21.5 Quorum sensing in Bacillus cereus in relation to cysteine metabolism and the oxidative stress response, 1242
Eugénie Huillet and Michel Gohar

Section 22: Chemotaxis and biofilm formation, 1253

22.1 The flagellum as a sensor, 1255
Rasika M. Harshley

22.2 Flagellar motility and fitness in xanthomonads, 1265
Marie-Agnès Jacques, Jean-François Guimbaud, Martial Briand, Arnaud Indiana, and Armelle Darrasse

22.3 Understanding Listeria monocytogenes biofilms: perspectives into mechanisms of adaptation and regulation under stress conditions, 1274
Lizziane Kretli Winkelströter, Fernanda Barbosa dos Reis-Teixeira, Gabriela Satti Lameu, and Elaine Cristina Pereira De Martinis

22.4 Biofilm formation and environmental signals in Bordetella, 1279
Tomoko Hanawa

22.5 Biofilm formation by rhizobacteria in response to water-limiting conditions, 1287
Pablo Bogino, Fiorela Nievés, and Walter Giordano

22.6 Stress conditions triggering mucoid-to-nonmucoid morphotype variation in Burkholderia, and effects on virulence and biofilm formation, 1295
Leonilde M. Moreira, Inês N. Silva, Ana S. Ferreira, and Mário R. Santos

22.7 Effect of environmental conditions present in the fishery industry on the biofilm-forming ability of Staphylococcus aureus, 1304
Daniel Vázquez-Sánchez

22.8 Biofilm development and stress response in the cholera bacterium, 1310
Anisia J. Silva and Jorge A. Benitez

22.9 Outer membrane vesicle secretion: from envelope stress to biofilm formation, 1322
Thomas Baumgarten and Hermann J. Heipieper

Section 23: Viable but nonculturable (VBNC) cells, 1329

23.1 Resuscitation of Vibrios from the viable but nonculturable state is induced by quorum-sensing molecules, 1331
Mesrop Ayrapetyan, Tiffany C. Williams, and James D. Oliver

23.2 Differential resuscitative effects of pyruvate and its analogs on VBNC (viable but nonculturable) Salmonella, 1338
Fumio Amano

23.3 Environmental persistence of Shiga toxin–producing E. coli, 1346
Philipp Aurass and Antje Flieger

23.4 Of a tenacious and versatile relic: the role of inorganic polyphosphate (poly-P) metabolism in the survival, adaptation, and virulence of Campylobacter jejuni, 1354
Issmat I. Kassem and Gireesh Rajashekara

Index, i
The field of stress and environmental control of gene expression in bacteria is a very active field, moving rapidly and in multiple directions. An extensive overview book has existed since 2011, when the excellent Bacterial Stress Responses book of reviews (ASM Press) appeared. This book is an update and extension of that volume, with chapters mainly based on publications post 2010 or from de novo contributions; it is thus a complementary rather than competitive work, which focuses on original research papers and reviews in a large variety of different organisms, rather than reviewing model systems only. The large outline covers 23 different topics and provides selected new reviews as well as a series of research chapters for each topic. Altogether, it provides a detailed and broad overview of the field and emphasizes differences and commonalities in different organisms.

As mentioned, this book contains not only reviews but also many recent, original research chapters. The authors have been asked to provide succinct materials and methods, and to refer back to their original publication when deemed appropriate. This book provides an extensive Index to facilitate the search for key terms. Special attention has been given to cross-referencing the chapters in the book. The book appears in print as well as in electronic format at the Wiley website, in order to facilitate downloading of particular chapters.

The primary audience is (clinical) microbiologists, biochemists, geneticists, and microbial ecologists working in the field of stress and environmental control of gene expression and adaptation to stress conditions.

These books are in principle research-intensive books, but they could be used in upper level undergraduate and graduate level courses in Microbiology, Molecular Genetics, Biochemistry, and Microbial Ecology. These books are particularly useful for instructors who want to integrate aspects of environmental control of gene expression (response to stresses) in their upper level courses, and they can assign particular chapters to students to present back to the class. It is particularly useful for postdocs and for graduate or advanced undergraduate students who are working in laboratories focused on environmental control of gene expression and adaptation in bacteria to broaden their horizons. It is also very useful for those wanting to familiarize themselves with this field of study.

