Dermatopathology
Diagnosis by First Impression
To Ulla, Anna, Jessica, and Sara who let me pursue my career while they took care of everything else. (RJB)

To Peter, Dylan, and Owen. (CJK)
Dermatopathology
Diagnosis by First Impression

Third Edition

Christine J. Ko
Professor of Dermatology and Pathology
Yale University School of Medicine
New Haven, CT, USA

Ronald J. Barr
Dermatopathologist
Laguna Pathology Medical Group
Laguna Beach, CA
and
Professor Emeritus, Dermatology and Pathology
University of California
Irvine, CA, USA
Readers should consult with a specialist where appropriate. The governmental regulations, and the constant science practitioners...

This edition first published 2017 © 2017 by John Wiley & Sons, Ltd
First edition 2008 © 2008 Christine J. Ko and Ronald J. Barr

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
1666 Golden Aspen Drive, Suites 103 and 104, Ames, Iowa 50010, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by health science practitioners for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Names: Ko, Christine J., author | Barr, Ronald J. (Dermatopathologist), author.

Title: Dermatopathology : diagnosis by first impression / Christine J. Ko, Ronald J. Barr.

Subjects: | MESH: Skin Diseases—diagnosis | Skin Diseases—pathology | Skin—pathology | Microscopy | Atlases

Classification: LCC RL96 (print) | LCC RL96 (ebook) | NLM WR 17 | DDC 616.5/075—dc23

LC record available at https://lccn.loc.gov/2016016543

ISBN 9781119149453

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Set in 9/12pt Frutiger LT Std by Aptara Inc., New Delhi, India
Contents

Preface, vi
Acknowledgments, vii
About the Companion Website, viii

Introduction, 1

Chapter 1 Shape on Low Power, 23
Epidermis
- Regular acanthosis, 25
- Lobular proliferation, 29
- Reticulated proliferation, 35
- Central pore, 42
- Epidermal perforation, 46
Dermis
- Circular islands, 49
- Cords/tubules and comma shapes, 53
- Space with a lining, 59
- Papillations, 70
- Polypoid (dome-shaped), 77
- Square/rectangular, 82
- Palisading reactions, 88
- Pseudoepitheliomatous hyperplasia above abscesses, 93
- Pink ball, (see Chapter 6)

Chapter 2 Gestalt: Rash/inflammatory, 97
Epidermal changes
- Parakeratosis, 99
- Spongiosis, 102
- Papulosquamous (psoriasiform), 106
- Interface (vacuolar), 112
- Interface (lichenoid), 117
Inflammation: Specific patterns and Cell Type
- Epidermal eosinophils, 123
- Perivascular, 127
- Band-like dermal/papillary dermal infiltrate, 131
- Diffuse/nodular, 137
- Subcutaneous, 144

Chapter 3 Cell Type, 153
Melanocytic, 155
Spindle cells, 164
Endothelial, 178
Giant, 192
Clear, 202

Chapter 4 “Top-Down”, 219
Hyperkeratosis/parakeratosis, 221
Upper epidermal change, 228
Acantholysis, 238
Subepidermal space/cleft, 248
Granular “material” in cells, 255
“Busy” dermis, 260
Dermal material, 263
Fat necrosis, 276

Chapter 5 Color – Blue, 279
Blue tumor, 281
Mucin and glands or ducts, 291
Mucin, 295

Chapter 6 Color – Pink, 303
Pink ball of spindle cells, 305
Pink material, 308
Pink dermis, 315
Epidermal necrosis, 317

Index (Pattern), 323
Index (Histological Category), 329
Index (Alphabetical), 333
Preface

