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This edition of the SFPE Handbook of Fire Protection
Engineering is dedicated to Philip DiNenno, who was the editor
in chief for the first four editions of this handbook. In the
mid-1980s, Phil DiNenno, Jack Watts, Doug Walton, Craig
Beyler, and Dick Custer had an idea to create a collection
of calculation methods for fire protection engineering.
From this idea emerged the SFPE Handbook of Fire Protection
Engineering, which was first published in 1988.

No other single event had as significant an impact on
establishing the profession of fire protection engineering
as the publication of this handbook. As Vyto Babrauskas said:
“The field [of fire protection engineering] has made very
gratifying progress in these last four decades. . .. The most
remarkable positive achievement I think has been the SFPE
Handbook, published first in 1988. . . . [W]ith the publication
of the first edition of the SFPE Handbook in 1988, all of a
sudden we could properly describe this as a science-based
profession.” [Babrauskas, V. “Some Neglected Areas in Fire
Safety Engineering,” Fire Science and Technology
Vol. 32 No. 1 (2013) pp. 35–48.]

When they began creating the first edition, Phil and his
colleagues had no model other than handbooks used in other
professions. Phil contributed the leadership, vision, and moti-
vation necessary to develop the handbook, and he did so using
entirely volunteer resources. This would be an incredible
accomplishment for anyone. Phil did it before he turned 35.





Foreword

This edition marks a passing of the torch for the SFPE Handbook of Fire

Protection Engineering. All of the editors of the prior editions except for two

(Jack Watts and John Hall) have retired, and a new editorial team has taken

their place. Additionally, Springer has assumed the role of publisher begin-

ning with this edition.

For the first four editions, the SFPE Handbook of Fire Protection Engi-

neering was published by the National Fire Protection Association. The

Society of Fire Protection Engineers owes a debt of gratitude to NFPA.

Without their encouragement and confidence, this handbook might never

have existed.

With a new editorial team emerge many changes. The chapters relevant to

human behavior in fire have been significantly refocused and augmented. The

fundamental engineering chapters have been revised to provide a better

foundation for the chapters that follow. Many new chapters related to fire

protection system selection and design have been added. The chapters

associated with fire resistance design have been modified to reflect advances

over the last decade. And, this edition includes several new chapters pertinent

to industrial fire protection.

The editors owe a debt of gratitude to those whom they follow. Continuing

a successful endeavor is much easier than launching it.
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Metrication

The editors of the SFPE Handbook of Fire Protection Engineering have

worked toward the expanded use of SI units for this fifth edition. In some

instances, however, US customary units have been retained. For example,

when equations, correlations, or design methodologies have input variables

or constants that have been developed from data originally in US customary

units, those units are retained. This is also the case for certain tables, charts,

and nomographs. Where equations employing US customary units are used

in worked examples, the results are presented as SI units as well.

xi
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Introduction to Fluid Mechanics 1
Bart Merci

Fluid Properties

In this section, a number of fluid properties are

defined. An implicit assumption in the classical

fluid mechanics is the ‘continuum hypothesis’,

implying that we treat fluids as continuous

media, not as an ensemble of individual

molecules [1]. This is justified in ‘normal’

circumstances. This way, the fluid and flow

quantities are continuous and local quantities to

be interpreted as averages over a volume V*

which is very small (but still very large when

compared to distances between molecules).

This assumption allows to define local fluid and

flow properties (e.g. velocity vectors). The con-

tinuum hypothesis is adopted here.

A fluid can be a liquid or a gas (vapour).

Density

The mass density is the amount of fluid mass

inside a volume:

ρ ¼ m

V
: ð1:1Þ

Its unit is kg/m3.

In a variable density flow, the density can vary

in space and time and the local density at a

certain time is defined as in Equation 1.1, taking

the local limit for a small volume.

In an incompressible flow, the density does

not vary. In general, liquids can be considered

‘incompressible’. In gases, the density can vary

due to variations in pressure or temperature (see

below: ideal gas law).

The reciprocal of density is the ‘specific vol-

ume’ (m3/kg).

Viscosity

Fluids can flow. The viscosity is the fluid prop-

erty that indicates how easily molecules can

move with respect to each other. Fluid particles

with different velocity have the tendency to

evolve to the same common velocity, through

exchange of momentum. In other words, fluid

layers with different velocities exert a shear

stress τ onto each other. Most technically rele-

vant fluids are ‘Newtonian’: the shear stress

increases linearly with the strain rate

(or velocity gradient):

τ ¼ μ
dv

dy
: ð1:2Þ

The unit of τ is Pa (¼ N/m2).

The proportionality factor, relating the veloc-

ity gradient to the shear stress, is the dynamic

viscosity μ (unit: Pa.s).

In gases, μ typically increases with tempera-

ture, whereas in liquids it decreases with increas-

ing temperature.

B. Merci (*)

Department of Flow, Heat and Combustion Mechanics,

Ghent University, Ghent, Belgium

M. Hurley (ed.), SFPE Handbook of Fire Protection Engineering,
DOI 10.1007/978-1-4939-2565-0_1, # Society of Fire Protection Engineers 2016
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Sometimes, the kinematic viscosity is used:

ν ¼ μ

ρ
: ð1:3Þ

Its unit is m2/s.