Frans J. de Bruijn
Acknowledgements

I would like to thank the authors of the chapters for their cooperation and excellent contributions. I would also like to thank Claude Bruand, Marcel Soon, and Isabelle Gairin for their help with the computer work. The Laboratory for Plant-Microbe Interaction (LIPM), the Institut National de Recherche Agronomique (INRA), the Centre National de Recherche Scientifique (CNRS), and the Labex Tulip are gratefully acknowledged for their support of my editorial activities.
List of contributors

Editor

Frans J. de Bruijn
Institut National de Recherche Agronomique and Centre National de Recherche Scientifique (INRA/CNRS) Laboratory of Plant-Microbe Interactions (LIPM), Castanet-Tolosan Cedex, France

Authors

Fethi Ben Abdallah
Laboratory of Genetic, Biodiversity and Bio-resources Valorization, Higher Institute of Biotechnology, Monastir, Tunisia Department of Biology, College of Sciences, Taif University, KSA

Jacqueline Abranches
Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, USA

L. Garry Adams
Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA

Ana Alexandre
Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Évora, Portugal

Hend A. Alwathnani
Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia

Fumio Amano
Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan

Stephanie M. Amato
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA

Nishma D. Appanna
Faculty of Science and Engineering, Laurentian University, Sudbury, Ontario, Canada

Vasu D. Appanna
Faculty of Science and Engineering, Laurentian University, Sudbury, Ontario, Canada

Julija Armalytė
Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania

Patricia Armshaw
Molecular and Structural Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland

Dhruv P. Arora
Department of Chemistry, Stony Brook University, Stony Brook, New York, USA

Cecília M. Arraiano
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

Christopher Auger
Faculty of Science and Engineering, Laurentian University, Sudbury, Ontario, Canada

Philipp Aurass
Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Wernigerode, Germany

Mesrop Ayrapetyan
Department of Biology, The University of North Carolina at Charlotte, Charlotte, North Carolina, USA

Vasco Azevedo
Biological Sciences Institute, Department of General Biology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil

Geunu Bak
Department of Chemistry, KAIST, Daejeon, Korea

Jonathon Baker
Center for Oral Biology, Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA

Deepak Balasubramanian
Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA

Brittany Barreto
Departments of Molecular and Human Genetics, and The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
List of contributors

Cátia Bárria
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

Pallabi Basu
Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India

Thomas Baumgarten
Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden

Gwyn A. Beattie
Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA

Stephanie L. Begg
Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia

Asim K. Bej
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA

Benjamin R. Belvin
Philips Institute for Oral Health Research, Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, USA

Fernando Santos-Benitez
Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK

Jorge A. Benitez
Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, USA

Bork A. Berghoff
Institut für Mikrobiologie und Molekularbiologie, Interdisziplinäres Forschungszentrum (IFZ), Justus-Liebig-Universität, Giessen, Germany

Darja Žgur Bertok
Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia

María Teresa Bes
Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain

Michael Betteken
Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA

Rupak K. Bhadra
Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India

Dvora Biran
Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel

Indranil Biswas
Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA

Jacob P. Bitoun
Department of Microbiology & Immunology, Tulane University, New Orleans, Louisiana, USA

Pablo Bogino
Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina

Elizabeth M. Boon
Department of Chemistry; Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA

Steven Botts
Department of Biology, McMaster University, Hamilton, Ontario, Canada

Afonso M. Bravo
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

Erhard Bremer
Laboratory for Microbiology, Department of Biology; and LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany

Martial Briand
IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France

Jeff R. Broadbent
Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, USA

Mark P. Brynildsen
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA

Alison Buchan
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA

Tobias Busche
Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany

Cedric Cagliero
Jecho Laboratories Inc., Frederick, MD, USA

Shawn Campagna
Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA

M. Cashel
Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
Corinne Cassier-Chauvat
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France

Thiago L.P. Castro
Biological Sciences Institute, Department of General Biology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil

Kok-Gan Chan
Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Tevy Chan
Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada

Dipankar Chatterji
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India

Franck Chauvat
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France

Chiliang Chen
Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA

Lei Chen
Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China

Xiao-jing Chen
State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, People's Republic of China