The purpose of this book is to focus on a selection of commonly tested entities, showing low to high power views. Major differences among diagnoses that are sometimes confused are emphasized on Key Differences pages to help train the eye to rapidly notice distinctive features. As a picture is worth a thousand words, text is kept to a minimum. This book should be used as a companion to dermatopathology textbooks and as a pictorial reference/study tool, given that this approach is utilized by the experienced dermatopathologist when constructing examination questions. Often the major distractors are based on gestalt rather than etiology or conventional classifications. It is often the lookalikes that are the most deceptive even though they have no obvious relationship to the correct diagnosis. This book will also be helpful to the dermatopathology novice as it introduces a simple and effective way to approach a slide, and to that end, common diagnoses have been specifically included (i.e. actinic keratosis, basal cell carcinoma).
Dr. James H. Graham, MD, master of dermatopathology and dermatology, who taught me most of what I know.

Ronald J. Barr

Dr. Ronald Barr, Dr. Scott Binder, my dermatopathology colleagues at Yale (Dr. Jennifer McNiff, Dr. Earl Glusac, Dr. Rossitza Lazova, Dr. Shawn Cowper, Dr. Antonio Subtil, Dr. Anjela Galan, Dr. Marcus Bosenberg, and Dr. Peggy Myung), Dr. Jean Bologna – their insights over the years have been invaluable. We also acknowledge the residents at Yale, those in Thailand, and Hadas Skupsky, who rotated with Dr. Barr; all of whom gave constructive feedback on how to improve the atlas for this edition. Thanks are also due to the team at Wiley Blackwell for all their efforts to improve the atlas.

Christine J. Ko
About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/ko/dermatopathology3e

The website includes:

- Interactive multiple choice questions
- PowerPoints of all figures from the book for downloading
Introduction

Recognizing a disease process on a histopathologic slide becomes instantaneous, with increasing familiarity. Breaking this process down into the “how” is difficult, especially given that the steps may not be the same for each individual. Nonetheless, on a basic level, it is important to separate a solitary growth (“tumor” or “lesion”) from a rash (“inflammatory” process; Figures 1–3), focus on the most obvious pathologic finding, and run through a differential diagnosis. With experience, that “obvious” pathologic finding (i.e. where to start) becomes second nature. The diseases in this atlas are grouped, arbitrarily, by such findings (see the Index by Pattern). Notably, basic algorithms are ultimately overly simplistic, and there is overlap of the two major divisions in Figure 1 (tumor versus rash). For example, clear cell acanthoma can architecturally mimic psoriasis, mycosis fungoides can appear to be a dermatitis, and epithelioid sarcoma can be confused with a palisading granulomatous process.

Key concepts in cognitive psychology come into play during visual recognition, and having some understanding of how the brain processes visual information can be helpful in training the eye to see (Table 1). In figure-ground separation, the brain focuses on a perceived figure and tends to ignore the background. Thus, an important initial step in diagnosing disease when viewing microscopic slides is to train the brain to accurately identify the most important features (“figure”). In order to make sense of visual stimuli, the brain also automatically groups information. With all else being equal, similar objects will be grouped together, closer objects will be grouped together, and objects perceived as having a similar color/texture or common enclosure (“common region”) will be grouped together. Clues such as body site (Figure 4) and absence of obvious pathology (Figure 5 and Table 2) can also be useful.

<table>
<thead>
<tr>
<th>Dermatopathology</th>
<th>Cognitive psychology concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview (2×/4× ocular)</td>
<td>“Tumor” versus “Rash”</td>
</tr>
<tr>
<td></td>
<td>– Architecture</td>
</tr>
<tr>
<td></td>
<td>– Body site</td>
</tr>
<tr>
<td></td>
<td>– Cell type</td>
</tr>
<tr>
<td></td>
<td>– Gestalt</td>
</tr>
<tr>
<td></td>
<td>– Figure-ground separation</td>
</tr>
<tr>
<td></td>
<td>– Grouping</td>
</tr>
<tr>
<td>Higher magnification (10×/20×/40× ocular)</td>
<td>Confirm cell type/morphology</td>
</tr>
<tr>
<td></td>
<td>Finer details of architecture</td>
</tr>
<tr>
<td></td>
<td>Grouping using finer details</td>
</tr>
<tr>
<td></td>
<td>– Similarity</td>
</tr>
<tr>
<td></td>
<td>– Proximity</td>
</tr>
<tr>
<td></td>
<td>– Common region</td>
</tr>
</tbody>
</table>

Table 1 Visual recognition in dermatopathology as related to cognitive psychology.
Introduction | Tumor versus rash

Figure 1 Gestalt impression of a slide
- A major initial breakpoint in evaluating a specimen on a slide is the determination of the type of process: tumor/growth versus rash/inflammatory

Tumor/Growth
- Location (Figure 2A)
- Architecture (Figure 2B; see Chapter 1)
- Cell type (Figure 2C and D; see Chapter 3)
- Other clues, including color (see Chapters 4–6)

Rash/inflammatory (see Chapter 2)
- Epidermal changes (Figure 3A)
- Distribution of inflammation (Figure 3B)
- Cell type (Figure 3C)
- Other clues (see Chapters 3–6)

Note In some cases, it is not readily apparent if the process is a tumor or an inflammatory process (examples include mycosis fungoides, a form of cutaneous T-cell lymphoma, as well as deep fungal infections, which can induce florid epidermal hyperplasia mimicking a squamous cell carcinoma).
Figure 2(A) Location of the tumor

- Important characteristics to consider for a tumor/growth include location (A), architecture (B), cell type (C), and benignancy versus malignancy (D). The eye can be trained to focus in on the blue areas (figure-ground separation; grouping)
Regular acanthosis

Figure 2(B) Architecture of an epidermal tumor/process
Dermal tumors can have various architectural patterns.

Note Benign tumors are often symmetric with a pushing border, and malignant tumors may be asymmetric and infiltrative.
Polypoid (dome-shaped)

Square/rectangular

Palisading reactions

Pseudoepitheliomatous hyperplasia above abscesses

Figure 2(B), continued
Different tumors are predominantly composed of a particular cell type:

- **Keratinocytic:** rectangular/polygonal shape, intercellular bridges, round nucleus and small nucleolus
- **Melanocytic:** may be nested/clustered; nevomelanocyte (red arrow): oval nuclei, small nucleolus, pseudonuclear inclusions or melanin pigment may be evident; dendritic melanocyte (green arrow): thin cytoplasmic processes extending away from cell center
- **Smooth muscle:** spindle cell with abundant cytoplasm, perinuclear clear space, cigar-shaped nucleus
- **Adipocytic:** thin membrane with compressed nucleus
Neural: spindle cell with tapered nucleus, pink cytoplasm (green arrows)
Fibroblast: spindle cell with oval nucleus (yellow arrows)
Endothelial: blue nuclei surrounding vascular spaces (red arrows)

Figure 2(C), continued
- Neural: spindle cell with tapered nucleus, pink cytoplasm (green arrows)
- Fibroblast: spindle cell with oval nucleus (yellow arrows)
- Endothelial: blue nuclei surrounding vascular spaces (red arrows)
Figure 2(C), continued
• Hair follicle: matrical cells are round to oval and dark blue (red arrow); outer root sheath cells are pale pink (green arrow)
• Sebocytes: bubbly cytoplasm (yellow arrow) and central nucleus that may be star-shaped (scalloped)
• Eccrine gland and duct: the gland has clear cells (blue arrow); the duct has an eosinophilic pink cuticle
• Apocrine gland and duct: the gland often shows decapitation secretion (black arrow)
Cytologic features are important in pointing toward a benign versus malignant tumor

- Malignant cells have high nuclear: cytoplasmic ratio, irregular chromatin pattern, irregular nuclear contours, irregular nucleolar shape and size
- Primarily nuclear details suggest cytological malignancy
- Cytoplasmic features point to differentiation: keratinocytes – eosinophilic, hyalinized cytoplasm, melanocytes – fine brown pigment

<table>
<thead>
<tr>
<th>Benign nevomelanocytes (left)</th>
<th>versus</th>
<th>Melanoma cells (right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small nucleus, abundant cytoplasm</td>
<td>Large nucleus, relatively little cytoplasm</td>
<td></td>
</tr>
<tr>
<td>Smooth nuclear border</td>
<td>Irregular nuclear border</td>
<td></td>
</tr>
<tr>
<td>Chromatin pattern nondescript</td>
<td>Irregular, chunky nuclear contents (chromatin)</td>
<td></td>
</tr>
<tr>
<td>Inconspicuous nucleolus</td>
<td>1 or more large, purple nucleoli</td>
<td></td>
</tr>
</tbody>
</table>
“Rash”: key concepts
- The eye can be trained to focus in on the blue areas (figure-ground separation; grouping)
- Key features include epidermal changes (A), distribution of inflammation (B), and inflammatory cell type (C)
- Parakeratosis is often present in spongiotic and papulosquamous disorders; dry parakeratosis without serum but with neutrophils is suggestive of psoriasis
- Simplistically, a dermatitis can be categorized as spongiotic, papulosquamous, or interface

Figure 3(A) Key epidermal changes
- Parakeratosis: retained nuclei in the stratum corneum
- Spongiosis: increased intercellular spaces and sometimes vesicles
- Papulosquamous: thickened epidermis
- Interface (vacuolar): spaces in basal cells, which may be polygonal (squamatized), lymphocytes at junction
- Interface (lichenoid): dense band of lymphocytes between epidermis and dermis with necrotic keratinocytes
Figure 3(B) Distribution of inflammation – major patterns.
See Figure 3(A) for lichenoid
Figure 3(C) The morphology of key inflammatory cells

- Lymphocyte: round blue nucleus, little cytoplasm
- Neutrophil: multilobed nucleus
- Eosinophil: bilobed nucleus with bright pink-red cytoplasmic granules
- Histiocyte: oval nucleus
- Giant cell: multiple nuclei in one cell
- Plasma cell: clock-faced nucleus on one side of cell, perinuclear clear space
Characteristic body sites
- The location on the body (body site) can often be determined by training the eye/brain to perceive certain features
- **Figure 4:** Acral (A), mucosal (B), eyelid (C), axilla (D)

Figure 4(A) Acral skin

Note Meissner’s corpuscles (black arrow), Pacinian corpuscles (red arrow), and thick stratum corneum with a stratum lucidum (green arrow).
Figure 4(B) Cutaneous lip (top row) has keratin and a granular layer (green arrow) as well as adnexal structures
- Skeletal muscle is often present (black arrows)
- Normal mucosal lip (bottom row) lacks keratin and a granular layer; the keratinocytes have clear cytoplasm
- The mucosa shown is abnormal as there is subtle parakeratosis (black arrow bottom right image)
Figure 4(C) Eyelid skin has a thin epidermis with dermal vellus hairs (red arrow) and skeletal muscle (black arrow)
Figure 4(D) Axilla

- The epidermis is undulating, often with basilar melanin pigment. There are apocrine glands in the deep dermis.
Table 2 (see page 22) shows a differential of “normal” appearing skin. Some entities, like vitiligo, require special stains (i.e. a melanocytic marker).

Figure 5(A) Argyria
- There are fine black granules in the basement membrane of hair follicles and eccrine glands
- Black granules are also deposited on elastotic fibers, so-called “pseudo-ochronosis”

Source: Case courtesy of James E. Fitzpatrick, MD.
Figure 5(B) Ichthyosis vulgaris

- This example from an older patient has solar elastosis in the dermis
- There is hypokeratosis above an attenuated granular layer

Source: Case courtesy of Jeff D. Harvell, MD.
Figure 5(C) Tinea versicolor
- Yeast and hyphal forms in the stratum corneum