The shear stress, Equation 1.2, causes friction

losses in case of flow. The higher the viscosity,

the larger the flow losses become for the same

velocity gradient. In other words, the resistance

of the fluid against (imposed) flow increases with

increasing viscosity.

The viscosity of a fluid is never zero. The

important implication is that, whenever there is

a solid boundary, this boundary always exerts an

influence on the flow field (e.g. causing the

development of a boundary layer).

Specific Heat

The specific heat or thermal capacity, c, is the

amount of energy required to cause a temperature

rise of 1 K (or 1 �C) in 1 kg of the fluid. Its unit is
J/(kg.K).

In gases the value of the specific heat depends

on the circumstances under which the energy is

supplied. If the pressure is kept constant, the

notation is cp. If the volume is kept constant,

the notation is cv. The difference between the

two values is called the gas constant R (also in

J/(kg.K)):

c p ¼ cV þ R: ð1:4Þ

For liquids and solids, cp � cv.

Conduction Coefficient

The conduction coefficient expresses how easily

heat flows inside a material. Its value indicates

the heat flux per unit area (W/m2) related to a

spatial temperature gradient (K/m):

_q
!
¼ �k∇T ¼ �λ∇T: ð1:5Þ

This is Fourier’s law. The minus sign indicates

that the heat flux is always from high temperature

to low temperature.

The unit of the conduction coefficient (k or λ)
is W/(m.K).

The conduction coefficient, specific heat and

density can be combined to obtain the thermal

diffusivity:

α ¼ k

ρc
ð1:6Þ

The unit of α is m2/s.

Diffusion Coefficient

In a mixture of fluids (see below), one species

can diffuse in the mixture due to concentration

gradients of that species in the mixture. It is

common practice to apply Fick’s law for many

flows:

J
!
k ¼ �ρDk∇Y: ð1:7Þ

The diffusion coefficient D thus provides the

relation between the diffusion flux Jk (kg/(m
2s))

of species k and the spatial gradient of the local

mass fraction Yk (i.e. the amount of mass of

species k per kg mixture) of that species. The

minus sign expresses that the diffusion flux is

always from higher concentration to lower

concentration.

The unit of D is m2/s.

Dimensionless Groups of Fluid
Properties

By combining the fluid properties, dimension-

less groups can be constructed. Indeed, the

units of ν, α and D are the same (m2/s). Physi-

cally, the interpretation is that ν tries to make

the velocity field uniform inside a fluid
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(through exchange of momentum), α tries to

make the temperature field uniform (through

heat exchange by conduction) and D tries to

make the concentration field in a mixture

homogeneous (through concentration gradient

driven diffusion).

The resulting dimensionless groups read:

– The Prandtl number:

Pr ¼ ν

α
¼ μc p

λ
¼ μc p

k
: ð1:8Þ

– The Schmidt number:

Sc ¼ ν

D
: ð1:9Þ

– The Lewis number:

Le ¼ α

D
: ð1:10Þ

Clearly, these numbers are connected:

Le ¼ Sc:Pr�1.

It is important to note that the dimensionless

numbers Equations 1.8, 1.9, and 1.10 are still

fluid properties, not flow properties.

As long as no mixtures are considered, the

Prandtl number is the most relevant dimension-

less fluid property, when heat transfer is an issue.

State Properties

State properties describe the state of the fluid, not

the material properties of the fluid.

Pressure

The pressure (p) can be defined as the normal

force per unit area at a certain point. The unit is

Pa. Pressure differences are the driving force for

fluid flows.

Temperature

The unit of temperature (T) is Kelvin (K). The

temperature must not be confused with heat (the

unit of which is Joule, J).

Internal Energy

The local motion of molecules in a fluid is related

to the internal energy (e or u, with unit J/kg). This

is a measure for the thermal energy.

Enthalpy

The quantity (static) enthalpy (h, with unit J/kg)

is related to the internal energy through addition

of pressure, divided by mass density:

h ¼ uþ p

ρ
¼ eþ p

ρ
: ð1:11Þ

Entropy

The entropy is a measure for the disorder in the

fluid. It is related to the second law of thermody-

namics. This quantity is typically not particularly

relevant for fire related issues.

Equation of State

Liquids

In liquids, the density is essentially constant,

relatively very weakly dependent on pressure

and temperature. Yet, the general expression

that provides the equation of state defines the

relation between density, temperature and

pressure:

ρ ¼ f p; Tð Þ ð1:12Þ

Gases: Ideal Gas Law

In gases, it is common practice to specify Equa-

tion 1.12 as the ‘ideal gas law’:

p ¼ ρRT ð1:13Þ
For fire related flows, this is justified. Most gases

behave as air would do and air behaves as an

ideal gas (with the exception of extremely low or
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high pressure or temperature, but this is not rele-

vant for real-life fire applications). The gas con-

stant R (J/(kg.K)) has been introduced in

Equation 1.4 and the temperature T is expressed

in Kelvin (K).

Mixtures

In fire related flows, the fluid can be a mixture.

Obvious examples are smoke or flames. A dis-

tinction must be made between chemical and

physical issues. If toxicity is an issue, chemical

aspects are important. As long as the flow itself is

concerned, the physical behaviour of many gas-

eous mixtures resembles very much the

behaviour of hot air. One reason is that the spe-

cies most often encountered, have comparable

diffusivities (with the important exception of

hydrogen, which has a much higher diffusivity).