Gekleng Chhor
Bioscience Division/Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA

Marimuthu Citartan
Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia

Angelina Cordone
Department of Biology, University Federico II of Naples, Naples, Italy

Raul Correa
Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, and The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Esther Costa
Department of Microbiology, Cornell University, Ithaca, New York, USA

Matthew A. Crawford
Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA

Benjamin Cross
Center for Oral Biology, Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA

Diana Vera Cruz
Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA

W. Nathan Cude
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA

Elias Dahlsten
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland

Armelle Darrasse
IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France

Bhabatosh Das
Center for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR-Biotec Science Cluster, Faridabad, Haryana, India

Shreya Dasgupta
Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, West Bengal, India

Shelly Deane
Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa

Daniela De Biase
Istituto Pasteur – Fondazione Cenci Bolognetti, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy

Elaine Cristina Pereira De Martinis
Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo (FCFRP-USP), São Paulo, Brazil

Yağmur Derman
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland

Leon M.T. Dicks
Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa

Linda van Dijk
Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands

Kanak L. Dikshit
Council of Scientific and Industrial Research (CSIR) Institute of Microbial Technology, Chandigarh, India
Huangen Ding
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA

Regina Maria Cavalcanti Pilotto Domingues
Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Fernanda Barbosa dos Reis-Teixeira
Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo (FCFRP-USP), São Paulo, Brazil

Kenneth L. Drake
Seralogix, Limited Liability Company, Austin, Texas, USA

James M. Dubbs
Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand

Delphine Dufour
Dental Research Institute, Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada

Yoko Eguchi
Department of Bioscience, Graduate School of Agriculture, Kinki University, Naka-machi, Nara, Japan

Craig D. Ellermeier
Department of Microbiology, University of Iowa, Iowa City, Iowa, USA

Jan D. van Elsas
Biological Center, University of Groningen, Kerklaan, The Netherlands

Guadalupe Espín
Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico

Mario A. Fares
Instituto de Biología Molecular y Celular de Plantas (C.S.I.C-UPV), Ingeniero Fausto Elio s/n, Valencia, Spain; Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin, Ireland

Robert C. Faustoferri
Center for Oral Biology, Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA

Aurora Fernandez-Astorga
Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain

Ana S. Ferreira
Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

María F. Fillat
Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain

Caroline M. Finn
Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA

Brittany A. Fleming
Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA

Antje Flieger
Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Wernigerode, Germany

Ana Lidia Flores-Mireles
Department of Microbiology, Cornell University, Ithaca, New York, USA

Brian C. Freeman
Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA

Michael Fruci
Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada

Mercedes de la Fuente
Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

Wim Gaastra
Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands

Haichun Gao
Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Jean-Christophe Giard
Unité de Recherche Risques Microbiens (U2RM), Equipe Antibio-résistance, Université de Caen, Caen, France

Walter Giordano
Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina

Fabio Giovannercole
Istituto Pasteur – Fondazione Cenci Bolognetti, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy

Anna Maria Giuliodori
School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
List of contributors

Michael S. Glickman
Immunology Program, Sloan Kettering Institute, New York, New York, USA; Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, USA

Michel Gohar
INRA, AgroParisTech, Génétique microbienne et Environnement UMR1319 MICALIS, Jouy-en-Josas, France

Suey L. Gomes
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

Josefa González
Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

Simon Goto
Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan

Randi L. Guest
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Maude Guillier
CNRS UMR8261 (affiliated with University Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France

Jean-François Guimbaud
IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France

Lain Guio
Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

Kuldeepkumar Ramnaresh Gupta
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India

Richa Gupta
Immunology Program, Sloan Kettering Institute, New York, New York, USA

Joseph A. Hakim
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA

Sarah M. Hammond
Department of Biology, McMaster University, Hamilton, Ontario, Canada

Kook Han
Department of Chemistry, KAIST, Daejeon, Korea

Tomoko Hanawa
Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, Japan

Nabil Hanna
Université Montpellier, Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé (CPBS) and CNRS, FRE 3689, CPBS, Montpellier, France

Rasika M. Harshey
Department of Molecular Biosciences and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA

Martin Haslbeck
Department Chemie, Technische Universität München, Garching, Germany

