OPERATOR'S GUIDE TO GENERAL PURPOSE

STEANS TURBINES

ROBERT X. PEREZ and DAVID W. LAWHON

Operator's Guide to General Purpose Steam Turbines

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Operator's Guide to General Purpose Steam Turbines

An Overview of Operating Principles, Construction, Best Practices, and Troubleshooting

> Robert X. Perez and David W. Lawhon

Copyright © 2016 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate percopy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.

Cover design by Kris Hackerott

Library of Congress Cataloging-in-Publication Data:

ISBN 978-1-119-29421-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

We dedicate this book to our families for their constant support and encouragement.

Contents

Preface			xiii	
Acknowledgements			xix	
1	Intro	1		
	1.1	Why Do	o We Use Steam Turbines?	1
	1.2	How Ste	2	
		1.2.1	Steam Generation	5
		1.2.2	Waste Heat Utilization	5
		1.2.3	The Rankine Cycle	7 8
	1.3	B Properties of Steam		
			Turbine Design Configurations	11
	1.4		nd Water Requirements	13
			Steam Conditions for Steam Turbines	13
			Water Conditions for Steam Turbines	13
			Advantages of Steam Turbine Drives	14
			Speed Control	16
	_		Turbine Overspeed Protection	17 18
	Questions			
	Ans	wers		19
2	Gene	ral Purp	ose Back Pressure Steam Turbine	21
	2.1	Single-S	Stage Back Pressure Steam Turbine	22
			Steam Flow Path	23
2.2 N		Mechan	Mechanical Components in General Purpose	
		Back Pr	essure Steam Turbines	31
		2.2.1	Radial and Thrust Bearings	31
			Bearing Lubrication	33
			Force Lubrication Systems	37
			Lubrication	38
		2.2.5	Bering Housing Seals	40

	2.1	2.6 Lip Seals	41	
		2.7 Labyrinth Seals	42	
	2.1	2.8 Steam Packing Rings and Seals	44	
	Questio		48	
	Answer	S	49	
3	Routine Steam Turbine Inspections			
	Questio	ns	56	
	Answer	S	56	
4	Steam Turbine Speed Controls and Safety Systems			
		troduction	59	
	1	peed Controls	60	
		overnor Classes	68	
		verspeed Trip System	77	
		verpressure Protection	81	
		dditional Advice	83	
	Questio		83	
	Answer	S	84	
5	The Importance of Operating Procedures			
		eam Turbine Start-up Risks	87	
		arting Centrifugal Pumps and Compressors	91	
		eam Turbine Train Procedures	93	
		raining Options	95	
	Questio		97	
	Answer	S	98	
6	Overspe	ed Trip Testing	101	
		verspeed Trip Pre-test Checks	104	
		ncoupled Overspeed Trip Test Procedure	106	
		cceptance Criteria for Overspeed Trip Test	110	
	Questio		113	
	Answer	S	114	
7	Centrifugal Pump and Centrifugal Compressor			
		s with a Steam Turbine Driver	115	
		entrifugal Pump and Steam Turbine Start-up	117	
		entrifugal Compressor and Steam Turbine Start-up	125	
	Questio		134	
	Answer	S	134	

8	Cent	rifugal	Pump and Centrifugal Compressor	
	Shute	downs v	with a Steam Turbine Driver	137
	8.1	Centri	ifugal Pump Steam Turbine Shutdown	139
	8.2	Centri	ifugal Compressor Steam Turbine Shutdown	141
	Que	stions		144
	Ans	wers		145
9	Insta		, Commissioning and First Solo Run	147
	9.1	Introd	luction	147
	9.2		ment Installation	148
			Foundations	148
		9.2.2	Grouting	150
			Piping	157
	9.3		nissioning	160
			Steam Blowing	162
			Strainers	165
			Lubrication	167
			Oil Sump Lubrication	167
			Flushing Pressure Lubricated System	169
			Hydraulic Governors	172
	9.4		ne First Solo Run on Site	174
			First Solo Run Pre-checks	175
		9.4.2	Steam Turbine First Solo Run Procedure	179
	-	stions		186
	Ans	wers		187
10	Reins	•	Steam Turbine after Maintenance	189
	10.1		ine Reinstatment after Maintenance	189
	10.2		statement after Maintenance Check List	190
	10.3		n Turbine Reinstatement after Maintenance	
			edure	194
	-	stions		201
	Ans	wers		202
11	Steam Turbine Reliability			205
		-	irs versus Overhauls	205
	11.2	-	ected Lifetimes of Steam Turbines and	
			r Components	206
	11.3		mon Failure Modes	207
	11.4	-	ovement Reliability by Design	211
	-	stions		214
	Answers			215

12	Introd	uction to	o Field Troubleshooting	217
	12.1	Common Symptoms		
	12.2	Common Potential Causes		
	12.3			
	12.4	Troubleshooting Example #2		
	12.5	0 1		
	12.6	•		
	Quest		0 11	231
	Answ	ers		232
13	Steam	Turbine	Monitoring Advice	235
	13.1		the Steam Turbine Speed Telling You?	236
		13.1.1	Is the Steam Turbine Running	
			at the Correct Speed?	236
		13.1.2	Is the Speed Steady?	237
		13.1.3	Is a Speed Swing Acceptable?	237
	13.2	Assessii	ng Steam Turbine Vibrations	238
		13.2.1	What is Normal?	238
		13.2.2	What are Some Causes of Vibration in	
			Steam Turbines?	239
	13.3	Steam T	urbine Temperature Assessments	243
		13.3.1	Bearing Temperatures	243
		13.3.2	Oil Temperatures	243
	13.4	Commo	on Governor Control Problems	244
		13.4.1	Steam Turbine Loss of Power	245
		13.4.2	Steam Turbine Sealing	245
		13.4.3	Oil Analysis as it Applies to Steam Turbines	247
		13.4.4	Formation of Sludge and Varnish	248
		13.4.5	Steam Piping and Supports	249
		13.4.6	11	250
		13.4.7	Overspeed Trip Systems	251
	13.5	1		252
	13.6	Good R	ules of Thumb for Steam Turbines	253
	Quest	ions		255
	Answ	ers		256
14	Beyon	d Start-u	ıps, Shutdowns, and Inspections	257

Appendix A: An Introduction to Steam Turbine Selection	261
Appendix B: Glossary of Steam Turbine Terms	289
Appendix C: Predictive and Preventative Maintenance Activities	299
Appendix D: Properties of Saturated Steam	301
Index	305

Preface

"We are what we repeatedly do. Excellence, then, is not an act, but a habit." —*Aristotle*

If you operate steam turbines in your plant you are probably asking: Why do I need a whole book devoted to steam turbine operations? The short answer is because we all want our steam turbines to operate reliably and safely during their lifetimes and to avoid nasty surprises, such as massive failures, unexpected outages or injuries. Owners of steam turbines should continuously strive to protect life, limb and property and minimize the life cycle costs through the use of proven operating practices like those contained in this book. The best practices presented in this book can be used as a basis for your plant's steam turbine reliability program and operating procedures.

The life cycle cost (LCC) of a machine is the total of the purchase, installation, repair, and operating costs incurred throughout its lifetime. As an operator the only way to affect a steam turbine LCC is by minimizing maintenance cost. This is accomplished by employing proven start-up procedures that will minimize undue stresses and erosion and by monitoring them in order to detect minor issues before they lead to costly repairs. General purpose (GP) steam turbine drivers present operators with special challenges because they tend to have a minimum of automation and instrumentation which makes their reliability dependent on the skill and knowledge of their caretakers. In other words, their reliability is dependent on the quality of human implemented procedures and human-based monitoring methods.

When installed and operated properly, GP steam turbines are reliable and tend to be forgotten, "out of sight, out of mind". But these sleeping giants can create major headaches if ignored. Three real steam turbine undesirable consequences that immediately come to mind are:

Injury and secondary damage due to an overspeed failure. An overspeed failure on a large steam or gas turbine is one of the most frightening of industrial accidents. A huge amount of thermal, chemical, and mechanical energy is contained within a large steam turbine when it is in service. If the rotational speed of the steam turbine ever exceeds its safe operating limits, the main shaft and impeller wheels can be pulled apart by centrifugal force, releasing a tremendous amount of energy. In the worst case, the disintegrating parts can

break through the turbine housing and fling hot, fast-moving shards of metal in all directions. The results of such a failure are always very costly due to the peripheral equipment damage and can sometimes be fatal to personnel in the area.

- The high cost of an extensive overhaul due to an undetected component failure. The cost of a major steam turbine repair can run ten or more times that of a garden variety centrifugal pump repair. If an early failure is not detected, it will usually result in a more costly failure. For example, a simple packing leak can result in oil contamination, which can lead to a bearing failure, which can lead to major rotor damage. Repair cost can rapidly escalate if the chain of failure events is not stopped early, i.e., in the primary stage.
- Costly production losses due an extended outage if the driven pump or compressor train is unspared. The value of lost production can quickly exceed repair costs. Extending the mean time between repairs though the implementation of best practices will in turn reduce production downtime and dramatically increase overall profits.

A major goal of this book is to provide readers with detailed operating procedure aimed at reducing these

risks to minimal levels. Start-ups are complicated by the fact that operators must deal with numerous scenarios, such as:

- 1. Overspeed trip testing
- 2. Starting up a proven steam turbine driver after an outage
- 3. Shutting down a steam turbine driving a centrifugal pump or centrifugal compressor
- 4. Commissioning a newly installed steam turbine
- 5. Starting up after a major steam turbine repair

It is not enough to simply have a set of procedures in the control room for reference. To be effective, operating procedures must be clearly written down, taught, and practiced—until they become habit. Operators must be fully committed to following the prescribed steam turbine operating procedure every time and carefully monitoring them in the field in order to detect signs of early failures before serious damage is done. To support this commitment this book will:

- Provide operators with a broad exposure to the principles of steam turbine design and operations
- Explain common failure modes and how they can be prevented or mitigated and

• Provide proven operating procedures that can protect your steam turbines from costly and dangerous failures.

The authors hope the reader will find the contents of this book to be useful and applicable in their present assignment. We also hope the ideas and suggestions provided here compel you to commit yourself to operational excellence.

Robert X. Perez and David W. Lawhon

Acknowledgements

The authors thank the following individuals who helped in various aspects of the book development:

- Ron Reeves for providing steam turbine reliability data
- Julien LeBleu for providing steam turbine inspection guidelines
- Danny Lawhon for providing an operator's perspective on turbine procedures
- Elaine Perez and Carolyn Dulak for proofreading and editing the manuscript
- Tom Brown and David Pribish with Elliott Group, Jeanne Lasley with Woodward Inc., and Jason Putnam with Inpro/Seal LLC for expediting the approval of photos and drawings

1

Introduction to Steam Turbines

1.1 Why Do We Use Steam Turbines?

Steam turbine drivers are prime movers that convert the thermal energy present in steam into mechanical energy through the rotation of a shaft. Industrial steam turbines fit into one of two general categories: generator drives and mechanical drives. Generator drives include all turbines driving either synchronous or induction generators for power generation. In this book, we will cover primarily steam turbines used in the petrochemical industry as mechanical drives for centrifugal pumps and centrifugal compressors. In mechanical drives, the rotational energy is transmitted to a process machine that in turn 2 Operator's Guide to General Purpose Steam Turbines

Figure 1.1 General purpose steam turbine. (Courtesy of Elliott Group)

converts it into fluid energy required to provide flow for a given process.

Heat energy \rightarrow Steam energy \rightarrow Rotational energy \rightarrow Fluid energy

1.2 How Steam Turbines Work

Steam turbines are relatively simple machines that use high-velocity steam jets to drive a bladed wheel that is attached to a rotating shaft. Figure 1.2 depicts an impulse-type steam turbine in its most basic form: A steam nozzle and a bucketed, rotating wheel.

In this design, high-pressure steam is accelerated to a high velocity in the stationary nozzle and then directed onto a set of blades or buckets attached to a wheel. As the steam jet impacts the buckets, it is deflected and then leaves the scene. The change in

Figure 1.2 Basic impulse steam turbine.

momentum involved in the steam's deflection generates a force that turns the wheel in the direction opposite of the incoming steam jet. If the wheel is affixed to a shaft and supported by a set of bearings, rotational power can be transmitted via the output shaft.