Another reason is that typically by far mixtures

in fire related flows consist mainly of air.

As a consequence, the simplification is made

very commonly to treat a mixture of hot gases as

hot air, applying the ideal gas law (Equation 1.13)

with the gas constant for air and using the (tem-

perature dependent) viscosity for hot air. There-

fore, mixtures of gases do not receive much

attention when fluid mechanics aspects are con-

sidered in case of fire.

Yet, a few definitions are introduced here. The

mass fraction Yi of species i is the ratio of the

local amount of mass of species i to the local

amount of mass of mixture. It is therefore a

non-dimensional quantity. Conservation of mass

leads to the statement that, everywhere in physi-

cal space, the sum of all mass fractions of all

species equals unity:
X

N
i¼1Yi ¼ 1.

Using the notion of mass fractions, the

fluid properties of mixtures can be determined

from the fluid properties of their constituent

species. E.g. the specific heat becomes

c ¼X
N
i¼1Yici.

Also state properties can be defined as such.

E.g. static enthalpy becomes: h ¼X
N
i¼1Yihi.

Conservation Equations

Figure 1.1 visualises a streamline through a sur-

face of a (control) volume. This concept will be

used to develop the conservation equations in the

integral formulation. A streamline is defined

such that locally the velocity vector is tangent

to the streamline. A collection of streamlines is

called a stream tube.

Conservation of Mass—Continuity
Equation

Conservation of mass expresses the following

principle:

The amount of mass that flows into a station-
ary volume per unit time, equals the outflow of

mass per unit time out of that same volume plus

the amount of mass accumulation per unit time in
that same volume.

Mathematically, this is formulated as follows:

• The net outflow per unit time is given by a

closed surface integral over the entire area of

the manifold ∂V, enclosing the volume V:ðð
∂V

ρv
!
:n
!
dA; in this expression, v

!
is the local

velocity vector at a certain position on ∂V, n
!

the local normal vector on the surface (i.e. the

vector with length equal to 1, locally perpen-

dicular to the surface and pointed outward)

and dA the area of an infinitesimal element

dA

v
θ

n

Fig. 1.1 Streamline through a surface. Notation: dA is

the area of an infinitesimal part of the surface; n is the

normal vector, with length equal to unity, perpendicular to

dA and pointing ‘outward’ of the control volume, spanned

by the surface; v is the local flow velocity vector at

position dA; θ is the angle between vectors n and v
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on the surface; note that the inner product v
!
:n
!

> 0 for outflow, while v
!
:n
!
< 0 for inflow;

• The accumulation of mass per unit time is

obtained from a derivation with respect to

time of the integral of the mass density over

the entire volume: ∂
∂t∭

V

ρdV.

The conservation of mass thus reads:

∂
∂t

∭
V

ρdV þ
ðð
∂V

ρv
!
:n
!
dA ¼ 0: ð1:14Þ

This equation is also called the continuity

equation.

An important simplification is found in the

case of permanent (or ‘steady’) motion. In that

case, the time derivative disappears in

Equation 1.14: ðð
∂V

ρv
!
:n
!
dA ¼ 0: ð1:15Þ

A further simplification concerns incompressible
fluids (e.g. water in a pipe under normal

conditions). In that case, density does not change,

so that not only Equation 1.15 applies, but it

further simplifies to read:ðð
∂V

v
!
:n
!
dA ¼ 0: ð1:16Þ

A very simple illustration of Equation 1.15 is

provided on the basis of Fig. 1.2. There is no

flow through the solid boundaries (solid lines in

Fig. 1.2), so the only contributions to

ðð
∂V

ρv
!
:n
!
dA

stem from surfaces 1 and 2. In surface 1, the

velocity vector is pointing inward, while the

normal vector is by definition pointing outward,

so the contribution (under the simplified assump-

tion of uniform flow through the cross-section)

becomes: �ρ1v1A1. On surface 2, the velocity

and the normal vectors are pointing outward,

leading to:þρ2v2A2. Equation 1.15 thus provides:

�ρ1v1A1 þ ρ2v2A2 ¼ 0 ! ρ1v1A1 ¼ ρ2v2A2. In

case of incompressible flow (Equation 1.16) this

further simplifies to: v1A1 ¼ v2A2.

The integral in Equation 1.14 in fact refers to

the total net mass flow rate (kg/s) through a

surface with area A:

_m ¼
ðð
A

ρv
!
:n
!
dA ð1:17Þ

If the mass density is not included, the total net

volume flow rate (m3/s) through a surface with

area A is found:

_V ¼
ðð
A

v
!
:n
!
dA: ð1:18Þ

Expression (1.14) can also be formulated in dif-

ferential form, applying Green’s theorem:

∂ρ
∂t

þ∇: ρv
!� �

¼ 0: ð1:19Þ

The symbol ∇ is the divergence operator:

∇:v
! ¼ ∂

∂x
1
!
x þ ∂

∂y
1
!

y þ ∂
∂z

1
!
z

� �
: vx1

!
x þ vy1

!
y þ vz1

!
z

� �

¼ ∂vx
∂x

þ ∂vy
∂y

þ ∂vz
∂z

:

ð1:20Þ

In Equation 1.20, 1
!
x is the notation for the unity

vector, i.e. a vector with length equal to unity, in

the x-direction.

Expression (1.15), for steady flow, reads in

differential form:

A1, v1, ρ1

A2, v2, ρ2

Fig. 1.2 Illustration of conservation of mass for steady

flow (Equation 1.15) through a pipe expansion. Dashed
lines: boundary of control volume. Bold vectors: normal

vectors (unity length, perpendicular to surface and

pointing outward). The other vectors indicate velocity

vectors
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∇: ρv
!� �

¼ 0; ð1:21Þ

while expression (1.16), for incompressible

fluids, becomes:

∇:v
! ¼ 0: ð1:22Þ

This shows that the velocity field for any flow of

an incompressible fluid is ‘divergence free’, or

‘solenoidal’.

Total Momentum

Now the integral formulation for the conserva-

tion of total momentum is discussed. Figure 1.1

again serves as the basic sketch.

Conservation of total momentum refers to the

expression of Newton’s second law, applied to

flows. The net change in momentum of a system

per unit time in a certain sense and direction

equals the net force on that system in that sense

and direction.

Expressed for a stationary volume, this

becomes:

The total force onto a stationary volume

equals the sum of the net outflow of momentum

per unit time out of that same volume plus the
accumulation of momentum per unit time in that

same volume.

The local amount of momentum per unit vol-

ume is ρv
!
(kg/(m2s)). Newton’s second law thus

reads:

∂
∂t

∭
V

ρv
!
dV þ

ðð
∂V

ρv
!

v
!
:n
!� �

dA ¼ F
!

tot: ð1:23Þ

Note that Equation 1.19 is a vector equation,

i.e. the equation is valid for each component/

direction individually.

For a permanent (or ‘steady’) motion, expres-

sion (1.19) simplifies to:ðð
∂V

ρv
!

v
!
:n
!� �

dA ¼ F
!
tot: ð1:24Þ

The total force consists of:

• Surface forces:

– Pressure (Pa);

– Viscous stresses (Pa);

• Body forces:

– Gravity (N);

– Others (not relevant for fire related flows).

These forces are discussed now, in differential

formulation:

Ftot,x ¼ ∂σxx
∂x

þ ∂τxy
∂y

þ ∂τxz
∂z

þ ρgx

Ftot, y ¼ ∂τyx
∂x

þ ∂σyy

∂y
þ ∂τyz

∂z
þ ρgy

Ftot, z ¼ ∂τzx
∂x

þ ∂τzy
∂y

þ ∂σzz
∂z

þ ρgz

8>>>>>>><
>>>>>>>:

ð1:25Þ

The final terms in Equation 1.25 refer to

the gravity acceleration vector, multiplied with

the local mass density. Figure 1.3 shows how the

normal stresses and shear stresses are defined.

The shear stresses are found from Stokes’ law:

τxy ¼ τyx ¼ μ
∂vx
∂y

þ ∂vy
∂x

� �

τxz ¼ τzx ¼ μ
∂vx
∂z

þ ∂vz
∂x

� �

τyz ¼ τzy ¼ μ
∂vz
∂y

þ ∂vy
∂z

� �
:

ð1:26Þ

y

x

dx

dy

τxy (x)

τxy (x+dx)

τyx (y+dy)

σxx (x+dx)

σyy (y+dy)

σxx (x)

σyy (y)

τyx (y)

Fig. 1.3 Definition of normal stresses and shear stresses

(2D)
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The shear stresses are thus proportional to the

dynamic viscosity and the local velocity

gradients.

The normal stresses contain contributions

from stresses due to fluid dilatation (for variable

density flows only) and pressure:

σxx ¼ � pþ 2

3
μ

∂vx
∂x

� 1

3
∇:v

!
� �

σyy ¼ � pþ 2

3
μ

∂vy
∂y

� 1

3
∇:v

!
� �

σzz ¼ � pþ 2

3
μ

∂vz
∂z

� 1

3
∇:v

!
� �

:

ð1:27Þ

The above results in the Navier–Stokes

equations:

∂
∂t

ρvxð Þ þ ρvx
∂vx
∂x

þ ρvy
∂vx
∂y

þ ρvz
∂vx
∂z

¼ �∂ p

∂x
þ 2

3

∂
∂x

μ
∂vx
∂x

� 1

3
∇:v

!
� �� �

þ ∂τxy
∂y

þ ∂τxz
∂z

þ ρgx

∂
∂t

ρvy
� �þ ρvx

∂vy
∂x

þ ρvy
∂vy
∂y

þ ρvz
∂vy
∂z

¼ �∂ p

∂y
þ 2

3

∂
∂y

μ
∂vy
∂y

� 1

3
∇:v

!
� �� �

þ ∂τxy
∂x

þ ∂τyz
∂z

þ ρgy

∂
∂t

ρvzð Þ þ ρvx
∂vz
∂x

þ ρvy
∂vz
∂y

þ ρvz
∂vz
∂z

¼ �∂ p

∂z
þ 2

3

∂
∂z

μ
∂vz
∂z

� 1

3
∇:v

!
� �� �

þ ∂τxz
∂x

þ ∂τyz
∂y

þ ρgz

8>>>>>>>><
>>>>>>>>:

ð1:28Þ

Note that the presence of the gravity force is

essential in order to account for the Archimedes

force. This is essential for buoyancy-driven

forces, which is important in the context of fire.

Also note that pressure gradients (or pressure

differences) are the driving force for flows, not

the absolute pressure level.

Energy

Conservation of energy refers to the first law of

thermodynamics:

The change (per unit time) of the total internal

energy of a system equals the sum of the heat

added (per unit time) to the system and the work
(per unit time) exerted onto that system.

The total internal energy consists of:

• Static internal energy e (J/kg) or ρe (J/m3);

• Kinetic energy ρv2/2 (J/m3).

The mathematical formulation of the first law

of thermodynamics for a stationary open system

can be found in many textbooks (e.g. [2–9]).

It reads:

∂
∂t

ð
V

ρeþ 1

2
ρv2

� �
dV ¼ �∮

∂V
ρeþ 1

2
ρv2

� �
v
!
:n
!
dS� ∮

∂V
pv
!
:n
!
dSþ ∮

∂V
τ
!!
: v
!

 !
:n
!
dS

þ
ð
V

ρg
!
:v
!
dV þ

ð
V

ρShdV � ∮
∂V

q
!
:n
!
dS ð1:29Þ

The terms on the right hand side are:

• First term: Net inflow of total internal energy

into the control volume (‘convection’); the

minus sign is necessary to comply with the

sign convection (see previous sections: the

normal vector is pointing outward).

• Second term: Work of the flow against pres-

sure. This is work from a force (pressure),
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exerted onto the surface. The work by the

pressure onto the flow is positive for inflow

and negative for outflow, which explains the

minus sign.

• Third term: Work by the viscous stresses. This

is work from a force (viscous stresses,

Equations 1.26 and 1.27, exerted onto the

surface. With the sign conventions used

(Fig. 1.3 and outward pointing normal vector),

this is a term with a plus sign.

• Fourth term: Work by gravity. This is work by

a volume force, exerted inside the volume.

This work is positive for a downward flow,

so that with g
! ¼ �g1

!
y

no minus sign is

required in this term (if the y-direction is

positive vertically upward).

• Fifth term: Volumetric source term of heat /

internal energy (e.g. radiation). This term can

be positive or negative.

• Final term: Net incoming flux of heat/internal

energy (e.g. conduction). The flux with the

flow cannot be added to this term (as it is

already included in the convection term).

The energy equation can also be formulated,

using enthalpy Equation 1.11:

∂
∂t

ð
CV

ρhþ 1

2
ρv2

� �
dV ¼ ∂

∂t

ð
CV

pdV � ∮
∂CV

ρhþ 1

2
ρv2

� �
v
!
:n
!
dSþ ∮

∂CV
τ
!!
: v
!

 !
:n
!
dS

þ
ð
CV

ρg
!
:v
!
dV þ

ð
CV

ρShdV � ∮
∂CV

q
!
:n
!
dS: ð1:30Þ

In differential formulation, this reads:

∂
∂t

ρhþ 1

2
ρv2

� �
þ∇: ρ hþ 1

2
v2

� �
v
!

� �
¼ ∂ p

∂t
þ∇: τ

!!
:v
!

 !
þ ρSh þ ρ

XN
i¼1

Yi g
!
:v
!

i �∇:q
! ð1:31Þ

The (static) enthalpy is the mass-weighted sum

of the enthalpies of species i:

h ¼
XN
i¼1

Yihi: ð1:32Þ

The enthalpy hi is the sum of a reference

enthalpy (the chemical standard formation

enthalpy of species i) and a ‘sensible’ (thermal)

enthalpy [5–9]. For ideal gases this reads:

hi Tð Þ ¼ hre f , i þ
ð T
Tre f

c p, i Tð ÞdT; ð1:33Þ

with cp,i the specific heat of species i, defined

above.

Note that in Equation 1.31, expressed in terms

of enthalpy, the source term ρSh contains

e.g. radiation, but not a heat release rate due to

combustion. Combustion reactions transform

chemically bound enthalpy into sensible

enthalpy and as such cause a temperature rise,

but the sum of sensible and chemical enthalpy

does not change locally. If the energy equation is

expressed in terms of temperature (or sensible

enthalpy), a source term due to the combustion

heat release rate does appear.

The final term in Equation 1.31 reads:

∇:q
! ¼ �∇: λ∇Tð Þ �∇: ρ

XN
i¼1

hiDi∇Yi

 !
þ D:E:

ð1:34Þ

The abbreviation ‘D.E.’ stands for the ‘Dufour

effect’, i.e. and additional enthalpy flux due to

species concentration differences. This effect is
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ignored in fire related flows. The first terms in

Equation 1.34 refer to Fourier’s law for heat

conduction, Equation 1.5. The middle terms

refer to an enthalpy flux due to diffusion, using

Fick’s law, Equation 1.7.

The general expression, Equation 1.31, can

often be simplified. Many fire-induced flows are

low-Mach number flows (note: this is not true for

explosions). The time derivative of pressure can

often be ignored. Also the work done by gravity,

by the viscous shear stresses and by the normal

stresses becomes very small and the kinetic

energy is negligible. Using Equations 1.8 and

1.9, the energy equation becomes:

∂
∂t

ρhð Þ þ∇: ρhv
!� �

¼ ∇:
μ

Pr
∇hþ μ

XN
i¼1

1

Sci
� 1

Pr

� �
hi∇Yi

 !
þ ρSh ð1:35Þ

For unity Lewis number (Lei ¼ 1 for all i,

Equation 1.10) fluids, this further simplifies to:

∂
∂t

ρhð Þ þ∇: ρhv
!� �

¼ ∇:
μ

Pr
∇h

� �
þ ρSh:

ð1:36Þ

Hydrostatics

Hydrostatics

From the general Navier–Stokes equations

(1.28), the basic law for hydrostatics is immedi-

ately recovered. Indeed, setting all velocities in a

certain environment equal to zero, the only terms

remaining are:

∇p ¼ ρamb g
!
: ð1:37Þ

Equation 1.37 is valid at any time (in the absence

of motion). For the special case where g
! ¼ �g1

!
y,

with g ¼ 9.81 m/s2, Equation 1.37 reads (in the

y-direction):

d p

dy
¼ �ρambg ð1:38Þ

Note that Equation 1.37 in such circumstances

also implies that pressure does not vary in the

horizontal directions.

Equation 1.38 can be integrated:

p ¼ pre f � ρambg y� yre f

� �
: ð1:39Þ

Buoyancy

The main relevance of the fundamental law of

hydrostatics, Equation 1.37, lies in the fact that in

many fire related flows, buoyancy plays a domi-

nant role. This can be learnt from the

Navier–Stokes equations, Equation 1.28, combin-

ing the forces due to pressure gradients and grav-

ity. In the vertical direction (still with g
! ¼ �g1

!
y),

using Equation 1.38, the resulting force per unit

area reads:

� d p

dy
� ρg ¼ ρamb � ρð Þg: ð1:40Þ

In the process of getting to expression (1.40),

the implicit assumption is made that pressure

differences in the horizontal directions are

small.

Equation 1.40 reveals that the driving force in

situations where buoyancy dominates, stems

from density differences, in the presence of a

gravity field. This is known as Archimedes’

law. Note that, since gravity acts in the vertical

direction only, buoyancy forces by definition

also act in the vertical direction only.

For small density differences, the approxima-

tion ρ � ρamb is typically made in the

Navier–Stokes equations, except that the differ-

ence ρamb � ρð Þ is accounted for in combination

with gravity (Equation 1.40). This is called

Boussinesq’s approximation. In the context of

small density differences, expression (1.40) can

be developed further, using a Taylor series
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expansion: ρ ¼ ρ T; pð Þ ) ρ � ρamb þ ∂ρ
∂T

� �
p

T � Tambð Þþ ∂ρ
∂ p

� �
T

p� pambð Þ. Typically the

pressure correction is much smaller than the

temperature correction. Using the thermal volu-

metric expansion coefficient:

β ¼ �1

ρ

∂ρ
∂T

� �
p

; ð1:41Þ

the Archimedes force becomes:

ρamb � ρð Þg ¼ ρambβ T � Tambð Þg , if β T � T1ð Þ � 1: ð1:42Þ

The basic expression is thus Equation 1.40, based

on density differences, while Equation 1.42 is

only valid for small enough temperature

differences.

Scaling Laws—Dimensionless Flow
Numbers

In this section, starting from the governing

equations, some scaling laws and non-

dimensional flow numbers are introduced. The

characteristic length scale is L, the characteristic

velocity is u.

Dimensionless Flow Numbers

Examination of the terms in the Navier–Stokes

equations, Equations 1.28 and 1.26, leads to the

following proportionalities: ρu
t � ρu2

L � Δ p
L � Δρg

� μ u
L2
. Several non-dimensional flow numbers

can be derived now, as follows. The importance

of each of the numbers mentioned, depends on

the importance of the corresponding terms in the

Navier–Stokes equations. The convection term/

inertia term is always important, as it

characterizes the flow. Depending on the flow

configuration, one or more terms are in competi-

tion with (or determine) the inertia term (or thus

the flow). This is explained next.

When the viscous stresses prevail, the

proportionality ρu2

L � μ u
L2

leads to the Reynolds

number, which is the ratio of inertial forces to

viscous forces:

Re ¼ ρuL

μ
¼ uL

ν
: ð1:43Þ

The viscous forces tend to damp the inherent

instabilities in the non-linear convection terms

in the Navier–Stokes equations, while these

instabilities can evolve towards fully-developed

turbulence for large enough Reynolds number.

This is addressed in the next section.

When buoyancy is dominant, the

proportionality ρu2

L � Δρg leads to the Froude

number, which is the ratio of inertial forces to

the Archimedes force:

Fr ¼ ρu2

ΔρgL
: ð1:44Þ

In the fire community, this is often simplified to:

Fr ¼ u2

gL
: ð1:45Þ

Expression (1.44) resembles the underlying

physics more than Equation 1.45. On the other

hand, the difference between expressions (1.44)

and (1.45) is no more than a numerical factor,

depending on the densities at hand. Moreover, in

many experiments it is much more straightfor-

ward to measure velocities than mass densities,

so that it is easier to characterize the experimen-

tal set-up through formulation (1.45). This

explains why the use of Equation 1.45 is popular

in diagrams and correlations.
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If large (imposed) pressure differences occur,

sometimes the Euler number comes into play,

through ρu2

L � Δ p
L :

Eu ¼ Δ p

u2
: ð1:46Þ

In fire related flows, this is often not relevant.

In buoyancy driven flows, applying

Boussinesq’s hypothesis, the driving force

(Equation 1.42) can also be made dimensionless

as:

Ra ¼ L3gβΔT

αν
: ð1:47Þ

This is the Rayleigh number. Alternatively, the

Grashof number can be used:

Gr ¼ L3gβΔT

ν2
: ð1:48Þ

The relation between the two is: Ra ¼ Gr:Pr,

with the Prandtl number as defined in Equa-

tion 1.8. The Grashof number can be interpreted

as a ratio of buoyancy forces (with Boussinesq’s

approximation) to the viscous forces. This is

relevant in boundary layers (see below).

Scaling

In this section, scaling is briefly discussed in the

context of fluid mechanics. As such, only the

momentum equation is considered, albeit that at

the end of this section, some remarks are

formulated on the fire heat release rate (using

the energy equation) and the study of unsteady

phenomena (using the mass conservation equa-

tion). As a consequence, no comments are

formulated on e.g. convective heat transfer or

conduction through solids, nor on radiation. For

an extensive discussion on scaling, the reader is

referred to [10, 11].

The main non-dimensional numbers in

low-Mach number flows are the Reynolds num-

ber Equation 1.43 and the Froude number Equa-

tion 1.44 (or Equation 1.45). Firstly, it is

mentioned that the only way to preserve both

numbers when scaling (up or down) a flow in a

certain configuration, is through the use of differ-

ent fluids. Indeed, assume that the fluid does not

change (and that the densities do not change).

Then preservation of Re reveals that:

Re1 ¼ Re2 ) u1L1
ν ¼ u2L2

ν ) u2 ¼ u1L1
L2

. Preserva-

tion of the Froude number (still with the assump-

tion that densities do not change) leads to:

Fr1 ¼ Fr2 ) u2
1

gL1
¼ u2

2

gL2
) u2 ¼ u1

ffiffiffiffi
L2
L1

q
. Clearly,

this is inconsistent with the requirement, stem-

ming from the preservation of the Reynolds num-

ber. Both numbers can be preserved if, starting

from the requirement for preservation of the

Froude number, the fluid’s viscosity is modified

such that also the Reynolds number is preserved.

This is not straightforward.

Fortunately, both the Reynolds number and

the Froude number have the property that, as

soon as they are large enough, their actual value

becomes irrelevant. In other words, as soon as

they are sufficiently high, the qualification ‘high’

is sufficient, not the exact number. This is due to

turbulence, overwhelming molecular phenomena

(see next section). This can also be understood

intuitively. The Reynolds number is the ratio of

inertia to viscous damping forces. Either the

damping force is strong enough to overcome

the inherent instabilities in the non-linear con-

vection terms in the Navier–Stokes equations

(laminar flow), almost strong enough (transi-

tional flow) or not strong enough (turbulent

flow). When turbulence is fully developed, the

strength of the viscous stress becomes irrelevant,

i.e. the true value of the Reynolds number

becomes irrelevant. For the Froude number, it is

most instructive to examine expression (1.44).

The driving force for buoyancy is in the denomi-

nator. If density differences become small, buoy-

ancy becomes irrelevant and the Froude number

is high. As such, high values of the Froude num-

ber implies that buoyancy is not important and

thus that the error is small when the Froude

number is not preserved (as long as it stays

sufficiently high).

Knowing this, it is instructive to examine the

order or magnitude of Reynolds number and

Froude number in fire related flows. Indeed, if

one of the numbers can be expected to be high,
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that number need not be preserved in scaling.

Typical dimensions are in the order of 1 m:

L ¼ O mð Þ. Typical velocities are in the order of

1 m/s: u ¼ O m=sð Þ. Densities are in the order of

1 kg/m3: ρ ¼ O kg=m3ð Þ. The dynamic viscosity in

gases is in the order of 10�6 Pa.s: μ ¼
O 10�6Pa:s
� �

. Using these numbers, the Reynolds

number Equation 1.43 is: Re ¼ O 1:1:1
10�6

� �
¼

O 106
� �

, while the Froude number Equation 1.44

is: Fr ¼ O 1:1
1:10:1

� � ¼ O 0:1ð Þ. Obviously, these are
rough order of magnitude analyses, but it is clear

that in fire related flows, the choice will bemade to

preserve the Froude number, not the Reynolds

number, when scaling is applied.

The energy equation also provides informa-

tion regarding scaling laws. The simplified for-

mulation (1.36) can be used for fire-related flows.

Yet, temperatures are very important in fire

related flows, so the energy equation should be

interpreted in terms of sensible enthalpy, in

which case the fire heat release rate ( _Q, in W)

comes into play. Knowing that, in terms of

dimensions, (sensible) enthalpy differences can

be re-written as the product of specific heat and

temperature differences, Equation 1.36 leads to

the following proportionalities:
ρc pΔT

t � ρc pΔTu
L �

_Q
L3
� kΔT

L2
.

This reveals that:

_Q � uρc pΔTL
2: ð1:49Þ

It is common practice to scale configurations such

that the temperatures remain the same. This also

implies that densities do not change (if the same

fluid is applied). As has just been explained, the

Froude number Equation 1.44 is preserved, so

that the velocity scales as � ffiffiffi
L

p
. As a conse-

quence, the fire heat release rate scales as:

_Q1

_Q2

¼
ffiffiffiffiffi
L1

p
L21ffiffiffiffiffi

L2
p

L22
) _Q � L5=2: ð1:50Þ

Finally, it is noteworthy that the conservation of

mass, Equation 1.19, reveals that:

t � L=u: ð1:51Þ
Applying Froude scaling, the velocity scales as

� ffiffiffi
L

p
, so that expression (1.51) reveals that the

temporal evolution of quantities (e.g. tempera-

ture) depends on the dimensions of the configu-

ration as t � ffiffiffi
L

p
. This is relevant when unsteady

phenomena are studied.

Turbulence

There are numerous text books on turbulence and

turbulent flows, e.g. [12, 13]. Only some intro-

ductory comments are presented here.

Reynolds Number

In the previous section it has been mentioned that

the Reynolds number Equation 1.43 is the ratio

on inertia to viscous forces. It is well-known that

the convection term in the Navier–Stokes

equations (1.28) is inherently unstable and that

the flow becomes turbulent when the viscous

forces are not strong enough to damp the

instabilities, i.e. when the Reynolds number

becomes sufficiently high. Below a certain

threshold number, the flow remains ‘laminar’.

There is no sudden change from ‘laminar’ to

‘turbulent’: there is a ‘transition’ zone in

between.

Care must be taken in the definition of this

‘critical’ Reynolds number, in the sense that the

length scale must be defined. In flows over

flat plates, it is common practice to use the dis-

tance from the leading edge and Rec is in

the order of 500.000. In pipe flows, it is

common practice to use the pipe diameter as

characteristic length scale and Rec is in the

order of 2.000.

It is important to stress that the Reynolds

number is a flow property, not a fluid property.

Turbulence is typically defined on the basis of

a number of properties [13]:

• Randomness: there are fluctuations in the

flow;

• Three-dimensionality: even if the mean flow

is 2D or axisymmetric, the vortices or ‘eddies’

are always three-dimensional;

• There is a wide range of length scales and

time scales in the flow. The largest scales are

determined by the configuration at hand,
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while the smallest scales are determined by

the Reynolds number. The smallest scales can

easily be 10,000 times smaller than the largest

scales.

• Turbulent mixing is very effective.

• There is a lot of diffusion and dissipation.

Turbulence dies out quickly if not sustained

by velocity gradients in the mean flow.

• There is vortex stretching, transferring energy

from the mean flow to turbulent fluctuations.

It is instructive to briefly explain the

randomness in the flow. Indeed, knowing that

the Navier–Stokes equations (Equation 1.28)

are deterministic, one may pose the question

how it is possible that randomness occurs when

applying deterministic boundary and initial

conditions. The reason is that there are always

small fluctuations, i.e. the boundary and initial

conditions are never known with infinite preci-

sion. Due to the unstable convection terms in the

Navier–Stokes equations, turbulent flows are

extremely sensitive to details and this creates

randomness in the instantaneous flow fields.

This makes it impossible to make long-term

predictions of instantaneous turbulent flow fields

and explains why turbulent flows are tackled in

simulation through statistical approaches (see

below). Obviously, the mean flow can still be

deterministic (see below).

Reynolds Averaging

As mentioned in the previous section, the

fluctuations in a turbulent flow make a direct

analysis through the Navier–Stokes equations

(Equation 1.28) impossible. Therefore, a statis-

tical approach is adopted. The primary interest

is often the mean flow. To that purpose, the

Navier–Stokes equations are averaged. The

concept of Reynolds averaging is explained

first.

Consider a turbulent flow. Measuring a veloc-

ity component (or e.g. a temperature) at a certain

location will then yield a fluctuating signal, as

explained. One can now determine the ‘average’

of that signal. The true definition of a Reynolds

average [12, 13] is that many realizations of the

‘same’ turbulent flow are made, repetitive

measurements of the quantity are made at the

same location, and the average value of the

measurements is determined. In a simplified

manner, though, one can think of this procedure

as a time averaging, where the averaging period

Δt is sufficiently long, compared to the largest

turbulent time scales, but sufficiently short com-

pared to time scales associated with possible

variations in the mean flow:

vx tð Þ ¼ 1

Δt

ðt
t�Δt

vx tð Þdt; T tð Þ ¼ 1

Δt

ðt
t�Δt

T tð Þdt:

ð1:52Þ
It is clear that this is only possible if the turbulent

time scales are short, compared to time scales in

the mean flow. The ‘integral’ turbulent time scale

is typically less than 1 s, so in many fire related

flows this concept of Reynolds averaging is

possible.

Using Equation 1.52, the instantaneous value

can be expressed as the sum of the (Reynolds)

averaged value and the instantaneous fluctuation

around that value:

vx tð Þ ¼ vx tð Þ þ v,x tð Þ; T tð Þ ¼ T tð Þ þ T, tð Þ:
ð1:53Þ

Note that:

v,x tð Þ ¼ 0; T, tð Þ ¼ 0; vx tð Þ
¼ vx tð Þ; T tð Þ ¼ T tð Þ: ð1:54Þ

Applying this averaging technique to the conser-

vation equations (1.19), (1.28) and (1.36), the

equations are obtained for the Reynolds-

averaged quantities. They are very similar to

the instantaneous equations, but some additional

terms appear:

• Reynolds stresses in the momentum

equations;

• Turbulent heat fluxes in the energy equation.

This is explained next. For the sake of ease,

the energy equation is simplified here: it is

expressed in terms of temperature and no chemi-

cal reactions, nor radiation, are considered. The
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