Hosni M. Hassan
Departments of Poultry Science and Microbiology, North Carolina State University, Raleigh, North Carolina, USA

Jessica L. Hastie
Department of Microbiology, University of Iowa, Iowa City, Iowa, USA

P.J. Hastings
Departments of Molecular and Human Genetics, and The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Robert P. Hausinger
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA

Finbarr Hayes
Faculty of Life Sciences, The University of Manchester, Manchester, UK

Ralf Heermann
Munich Center for integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany

Hermann J. Heipieper
Department Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

Christophe Herman
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA

Tiaan Heunis
Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa; Current address: Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa

Hyouta Himeno
Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan

Chee-Hock Hoe
Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, Kelantan, Malaysia
List of contributors

Patrick Hoernschemeyer
Molecular Microbiology, Biology/Chemistry, University of Osnabrueck, Osnabrueck, Germany

Tamara Hoffmann
Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany

Dagmar Homerova
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic

Kar-Wai Hong
Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Rita Hörák
Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia

Eugenie Huillet
INRA, AgroParisTech, Génétique microbienne et Environnement UMR1319 MICALIS, Jouy-en-Josas, France

Sabine Hunke
Molecular Microbiology, Biology/Chemistry, University of Osnabrueck, Osnabrueck, Germany

Steven Huynh
Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, USA

Wonpil Im
Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas, USA

Arnaud Indiana
IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France

Masayori Inouye
Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Piscataway, NJ, USA

Akira Ishihama
Micro-Nano Technology Research Center and Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan

Shion Ito
Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan

Tina Ivancic
University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana, Slovenia

Jerome Izard
Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA

Marie-Agnès Jacques
IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France

Jonathan Jagodnik
CNRS UMR8261 (affiliated with University Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France

Robert Jedrzejczak
Bioscience Division/Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA

Ding Jun Jin
Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA

Kirsten Jung
Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany

Milda Jurénaitė
Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania

Jörn Kalinowski
Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany

C.W. Kaspar
Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA

Issmat I. Kassem
Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA

Barbara Kędzierska
Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland

Malika Khakimova
Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada

Pratick Khara
Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA

Daun Kim
Department of Chemistry, KAIST, Daejeon, Korea

Kwang-sun Kim
Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Korea

Youngchang Kim
Bioscience Division/Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
Gabriele Klug
Institut für Mikrobiologie und Molekularbiologie, IFZ, Justus-Liebig-Universität, Giessen, Germany

Ichizo Kobayashi
Department of Medical Genome Sciences, Graduate School of Frontier Sciences; and Institute of Medical Science, University of Tokyo, Tokyo, Japan

Stephan Köhler
Université Montpellier, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) and CNRS, FRE 3689, CPBS, Montpellier, France

Hyunmin Koo
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA

Hannu Korkeala
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland

Jan Kormanec
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic

Tino Krell
Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain

Hansi Kumari
Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA

Gabriela Satti Lameu
Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo (FCFRP-USP), São Paulo, Brazil

Younghoon Lee
Department of Chemistry, KAIST, Daejeon, Korea

Joe A. Lemire
Biofilm Research Group, University of Calgary, Calgary, Alberta, Canada

Josh Lensmire
Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA

Vincent Leung
Dental Research Institute, Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada

Céline M. Lévesque
Dental Research Institute, Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada

Janina P. Lewis
Philips Institute for Oral Health Research, Department of Microbiology and Immunology, Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, USA

Yue-zhong Li
State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, People's Republic of China

Yung-Hua Li
Department of Applied Oral Sciences, Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada

Sumei Liao
Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, Colorado, USA

Paloma Liras
Department of Molecular Biology, Section Microbiology, University of León, León, Spain

Leandro Araujo Lobo
Departamento de Microbiología Médica, Instituto de Microbiología Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Dmitry A. Los
Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia

Rogério F. Lourenço
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

Lee Macomber
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA

Victor V. Marchenkov
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Carmen Mata Martín
Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA

Juan F. Martín
Department of Molecular Biology, Section Microbiology, University of León, León, Spain

José Luis Martínez-Guitarte
Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

Irati Martinez-Malaxetxebarria
Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands; and Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain

Kyle L. Martins
Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine; Florida International University, Miami, Florida, USA