To produce useful work in a safe and reliable manner, an impulse-type steam turbine, at a minimum, must contain:

- 1. A bladed wheel that is attached to a shaft.
- 2. A set of stationary steam nozzles capable of accelerating high-pressure steam to create high velocity jets. (See the steam nozzle in Figure 1.3.)
- 3. A pressure-containing casing.
- 4. Seals that can control steam leakage from traveling down the shaft. (See carbon packing end seals in Figure 1.3.)
- 5. A governor system capable of controlling rotating speed within design specifications. (Speed governor in Figure 1.3.)

4 Operator's Guide to General Purpose Steam Turbines

Figure 1.3 Cross section of an impulse steam turbine.

Governor systems fall into two main categories: hydraulic and electronic.

6. A coupling that can transmit power from the steam turbine to an adjacent centrifugal machine.

Steam turbines can be rated anywhere from a few horsepower to around a million horsepower. They can be configured to drive generators to produce electricity, or mechanical machines such as fans, compressors, and pumps. Steam turbines can be designed to operate with a vertical or horizontal rotor, but are most often applied with horizontal rotors.

1.2.1 Steam Generation

Steam is either generated in a boiler or in a heat recovery steam generator by transferring the heat from combustion gases into water. When water absorbs enough heat, it changes phase from liquid to steam. In some boilers, a super-heater further increases the energy content of the steam. Under pressure, the steam then flows from the boiler or steam generator and into the distribution system.

1.2.2 Waste Heat Utilization

Waste heat conversion is the process of capturing heat discarded by an existing industrial process and using that heat to generate low-pressure steam. Energy-intensive industrial processes—such as those occurring at refineries, steel mills, glass furnaces, and cement kilns—all release hot exhaust thermal energy in the form of hot liquid streams that can be captured using waste heat boilers (see Figure 1.4).

Figure 1.4 Waste heat boiler.

6 Operator's Guide to General Purpose Steam Turbines

Figure 1.5 Steam drum.

The steam from waste heat boilers can be utilized for heating purposes or to power steam turbines.

Steam systems all tend to have the following elements:

- Boiler—A process subsystem that uses a fired fuel or waste heat to turn condensate into high-pressure steam. Steam is typically collected in a steam drum (see Figure 1.5)
- Steam Turbine—A rotating machine that converts high-pressure steam energy into shaft power
- Process Waste Heat Recovery or Condenser—A part of the process that recovers sufficient lower pressure steam heat to condense all the steam back to condensate

• Boiler Feedwater Pump—A liquid pump that raises condensate pressure back to boil pressure so that it can be returned to the steam boiler

1.2.3 The Rankine Cycle

The Rankine cycle is the thermodynamic basis for most industrial steam turbine systems. It consists of a heat source (boiler) that converts water to highpressure steam. In the steam cycle, water is first pumped up to elevated pressure and sent to a boiler. Once in the boiler, liquid water is then heated to the boiling temperature corresponding to the system pressure until it boils, i.e., transforms from a liquid into water vapor. In most cases, the steam is superheated, meaning it is heated to a temperature above that required for boiling. The pressurized steam is: (a) transmitted via piping to a multistage turbine, where it is (b) expanded to lower pressure and then (c) exhausted either to a condenser at vacuum conditions or into an intermediate temperature steam distribution system. Intermediate pressure steam is often used for other process applications at a nearby site. The condensate from the condenser or from the industrial steam utilization system is returned to the feedwater pump for continuation of the cycle.

Primary components of a boiler/steam turbine system are shown in Figure 1.6.

8 Operator's Guide to General Purpose Steam Turbines

Figure 1.6 Components of a boiler/steam turbine system.

1.3 Properties of Steam

Water can exist in three forms, ice, liquid and gas. If heat energy is added to water, its temperature will rise until it reaches the point where it can no longer exist as a liquid. We call this temperature the "saturation" point, where with any further addition of heat energy, some of the water will boil off as gaseous water, called steam. This evaporation effect requires relatively large amounts of energy per pound of water to convert the state of water into its gaseous state. As heat continues to be added to saturated water, the water and the steam remain at the same temperature, as long as liquid water is present in the boiler.

The temperature at which water boils, also called boiling point or saturation temperature, increases as the pressure in the vapor space above the water