Thorsten Mascher
Technische Universität Dresden, Institute of Microbiology, Dresden
Kalai Mathee
Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA

Christopher A. McDevitt
Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia

Sylvia F. McDevitt
Department of Biology, Skidmore College, Saratoga Springs, New York, USA

Miriam Merenciano
Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

Charlotte Michaux
Vogel laboratory, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany

William G. Miller
Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, USA

Erik Mingyar
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic

P.J. Minnick
Department of Biochemistry and Molecular Biology, and The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Kirill S. Mironov
Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia

Rajeev Misra
School of Life Sciences, Arizona State University, Tempe, Arizona, USA

April Mitchell
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA

Mohammad Mohiuddin
Department of Biology, McMaster University, Hamilton, Ontario, Canada

Skorn Mongkolsuk
Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Center of Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence for Environmental Health, Toxicology and Management of Chemicals, Bangkok, Thailand

Leonilde M. Moreira
Instituto de Biologia e Tecnologia, Universidade de Lisboa, Lisboa, Portugal

Iwona Mruk
Department of Microbiology, University of Gdansk, Gdansk, Poland

Matthew A. Mulvey
Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA

Sandhya Muralidharan
Department of Chemistry, Stony Brook University, Stony Brook, New York, USA

Rudy Muts
Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands

Hideaki Nagamune
Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-josanjimacho, Tokushima, Japan

Ivan C. Ndamukong
Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA

José F. da Silva Neto
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil

Dao Nguyen
Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada

Lindsey Nielsen
Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA

Fiorela Nievas
Departamento de Biología Molecular, Universidad Nacional de Río Cuyto, Río Cuyto, Córdoba, Argentina

Lígia S. Nobre
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

Joy D. Van Nostrand
Institution for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States

Renata Novakova
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic

Galina V. Novikova
Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia

María Angélica Bravo Núñez
Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, and The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
Klaus Nüsslein
Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA

Taylor S. Oberg
Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah, USA

Alessandra Occhialini
Université Montpellier, Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé (CPBS); and CNRS, FRE 3689, CPBS, Montpellier, France

Solangi Oliveira
ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA – Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal

James D. Oliver
Department of Biology, The University of North Carolina at Charlotte, Charlotte, North Carolina, USA; Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, North Carolina, USA

Safia Ouahraoui-Bettache
Université Montpellier, Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé (CPBS) and CNRS, FRE 3689, CPBS, Montpellier, France

Luis G.C. Pacheco
Health Sciences Institute, Federal University of Bahia, Salvador, Bahia, Brazil

Samantha Palethorpe
Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA

Yongxin Pan
Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences; and France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Sundar Pandey
Department of Biological Sciences, College of Arts & Sciences, Florida International University, Miami, Florida, USA

Craig T. Parker
Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, USA

James C. Paton
Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia

Maria Luisa Peleato
Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain

J. Tony Pembroke
Molecular and Structural Biochemistry Laboratory, Materials and Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland

Eugenia Pennacchietti
Istituto Pasteur – Fondazione Cenci Bolognetti, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy

Sangita Phadtare
Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA

Anne C. Pinto
Biological Sciences Institute, Department of General Biology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil

Daniela Pinto
Technische Universität Dresden, Institute of Microbiology, Dresden

Vânia Pobre
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

Keith Poole
Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada

K. Potrykus
Department of Molecular Biology, University of Gdansk, Gdansk, Poland; Program in Genomics of Differentiation, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA

Zach Pratt
Department of Biology, St. Norbert College, De Pere, Wisconsin, USA

Jos P.M. van Putten
Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands

Robert G. Quivey Jr.
Center for Oral Biology, Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA

Carsten A. Raabe
Institute of Experimental Pathology (ZMBE), University of Muenster, Muenster, Germany; Institute of Evolutionary and Medical Genomics, Brandenburg Medical School (MHB), Neuruppin, Germany

Tracy L. Raivio
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Chellaiah Edward Raja
Microbial Food-Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, The Volcani Center, Bet Dagan, Israel
Govindan Rajamohan
Bacterial Signaling and Drug Resistance Laboratory, Council of Scientific
Industrial Research – Institute of Microbial Technology, Chandigarh, India

Gireesh Rajashekara
Food Animal Health Research Program, Ohio Agricultural Research and
Development Center, Department of Veterinary Preventive Medicine, The
Ohio State University, Wooster, Ohio, USA

Qiang Ren
Laboratory of Synthetic Microbiology, School of Chemical Engineering and
Technology, Tianjin University, Tianjin, PR China

Christopher Rensing
Department of Plant and Environmental Science, University of
Copenhagen, Frederiksborg, Denmark; Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences,
Xiamen, People’s Republic of China

Bronislava Rezuchova
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava,
Slovak Republic

Gregory R. Richards
Biological Sciences Department, University of Wisconsin–Parkside,
Kenosha, Wisconsin, USA

Mario Rivera
Ralph N. Adams Institute for Bioanalytical Chemistry and Department of
Chemistry, University of Kansas, Lawrence, Kansas, USA

Jonathan L. Robinson
Department of Chemical and Biological Engineering, Princeton University,
Princeton, New Jersey, USA

Elizabeth Rogers
Departments of Molecular and Human Genetics, Biochemistry and
Molecular Biology, Molecular Virology and Microbiology, and The Dan L
Duncan Comprehensive Cancer Center, Baylor College of Medicine,
Houston, Texas, USA

Adisak Romsang
Center of Emerging Bacterial Infections, Faculty of Science, Mahidol
University, Bangkok, Thailand; Department of Biotechnology, Faculty of
Science, Mahidol University, Bangkok, Thailand

Eliora Z. Ron
Department of Molecular Microbiology and Biotechnology, Tel Aviv
University, Tel Aviv; and MIGAL – Galilee Research Institute, Kiriat
Shemona, Israel

Susan M. Rosenberg
Departments of Molecular and Human Genetics, Biochemistry and
Molecular Biology, Molecular Virology and Microbiology, and The Dan L
Duncan Comprehensive Cancer Center, Baylor College of Medicine,
Houston, Texas, USA

Timofey S. Rozhdestvensky
Institute of Experimental Pathology (ZMBE), University of Muenster,
Muenster, Germany

Karl-Gustav Rueggeberg
Department of Microbiology, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, Pennsylvania, USA

Huan Rui
Department of Molecular Biosciences and Center for Computational
Biology, The University of Kansas, Lawrence, Kansas, USA

Nataliya A. Ryabova
Institute of Protein Research, Russian Academy of Sciences, Pushchino,
Moscow Region, Russia

Gina T. Ryan
Department of Microbiology, Cornell University, Ithaca, New York, USA

Gowthami Sampathkumar
Research Institute of the McGill University Health Centre, Montreal,
Quebec, Canada

Brendaliz Santiago
Center for Oral Biology, Eastman Institute for Oral Health, School of
Medicine and Dentistry, University of Rochester, Rochester, New York,
USA

Mário R. Santos
Institute for Bioengineering and Biosciences (iBB), Instituto Superior
Técnico, Universidade de Lisboa, Lisboa, Portugal

Ligia M. Saraiva
Instituto de Tecnologia Química e Biológica António Xavier, Universidade
Nova de Lisboa, Oeiras, Portugal

Olga M. Selivanova
Institute of Protein Research, Russian Academy of Sciences, Pushchino,
Moscow Region, Russia

Gennady V. Semisotnov
Institute of Protein Research, Russian Academy of Sciences, Moscow
Region, Russia

Herb E. Schellhorn
Department of Biology, McMaster University, Hamilton, Ontario, Canada

Hannah Schramke
Munich Center for integrated Protein Science (CiPSM) at the Department
of Biology I, Microbiology, Ludwig-Maximilians-Universität München,
Martinsried, Germany

Jörg Schumacher
Department of Life Sciences, Imperial College London, London, UK

Shlomo Sela (Saldinger)
Microbial Food-Safety Research Unit, Department of Food Quality and
Safety, Institute for Postharvest and Food Sciences, The Volcani Center, Bet
Dagan, Israel

Beatrica Sevcikova
Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava,
Slovak Republic
Konstantin Severinov
Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia; and Skolkovo Institute of Science and Technology, Skolkovo, Russia

Nubia Seyffert
Biological Sciences Institute, Department of General Biology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil; and Institute of Biological Sciences, Federal University of Pará, Belem, Guama, Belem, Pará, Brazil

Umender K. Sharma
Bangalore, India

Kevin Y. Shih
Department of Microbiology, Cornell University, Ithaca, New York, USA

Megan Shiroda
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan; and Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA

Anisia J. Silva
Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, USA

Artur Silva
Institute of Biological Sciences, Federal University of Pará, Belém, Guamá, Belém, Pará, Brazil

Inês N. Silva
Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Priya Sivaramakrishnan
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA

C. Jeffrey Smith
Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA

Alberto Sola-Landa
INBIOTEC, Institute of Biotechnology, León, Spain

Vijaya Bharathi Srinivasan
Bacterial Signaling and Drug Resistance Laboratory, Council of Scientific Industrial Research – Institute of Microbial Technology, Chandigarh, India

Andrew J. Stasic
Department of Microbiology, University of Georgia, Athens, Georgia; and Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA

David Stopar
University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana, Slovenia

Edita Sužiedėliénė
Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania

Hedvig Tamman
Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia

Thean-Hock Tang
Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia

Timothy Tapscott
Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado, USA

Takefusa Tarusawa
Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan

Felipe Lopes Teixeira
Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Denis Thieffry
Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, UMR CNRS 8197 and INSERM 1024, Paris, France

Xiao-Lin Tian
Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada

Toshifumi Tomoyasu
Department of Biological Science and Technology, Institute of Technology and Science, Tokushima University Graduate School, Minami-joanjima-cho, Tokushima, Japan

Jack T. Trevors
Laboratory of Microbiology, School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

Bryan Troxell
Department of Poultry Science and Microbiology, North Carolina State University, Raleigh, North Carolina, USA

Ching-Sung Tsai
Department of Microbiology, Cornell University, Ithaca, New York, USA

Raymond J. Turner
Biofilm Research Group, University of Calgary, Calgary, Alberta, Canada

Anna Ullastres
Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

Ryutaro Utsumi
Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara, Japan
List of contributors

Daniel Vázquez-Sánchez
Seafod Microbiology and Technology Section, Marine Research Institute, Spanish National Research Council (IIM-CSIC), Vigo, Spain

Andrés Vázquez-Torres
Molecular Biology Program, Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora; and Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA

Jan A.C. Vriezen
Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA

Fen Wan
Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Jiangxin Wang
Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China

Lu Wang
State Key Laboratory of Oral Diseases, West China Hospital of Stomatoty, Sichuan University, Chengdu, People's Republic of China

Yan Wang
Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, Kansas, USA

Yan Wang
State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan and College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China

Yang Wang
Munich Center for integrated Protein Science (GIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany

Yingzhao Wang
Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences; and France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Zezhang T. Wen
Center for Oral and Craniofacial Biology, Department of Comprehensive Dentistry and Biomaterials, and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA

Tiffany C. Williams
Department of Biology, The University of North Carolina at Charlotte, Charlotte, North Carolina, USA

Stephen C. Winans
Department of Microbiology, Cornell University, Ithaca, New York, USA

Thomas C. Winans
Department of Microbiology, Cornell University, Ithaca, New York, USA

Lizziane Kretli Winkelströter
Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo (FCFRP-USP), São Paulo, Brazil

Marc M.S.M. Wösten
Department of Infectious Diseases and Immunology, Utrecht University, Yelelaan, The Netherlands

Gang Wu
Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, Maryland, USA

Jun Xia
Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA

Jin Xiao
Center for Oral Biology, Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA

Xin Xu
State Key Laboratory of Oral Diseases, West China Hospital of Stomatoty, Sichuan University, Chengdu, People's Republic of China

Yoshihiro Yamaguchi
The OCU Advanced Research Institute for Natural Science and Technology (OCARINA); Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan

Huili Yao
Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, Kansas, USA

Wai-Fong Yin
Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Bei-Wen Ying
Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

Tetsuya Yomo
Graduate School of Information Science and Technology, Osaka University, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan

Jie Yuan
Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China

Weiwen Zhang
Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
Aifen Zhou
Institution for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States

Jizhong Zhou
Institution for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China

Yan Ning Zhou
Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA

Jun Zhu
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Anna A. Zorina
Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia