Tropical Roots and Tubers
Tropical Roots and Tubers

Production, Processing and Technology

Edited by

Harish K. Sharma
Food Engineering and Technology Department, Sant Longowal Institute of Engineering and Technology, India

Nicolas Y. Njintang
Department of Biological Sciences, Faculty of Sciences; and National School of Agro Industrial Sciences (ENSAI), University of Ngaoundere, Cameroon

Rekha S. Singhal
Food Engineering and Technology Department, Institute of Chemical Technology, India

Pragati Kaushal
Food Engineering and Technology Department, Sant Longowal Institute of Engineering and Technology, India

WILEY Blackwell
Contents

About the IFST Advances in Food Science Book Series xv
List of Contributors xvii
Preface xxi

1 Introduction to Tropical Roots and Tubers 1
Harish K. Sharma and Pragati Kaushal

1.1 Introduction 1

1.2 Roots and Tubers 3
1.2.1 Roots 3
1.2.2 Tubers 3

1.3 Requirements for the Higher Productivity of Tropical Roots and Tubers 3
1.3.1 Farming Systems 3
1.3.2 Pest and Pathogen Systems 5
1.3.3 Genetic Systems and Strategies for Genetic Improvement 6
1.3.4 Marketing Strategy 6
1.3.5 The Properties of the Product and Constituents 7

1.4 World Production and Consumption 7

1.5 Constraints in Tropical Root and Tuber Production 11

1.6 Classification and Salient Features of Major Tropical Roots and Tubers 12

1.7 Composition and Nutritional Value 12

1.8 Characteristics of Tropical Roots and Tubers 16

1.9 Anti-nutritional Factors in Roots and Tubers 16
1.9.1 Cassava 21
1.9.2 Sweet Potato 21
1.9.3 Taro 22
1.9.4 Yam 23
1.9.5 Elephant Foot Yam 23

1.10 Applications of Tropical Roots and Tubers 23
1.10.1 Animal Feed 23
1.10.2 Industrial 24
1.10.3 Medicinal 24
1.10.4 Foods 24

1.11 New Frontiers for Tropical Roots and Tubers 26

1.12 Future Aspects 27
References 28
CONTENTS

2 Taxonomy, Anatomy, Physiology and Nutritional Aspects 34
Lochan Singh, Ashutosh Upadhyay, and Ashok K. Dhawan

2.1 Introduction 34
2.2 Taxonomy of Roots and Tuber Crops 38
 2.2.1 Morphological Identification 39
 2.2.2 Cytogenetics 67
 2.2.3 Ecological Study 68
 2.2.4 Chemotaxonomy 69
 2.2.5 Molecular Identification 70
2.3 Anatomy 70
 2.3.1 Root Structure 103
 2.3.2 Changes Concomitant with Lateral Root and Storage Root 103
 2.3.3 Stem Structure 104
 2.3.4 Changes Associative with Stem Tuber 105
 2.3.5 Leaf Structure 106
2.4 Physiology of Root and Tuber Crops 107
 2.4.1 Associative Changes 107
 2.4.2 Influence Parameters 108
 2.4.3 Physiological Age Index and Post-harvest Studies 109
 2.4.4 Techniques Involved in Exploring Physiological Aspects 109
2.5 Nutritional Perspective in Root and Tuber Crops 109
 2.5.1 Proximate Composition 109
 2.5.2 Medicinal Value 110
 2.5.3 Nutraceuticals and Functional Preparations of Tubers and Roots 115
References 127

3 Tropical Roots and Tubers: Impact on Environment, Biochemical, Molecular Characterization of Different Varieties of Tropical Roots and Tubers 138
Chokkappan Mohan, Vidy Prasannakumary, and Aswathy G.H. Nair

3.1 Introduction 138
3.2 Genetic Diversity 139
3.3 Cassava 139
 3.3.1 Origin of Cassava 140
 3.3.2 Genetic Diversity in Cassava 141
 3.3.3 Genome and Gene Mapping in Cassava 148
3.4 Sweet Potato 150
 3.4.1 Origin of Sweet Potato 151
 3.4.2 Genetic Diversity in Sweet Potato 153
 3.4.3 Genome and Gene Mapping in Sweet Potato 160
3.5 Taro 160
 3.5.1 Genetic Diversity in Taro 163
 3.5.2 Genome and Gene Mapping in Taro 166
3.6 Yams 166
 3.6.1 Genetic Diversity in Yams 168
 3.6.2 Genome and Gene Mapping in Yams 170
3.7 Future Aspects 171
References 172
CONTENTS

4 Good Agricultural Practices in Tropical Root and Tuber Crops

Kuttumu Laxminarayana, Sanjibita Mishra, and Sarita Soumya

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>183</td>
</tr>
<tr>
<td>4.2 Cassava</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1 Climate and Soil</td>
<td>187</td>
</tr>
<tr>
<td>4.2.2 Improved Varieties</td>
<td>187</td>
</tr>
<tr>
<td>4.2.3 Planting Season</td>
<td>187</td>
</tr>
<tr>
<td>4.2.4 Methods of Planting</td>
<td>187</td>
</tr>
<tr>
<td>4.2.5 Manures and Fertilizers</td>
<td>189</td>
</tr>
<tr>
<td>4.2.6 Crop Protection</td>
<td>190</td>
</tr>
<tr>
<td>4.2.7 Intercropping</td>
<td>191</td>
</tr>
<tr>
<td>4.2.8 Harvesting</td>
<td>191</td>
</tr>
<tr>
<td>4.3 Sweet Potato</td>
<td>192</td>
</tr>
<tr>
<td>4.3.1 Climate and Soil</td>
<td>193</td>
</tr>
<tr>
<td>4.3.2 Planting Season</td>
<td>193</td>
</tr>
<tr>
<td>4.3.3 Nursery</td>
<td>193</td>
</tr>
<tr>
<td>4.3.4 Field Preparation and Planting</td>
<td>195</td>
</tr>
<tr>
<td>4.3.5 Manures and Fertilizers</td>
<td>195</td>
</tr>
<tr>
<td>4.3.6 Crop Protection</td>
<td>196</td>
</tr>
<tr>
<td>4.3.7 Harvesting</td>
<td>197</td>
</tr>
<tr>
<td>4.4 Yams</td>
<td>197</td>
</tr>
<tr>
<td>4.4.1 Climate and Soil</td>
<td>198</td>
</tr>
<tr>
<td>4.4.2 Improved Varieties</td>
<td>198</td>
</tr>
<tr>
<td>4.4.3 Planting Material</td>
<td>200</td>
</tr>
<tr>
<td>4.4.4 Land Preparation and Planting</td>
<td>200</td>
</tr>
<tr>
<td>4.4.5 Manures and Fertilizers</td>
<td>200</td>
</tr>
<tr>
<td>4.4.6 Management Practices for Intercrop</td>
<td>200</td>
</tr>
<tr>
<td>4.4.7 Trailing</td>
<td>201</td>
</tr>
<tr>
<td>4.4.8 Crop Protection</td>
<td>201</td>
</tr>
<tr>
<td>4.4.9 Harvesting</td>
<td>201</td>
</tr>
<tr>
<td>4.5 Elephant Foot Yam</td>
<td>201</td>
</tr>
<tr>
<td>4.5.1 Climate and Soil</td>
<td>202</td>
</tr>
<tr>
<td>4.5.2 Varieties</td>
<td>202</td>
</tr>
<tr>
<td>4.5.3 Planting</td>
<td>202</td>
</tr>
<tr>
<td>4.5.4 Manures and Fertilizers</td>
<td>203</td>
</tr>
<tr>
<td>4.5.5 Management Practices for Intercrop</td>
<td>203</td>
</tr>
<tr>
<td>4.5.6 Intercultural Operations</td>
<td>203</td>
</tr>
<tr>
<td>4.5.7 Crop Protection</td>
<td>204</td>
</tr>
<tr>
<td>4.5.8 Harvesting</td>
<td>204</td>
</tr>
<tr>
<td>4.6 Taro</td>
<td>204</td>
</tr>
<tr>
<td>4.6.1 Climate and Soil</td>
<td>205</td>
</tr>
<tr>
<td>4.6.2 Production Systems</td>
<td>205</td>
</tr>
<tr>
<td>4.6.3 Planting Material</td>
<td>206</td>
</tr>
<tr>
<td>4.6.4 Land Preparation and Planting</td>
<td>207</td>
</tr>
<tr>
<td>4.6.5 Intercultural Operations</td>
<td>207</td>
</tr>
<tr>
<td>4.6.6 Manures and Fertilizers</td>
<td>208</td>
</tr>
<tr>
<td>4.6.7 Crop Protection</td>
<td>209</td>
</tr>
<tr>
<td>4.6.8 Harvesting</td>
<td>210</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>4.7 Coleus</td>
<td></td>
</tr>
<tr>
<td>4.7.1 Climate and Soil</td>
<td></td>
</tr>
<tr>
<td>4.7.2 High Yielding Cultivar</td>
<td></td>
</tr>
<tr>
<td>4.7.3 Nursery</td>
<td></td>
</tr>
<tr>
<td>4.7.4 Land Preparation and Planting</td>
<td></td>
</tr>
<tr>
<td>4.7.5 Intercultural Operations</td>
<td></td>
</tr>
<tr>
<td>4.7.6 Manures and Fertilizers</td>
<td></td>
</tr>
<tr>
<td>4.7.7 Crop Protection</td>
<td></td>
</tr>
<tr>
<td>4.7.8 Harvesting</td>
<td></td>
</tr>
<tr>
<td>4.8 Arrowroot</td>
<td></td>
</tr>
<tr>
<td>4.8.1 Climate and Soil</td>
<td></td>
</tr>
<tr>
<td>4.8.2 Planting Method</td>
<td></td>
</tr>
<tr>
<td>4.8.3 Planting Material</td>
<td></td>
</tr>
<tr>
<td>4.8.4 Manures and Fertilizers</td>
<td></td>
</tr>
<tr>
<td>4.8.5 Intercultural Operations</td>
<td></td>
</tr>
<tr>
<td>4.8.6 Pests and Diseases</td>
<td></td>
</tr>
<tr>
<td>4.8.7 Harvesting</td>
<td></td>
</tr>
<tr>
<td>4.8.8 Utilization</td>
<td></td>
</tr>
<tr>
<td>4.9 Yam Bean</td>
<td></td>
</tr>
<tr>
<td>4.9.1 Climate and Soil</td>
<td></td>
</tr>
<tr>
<td>4.9.2 Planting Season and Method</td>
<td></td>
</tr>
<tr>
<td>4.9.3 Manures and Fertilizers</td>
<td></td>
</tr>
<tr>
<td>4.9.4 Inter-cultural Operations</td>
<td></td>
</tr>
<tr>
<td>4.9.5 Harvesting</td>
<td></td>
</tr>
<tr>
<td>4.10 Future Perspectives</td>
<td></td>
</tr>
<tr>
<td>4.11 Summary and Future Research</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>5 Fermented Foods and Beverages from Tropical Roots and Tubers</td>
<td></td>
</tr>
<tr>
<td>Sandeep K. Panda and Ramesh C. Ray</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>5.2 Food Fermentation</td>
<td></td>
</tr>
<tr>
<td>5.2.1 Solid State Fermentation (SSF)</td>
<td></td>
</tr>
<tr>
<td>5.2.2 Submerged Fermentation (SmF)</td>
<td></td>
</tr>
<tr>
<td>5.2.3 Fermented Foods from Cassava</td>
<td></td>
</tr>
<tr>
<td>5.2.4 Novel Fermented Foods from Cassava</td>
<td></td>
</tr>
<tr>
<td>5.2.5 Biochemistry of Cassava Cyanogens Detoxification during Fermentation</td>
<td></td>
</tr>
<tr>
<td>5.2.6 Fermented Foods and Beverages from Sweet Potato</td>
<td></td>
</tr>
<tr>
<td>5.2.7 Fermented Foods from Yams, Taro and Cocoyam</td>
<td></td>
</tr>
<tr>
<td>5.2.8 Food Additives Production</td>
<td></td>
</tr>
<tr>
<td>5.3 Summary and Future Perspectives</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>6 Storage Techniques and Commercialization</td>
<td></td>
</tr>
<tr>
<td>Agnes W. Kihurani and Pragati Kaushal</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>6.2 Problems faced during Storage and their Preventive Measures</td>
<td></td>
</tr>
<tr>
<td>6.2.1 Physical Factors</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Physiological Factors</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

6.2.3 Pathological Losses 256
6.2.4 Losses due to Pest Infestation 257
6.3 Losses Observed during Various Stages at the Time of Marketing 257
6.4 Methods employed for Storage of Roots and Tubers 261
6.4.1 Cassava 263
6.4.2 Sweet Potato 267
6.4.3 Yam 268
6.4.4 Taro 268
6.5 Commercialization 269
6.6 Factors affecting Commercialization 269
6.7 Key Products and Final Markets for Commercialization 271
6.8 Trends in Commercialization 272
6.9 Future Research 273
References 273

7 Good Manufacturing Practices for Processing of Tropical Roots and Tubers 281
Anakalo A. Shitandi and Marion G. Kihumbu-Anakalo
7.1 Introduction 281
7.2 Good Manufacturing Practices (GMP) 282
7.3 Key Importance of GMPs for Roots and Tubers 283
7.4 GMP Components 283
7.4.1 Quality Management 283
7.4.2 Quality Control 284
7.4.3 Good Manufacturing Practices for Tropical Roots and Tubers 285
7.4.4 Hygiene and Sanitation 287
7.4.5 Qualification and Validation 289
7.4.6 Complaints 289
7.4.7 Contract Production and Analysis 290
7.4.8 Inspection, Supplier’s Audit and Approval 291
7.4.9 Personnel and Training 291
7.4.10 Premises 292
7.4.11 Equipment 295
7.4.12 Raw Materials 296
7.4.13 Documentation 297
7.5 GMPs in Low-income Countries 298
7.6 Conclusions 298
Acknowledgements 299
References 299

8 Controlling Food Safety Hazards in Root and Tuber Processing: An HACCP Approach 301
Adewale O. Obadina and Ifeoluwa O. Adekoya
8.1 Food Safety 301
8.2 Food Safety Hazards 302
8.2.1 Biological Safety of Foods 302
8.2.2 Chemical Safety of Foods 302
8.2.3 Physical Safety of Foods 303
8.3 Hazard Analysis Critical Control Point (HACCP) 304
8.3.1 Pre Steps for HACCP 304
8.3.2 The Seven HACCP Principles 304
CONTENTS

8.4 Roots and Tubers
8.4.1 Cassava Processing
8.4.2 Hazard Analysis and Critical Control Point (HACCP) of Instant Yam Flour
8.4.3 Sweet Potato Chips
8.5 Summary and Future Research
References

9 Taro: Technological Interventions
9.1 Taro Flour, Achu and Starch
Harish K. Sharma, Pragati Kaushal, and Bahadur Singh
9.1.1 Taro
9.1.2 Versatility of Taro
9.1.3 Processing Constraints
9.1.4 Solutions to Resolve Processing Constraints
9.1.5 Taro Flour
9.1.5.1 Basic Steps in Production of Taro Flour
9.1.5.2 Methods for Production of Taro Flour
9.1.5.3 Properties of Taro Flour
9.1.5.4 Storage
9.1.5.5 Utilization
9.1.6 Achu
9.1.6.1 Production of Achu
9.1.6.2 Quality Requirements
9.1.6.3 Properties
9.1.6.4 Storage
9.1.7 Taro Starch
9.1.7.1 Basic Steps of Production
9.1.7.2 Recent Developments for Extraction of Taro Starch
9.1.7.3 Physical and Functional Properties of Taro Starch
9.1.7.4 Morphological Characteristics and Crystallinity of Taro Starch
9.1.7.5 Modified Starches
9.1.7.6 Applications
9.1.7.7 Future Aspects
References

9.2 Bakery Products and Snacks based on Taro
Nicolas Y. Njintang, Joel Scher, and Carl M.F. Mbofung
9.2.1 Introduction
9.2.2 Bakeries
9.2.2.1 Bread
9.2.2.2 Cookies and Biscuits
9.2.2.3 Use of Parboiled Taro Flour in Biscuit Preparation: An Original Study
9.2.2.4 Other Recipes of Cookies and Biscuits Formulation
9.2.2.5 Bolling as a Pretreatment to Annihilate Irritation Induced by Calcium Oxalate in Taro Flour
9.2.2.6 Other Bakery Products
9.2.3 Snacks
9.2.3.1 Taro Extrudates Snacks
9.2.3.2 Taro Chips or Crisps
References
CONTENTS

9.2.4 Conclusion and Future Aspects 390
References 390

9.3 Other Taro-based Products 395
Nicolas Y. Njintang, Joel Scher, and Carl M.F. Mbofung

9.3.1 Introduction 395
9.3.2 Taro Ice Products 395
9.3.3 Frozen Taro 396
9.3.4 Preparation of Fermented Taro Paste 397
9.3.5 Taro Yogurt 398
9.3.6 Taro Noodles 398
9.3.7 Taro-based Baby Food 400
9.3.8 Preparation of Spherical Aggregate from Taro Starch 402
9.3.9 Baking and Boiling of Taro Leaves 404
9.3.10 Taro Flour as a Soup Thickener 404
9.3.11 Pounded Taro (Achu) 404
9.3.12 Production of a Taro-based Spiced Soup: A Case Study 407
 9.3.12.1 Introduction 407
 9.3.12.2 Sampling and Oxisoup Preparation 407
 9.3.12.3 Effects of Spice Concentration on Polyphenols Content, Flavonoids
 Content and ABTS$^+$ Free Radical Scavenging of Oxisoup 408
9.3.13 Conclusion and Future Aspects 409
References 411

10 Cassava: Technological Interventions 414

10.1 Cassava Flour and Starch: Processing Technology and Utilization 415
Taofik A. Shittu, Buliyaminu A. Alimi, Bashira Wahab, Lateef O. Sanni, and
Adebayo B. Abass

10.1.1 Introduction 415
10.1.2 Cassava Flours 416
 10.1.2.1 Processing Technology 416
 10.1.2.2 Cassava Flour Properties 423
 10.1.2.3 Utilization of Cassava Flour 427
10.1.3 Cassava Starch 430
 10.1.3.1 Cassava Starch Production Technology 430
 10.1.3.2 Cassava Starch Productivity and Quality 432
 10.1.3.3 Potential Uses 434
References 440

10.2 Other Cassava-based Products 451
Ibok Nsa Odoro

10.2.1 Introduction 451
10.2.2 Snacks 451
 10.2.2.1 Fried Grated Cassava 452
 10.2.2.2 Baked Cassava Starch 452
 10.2.2.3 Abacha 453
 10.2.2.4 Fried Cassava Chips 455
 10.2.2.5 Peujeum 455
 10.2.2.6 Pastries from Cassava Composites 457
CONTENTS

10.2.2.7 Cassava Bread 457
10.2.2.8 Pappad 457
10.2.2.9 Akara-akpu 458

10.2.3 Cassava-based Beverages 459
10.2.3.1 Cassareep 459
10.2.3.2 Chicha 459
10.2.3.3 Mingao 459

10.2.4 Major Popular Meals 459
10.2.4.1 Tapioca (Cassava Starch) 459
10.2.4.2 Boiled Cassava Root 460
10.2.4.3 Fufu 461
10.2.4.4 Roasted Cassava Grits 464
10.2.4.5 Kpokpo Gari 466
10.2.4.6 Attieke 466
10.2.4.7 Attoukpou 467
10.2.4.8 Kokonte 468
10.2.4.9 Lafun 469
10.2.4.10 Placali 470
10.2.4.11 Chickwangue 470
10.2.4.12 Kondugbala 471
10.2.4.13 Cassava Dough 471
10.2.4.14 Cassava Leaves 472

10.2.5 Recent Findings and On-going Studies 473

10.2.6 Summary and Future Research 473
Acknowledgements 473
References 473

11 Sweet Potato: Technological Interventions 478

11.1 Sweet Potato Flour and Starch 479

11.1.1 Introduction 479
11.1.2 Sweet Potato Flour 480
11.1.3 Basic Steps in Production of Sweet Potato Flour 480
11.1.4 Methods for Production of Sweet Potato Flour 482
11.1.5 Properties of Sweet Potato Flour 482
11.1.5.1 Storage 484
11.1.5.2 Utilization 484
11.1.6 Starch 485
11.1.7 Basic Steps of Production 486
11.1.7.1 Selection of Raw Materials 486
11.1.7.2 Washing of Raw Materials 486
11.1.7.3 Extraction 486
11.1.8 Recent Developments for Extraction of Sweet Potato Starch 487
11.1.9 Physicochemical Properties of Sweet Potato Starch 487
11.1.10 Pasting Properties of Sweet Potato Starch 490
11.1.11 Rheological Properties 491
11.1.12 Morphological Properties 493
11.1.13 Modified Starches 493
11.1.13.1 Hydrothermal Treatment 494
11.1.13.2 Chemical Modification 495
11.1.13.3 Enzymatic Modification 496
CONTENTS

11.1.14 Utilization
 11.1.14.1 Snack Foods
 11.1.14.2 Baked Products
 11.1.14.3 Gravies, Soups and Sauces

11.1.15 Future Aspects
References

11.2 Bakery Products and Snacks based on Sweet Potato
Tai-Hua Mu, Peng-Gao Li, and Hong-Nan Sun

11.2.1 Introduction
11.2.2 Sweet Potato Bread
11.2.3 Sweet Potato Cookies
11.2.4 Purple Sweet Potato Cakes
11.2.5 Instant Nutritious Sweet Potato Chips
11.2.6 Puffed Sweet Potato Food
11.2.7 Airflow Puffed Sweet Potato Chips
11.2.8 Aromatic and Crispy Sweet Potato Chips
11.2.9 Low Temperature Vacuum Fried Sweet Potato Chips
11.2.10 Vacuum Microwave Drying Sweet Potato Chips
11.2.11 Sun Dried Sweet Potato Slices
11.2.12 Summary and Future Research
References

11.3 Other Sweet Potato-based Products
Tai-Hua Mu, Hong-Nan Sun, and Peng-Gao Li

11.3.1 Introduction
11.3.2 Sweet Potato Jelly
11.3.3 Instant Sweet Potato Noodles
11.3.4 Quick-frozen Sweet Potato Product
11.3.5 Sweet Potato Healthcare Tea
11.3.6 Sweet Potato Shoot-tip Canning
11.3.7 Sweet Potato Beer
11.3.8 Purple Sweet Potato Juice
11.3.9 Sweet Potato Whole Flour
11.3.10 Sweet Potato Healthcare Food
 11.3.10.1 Sweet Potato Protein
 11.3.10.2 Sweet Potato Dietary Fiber
 11.3.10.3 Sweet Potato Pectin
 11.3.10.4 Sweet Potato Anthocyanins
 11.3.10.5 Sweet Potato Polyphenols
11.3.11 Sweet Potato Leaf Powder
References

12 Yam: Technological Interventions
Rahman Akinoso and Olufunmilola A. Abiodun

12.1 Introduction
12.2 Importance of Yam in Tropical Regions
12.3 Yam Production
12.4 Consumption of Yam
12.5 Composition of Yam
CONTENTS

12.6 Yam Processing and Utilization

12.6.1 Boiled and Roasted Yam 563
12.6.2 Yam Porridge 563
12.6.3 Pounded Yam 564
12.6.4 Yam Chips 565
12.6.5 Fried Yam Products 566
12.6.6 Paste/Stiff Dough 567
12.6.7 Instant Yam Flour 568
12.6.8 Yam Flakes 570
12.6.9 Extruded Products 570
12.6.10 Composite Flours 571
12.6.11 Starch 571

12.7 Effects of Processing on the Quality of Yam 575

12.8 Technological Application to Yam Processing 576

12.8.1 Major Equipments used in Yam Processing 577

12.9 Summary and Future Research 579

References 580

13 *Amorphophallus*: Technological Interventions 591

Ramesh C. Ray and Sudhanshu S. Behera

13.1 Introduction 591

13.2 Habit, Habitat and Distribution 592

13.3 Nutritional and Anti-nutritional Factors 593

13.3.1 Nutritional Factors 593
13.3.2 Anti-nutritional Factors (Acridity) 593

13.4 Traditional Processing and Value Addition of EFY 594

13.4.1 EFY as Food 595
13.4.2 Flour and Starch 596
13.4.3 Indigenous Medicines 597

13.5 EFY Processing with Technological Interventions 597

13.5.1 Resistant Starch 598
13.5.2 Processing EFY (Konjac) Flour for Gum and Gel 598

13.6 A. konjac K. Koch as Industrial Crop 599

13.6.1 Extraction and Purification of KGM 600
13.6.2 Konjac Glucomannan (KGM)-based Food Products 601
13.6.3 KGM in Bio-film Production 601
13.6.4 Other Uses of KGM 601

13.7 Processing as Pharmaceutical Supplements 603

13.7.1 Obesity and Weight Loss 604
13.7.2 Diabetes Management 604
13.7.3 Probiotic Properties 604
13.7.4 Effects on Immune System 604
13.7.5 Processing for Drug Delivery 605
13.7.6 Other Activities 605

13.8 Summary and Future Perspectives 605

References 606

Index 613
About the IFST Advances in Food Science Book Series

The Institute of Food Science and Technology (IFST) is the leading qualifying body for food professionals in Europe and the only professional organization in the UK concerned with all aspects of food science and technology. Its qualifications are internationally recognized as a sign of proficiency and integrity in the industry. Competence, integrity and serving the public benefit lie at the heart of the IFST philosophy. IFST values the many elements that contribute to the efficient and responsible supply, manufacture and distribution of safe, wholesome, nutritious and affordable foods, with due regard for the environment, animal welfare and the rights of consumers.

IFST Advances in Food Science is a series of books dedicated to the most important and popular topics in food science and technology, highlighting major developments across all sectors of the global food industry. Each volume is a detailed and in-depth edited work, featuring contributions by recognized international experts, and which focuses on new developments in the field. Taken together, the series forms a comprehensive library of the latest food science research and practice, and provides valuable insights into the food processing techniques that are essential to the understanding and development of this rapidly evolving industry.

The IFST Advances series is edited by Dr Brijesh Tiwari, who is Senior Research Officer at Teagasc Food Research Centre in Ireland.

Forthcoming titles in the IFST series

Emerging Technologies in Meat Processing, edited by Edna J. Cummins and James G. Lyng
Ultrasound in Food Processing: Recent Advances, edited by Mar Villamiel, Jose Vicente Garcia-Perez, Antonia Montilla, Juan Andrés Cárcel and Jose Benedito
Herbs and Spices: Processing Technology and Health Benefits, edited by Mohammad B. Hossain, Nigel P. Brunton and Dilip K Rai
List of Contributors

Olufunmilola A. Abiodun, Department of Home Economics and Food Science, University of Ilorin, Kwara State, Nigeria.

Ifeoluwa O. Adekoya, Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa.

Rahman Akinoso, Department of Food Technology, University of Ibadan, Oyo State, Nigeria.

Buliyaminu A. Alimi, Department of Bioresources Engineering, School of Engineering, University of Kwazulu-Natal, Pietermaritzburg, South Africa.

Sudhanshu S. Behera, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India; Department of Biotechnology, College of Engineering and Technology (BPUT), Bhubaneswar, India.

Ashok K. Dhawan, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, India.

Maninder Kaur, Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India.

Pragati Kaushal, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, India.

Marion G. Kihumbu-Anakalo, Department of Food Science, Egerton University, Egerton, Kenya.

Agnes W. Kihurani, School of Agriculture and Biotechnology, Karatina University, Karatina, Kenya.

Kuttumu Laxminarayana, Regional Centre, ICAR – Central Tuber Crops Research Institute, Bhubaneswar, India.

Peng-Gao Li, Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, P.R. China.
LIST OF CONTRIBUTORS

Carl M.F. Mbofung, National School of Agro Industrial Sciences, University of Ngaoundere, Adamaoua, Cameroon.

Sanjibita Mishra, Regional Centre, ICAR – Central Tuber Crops Research Institute, Bhubaneswar, India.

Chokkappan Mohan, Division of Crop Improvement, Central Tuber Crops Research Institute (ICAR), Trivandrum, India.

Tai-Hua Mu, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, P.R. China.

Aswathy G.H. Nair, Division of Crop Improvement, Central Tuber Crops Research Institute (ICAR), Trivandrum, India.

Nicolas Y. Njintang, Faculty of Sciences, University of Ngaoundere, Adamaoua, Cameroon; National School of Agro Industrial Sciences, University of Ngaoundere, Adamaoua, Cameroon.

Adewale O. Obadina, Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria.

Ibok Nsa Oduro, Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.

Sandeep K. Panda, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa.

Vidya Prasannakumary, Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Trivandrum, India.

Ramesh C. Ray, ICAR - Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, India.

Kawaljit Singh Sandhu, Department of Food Science and Technology, Chaudhary Devi Lal University, Haryana, India.

Lateef O. Sanni, Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria.

Joel Scher, Laboratoire d’Ingenierie des Biomolecules (L3Bio), Université de Lorraine, France.

Harish K. Sharma, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, India.

Anakalo A. Shitandi, Kisii University, Kisii, Kenya.

Taofik A. Shittu, Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria; Department of Bioresources Engineering, School of Engineering, University of Kwazulu-Natal, Pietermaritzburg, South Africa.

Bahadur Singh, Food Engineering and Technology Department, Sant Longowal Institute of Engineering and Technology, Sangrur, India.
LIST OF CONTRIBUTORS

Lochan Singh, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonepat, India.

Sarita Soumya, Regional Centre, ICAR – Central Tuber Crops Research Institute, Bhubaneswar, India.

Hong-Nan Sun, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing, P.R. China.

Ashutosh Upadhyay, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonepat, India.

Bashira Wahab, Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria.
Preface

Tropical roots and tubers occupy an important place in the global commerce and economy of a number of countries and contribute significantly to sustainable development, income generation and food security, especially in the tropical regions. Researchers have demonstrated the importance of tropical roots and tubers to human health, contributing an important source of carbohydrates and other nutrients. The perishability and post-harvest losses are the major constraints in their utilization and availability, therefore they demand appropriate storage conditions at different stages and value addition. The objectives of this book are therefore to provide a range of options from production and processing to technological interventions in the field, in a comprehensive form at one place.

This book focuses on all the major aspects related to tropical roots and tubers. With a total of 18 chapters, contributed by various authors with diverse expertise and background in the field across the world, this book reviews and discusses important developments in production, processing and technological aspects. Individually, taro, cassava, sweet potato, yam and elephant foot yam are mainly discussed and covered. The chapters in the book describe and discuss taxonomy, anatomy, physiology, nutritional aspects, biochemical and molecular characterization, storage and commercialization aspects of tropical roots and tubers. Good agricultural practices and good manufacturing practices are also given special emphasis. The HACCP approach in controlling various food safety hazards in processing of tropical roots and tubers is also discussed. Technological interventions, brought out in different tropical roots and tubers, constitute a major focus and it is expected that this book will find a unique place and serve as a resource book on production, processing and technology.

This book is designed for students, academicians, industry professionals, researchers and other interested professionals working in the field/allied fields. A few books are available in this field but this book is designed in such a way that it will be different and unique, covering production, processing and technology of lesser publicized tropical roots and tubers. The text in the book is standard work and therefore can be used as a source of reference. Although best efforts have been made, the readers are the final judge.

Many individuals are acknowledged for their support during the conception and development of this book. Sincere thanks and gratitude are due to all the authors for their valuable contribution and co-operation during the review process. The valuable input from Wiley and the assistance by publishing and copy-editing departments is
PREFACE

gratefully acknowledged. Sincere efforts have also been made to contact copyright holders. However, any suggestions or communications with respect to improving the quality of the book will be appreciated and the editors will be happy to make amendments in the future editions.

Harish K. Sharma
Nicolas Y. Njintang
Rekha S. Singhal
Pragati Kaushal
1 Introduction to Tropical Roots and Tubers

Harish K. Sharma and Pragati Kaushal

Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, India

1.1 Introduction

Roots and tubers are considered as the most important food crops after cereals. About 200 million farmers in developing countries use roots and tubers for food security and income (Castillo, 2011). The roots and tubers contribute significantly to sustainable development, income generation and food security, especially in the tropical regions. The origin of tropical roots and tubers along with their edible parts is presented in Table 1.1.

Individually, cassava, potato, sweet potato and yam are considered the most important roots and tubers world-wide in terms of annual production. Cassava, sweet potato and potato are among the top ten food crops, being produced in developing countries. Therefore, tropical roots and tubers play a critical role in the global food system, particularly in the developing world (Amankwaah, 2012). The leaders, policy-makers and technocrats have yet to completely recognize the importance of tropical tubers and other traditional crops. Therefore, there is a need to focus more on tropical roots and tubers to place them equally in the line of other cash crops.

Tropical root and tubers are the most important source of carbohydrates and are considered staple foods in different parts of the tropical areas of the world. The carbohydrates are mainly starches, concentrated in the roots, tubers, corms and rhizomes. The main tropical roots and tubers consumed in different parts of the world are taro (Colocasia esculenta), yam (Dioscorea spp.), potato (Solanum tuberosum L.), sweet potato (Ipomoea batatas), cassava (Manihot esculenta) and elephant foot yam (Amorphophallus paeonifolius). Yams are of Asian or African origin, taro is from the Indo Malayan region, probably originating in eastern India and Bangladesh, while sweet potato and cassava are of American origin (Table 1.1). Naturally suited to tropical agro-climatic conditions, they grow in abundance with little or no artificial input. Indeed, these plants are so proficient in supplying essential calories that they

2 TROPICAL ROOTS AND TUBERS – PRODUCTION, PROCESSING AND TECHNOLOGY

Table 1.1 Origin of tropical roots and tubers

<table>
<thead>
<tr>
<th>Tropical roots and tubers</th>
<th>Origin</th>
<th>Edible part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet potato</td>
<td>Central/South America</td>
<td>Root, leaves</td>
</tr>
<tr>
<td>Cassava</td>
<td>Tropical America</td>
<td>Root, leaves</td>
</tr>
<tr>
<td>Taro</td>
<td>Indo-Malayan</td>
<td>Corm, cormels, leaves and petioles</td>
</tr>
<tr>
<td>Yam</td>
<td>West Africa/Asia</td>
<td>Tuber</td>
</tr>
<tr>
<td>Elephant foot yam</td>
<td>Southeast Asia</td>
<td>Tuber</td>
</tr>
</tbody>
</table>

Figure 1.1 Post-harvest handling stages in the storage of tropical roots and tubers.

are considered a “subsistence crop” (www.fao.org). Because of their flexibility in cultivation under a mixed farming system, tropical roots and tubers can contribute to diversification, creation of new openings in food-chain supply and to meet global food security needs.

The perishability and post-harvest losses of tropical roots and tubers are the major constraints in their utilization and availability. The various simple, low-cost traditional methods are followed by farmers in different parts of the world to store different tropical roots and tubers. The requirements of storage at different stages during the post-harvest handling of tropical roots and tubers are presented in Figure 1.1. The perishable nature of roots and tubers demands appropriate storage conditions at different stages, starting with the farmers to their final utilization (consumers). Therefore, an urgent requirement exists to modernize the traditional methods of storage at different levels, depending upon the requirements of keeping quality.

The various interactive steps involved in post-harvest management of any tropical root or tuber, if not controlled properly, may result in losses. To prevent these losses, several modern techniques such as cold storage, freezing, chemical treatments and irradiation may be widely adopted. Roots and tubers not only enrich the diet of the people but are also considered to possess medicinal properties to cure various ailments. So the role of roots and tubers in functional products can also
be investigated in the light of medicinal properties. An immense scope exists for commercial exploitation in food, feed and industrial sectors. Since tropical roots and tubers crops are vegetatively propagated and certification is not common, the occurrence of systemic diseases is another problematic area. Some of these root and tuber crops remain under-exploited and deserve considerably more research input for their commercialization.

1.2 Roots and Tubers

1.2.1 Roots

The root is the part of a plant body that bears no leaves and therefore lacks nodes. It typically lies below the surface of the soil. Edible roots mainly include cassava, beet, carrot, turnip, radish and horseradish. Roots have low protein and dry matter compared to tubers. Moreover, the major portion of dry matter contains sugars. The major functions of roots include absorption of inorganic nutrients and water, anchoring the plant body to the ground and storage of food and nutrients.

1.2.2 Tubers

Tubers are underground stems that are capable of generating new plants and thereby storing energy for their parent plant. If the parent plant dies, then new plants are created by the underground tubers. Examples of tubers include potatoes, water chestnuts, yam, elephant foot yam and taro. Tubers contain starch as their main storage reserve and contain higher dry matter and lower fiber content compared to roots. Various tropical roots and tubers are presented in Figure 1.2.

The production of roots and tubers can be grouped into annuals, biennials and perennials. The perennial plants under natural conditions live for several months to many growing seasons, as compared to annual or biennial. The main points of difference among annuals, perennials and biennials are presented in Table 1.2. The perennials generally contain a greater amount of starch as compared to biennials.

1.3 Requirements for the Higher Productivity of Tropical Roots and Tubers

The factors that need to be focused upon to meet the objectives of food security, sustainable farming and livelihood development are farming systems, pest and pathogen control systems, genetic systems and strategies for improvement, together with marketing strategies and the properties of the products and constituents.

1.3.1 Farming Systems

Tropical roots and tubers are generally grown in humid and sub-humid tropics, which are not suited for cereal production. Significant differences exist in the farming system perspectives of tropical root and tuber crops, varying from complex systems of
Figure 1.2 Various tropical roots and tubers.
Table 1.2 Annual, biennial and perennial roots/tubers

<table>
<thead>
<tr>
<th>Life cycle</th>
<th>Limiting aspects</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>Takes 1 year to complete its life cycle.</td>
<td>Growth can be a limiting factor in excess/scarcity of water for annual plants. Insect and disease problems are of minor concern.</td>
</tr>
<tr>
<td>Biennial</td>
<td>Takes 2 years to complete its life cycle.</td>
<td>Early growth and quality is affected by late-season moisture stress.</td>
</tr>
<tr>
<td>Perennial</td>
<td>Takes more than 2 years to complete its life cycle.</td>
<td>No specific period for growth. But by providing early and modified irrigation practices, production can be improved.</td>
</tr>
</tbody>
</table>

production to intercropping farming systems. These systems are important to consider when studying the variation of different crop farming systems. The increasing production in the Pacific region has depended largely on farming more land rather than increasing crop yields. This is contrary to the projections of FAO that the 70% growth in global agricultural production required to feed an additional 2.3 billion people by 2050 must be achieved by increasing the yields and cropping intensity on existing farmlands, rather than by increasing the amount of land brought under agricultural production (Hertel, 2010).

Farming systems need to be carefully looked after, by protecting and raising the production of tropical roots and tubers. For this purpose, various changes in attitudes and agricultural practices are desirable. Additional investments are required to reduce the impact of climate change and to overcome the disastrous effects of soil erosion. Diversity in the production of tropical roots and tubers and increasing production surface area may be adopted for higher productivity and better quality of tropical roots and tubers. Proper organization among small farmers, effective investment in mechanization, and improved storage and processing facilities can improve the productivity of tropical roots and tubers.

1.3.2 Pest and Pathogen Systems

The pest and pathogens of different tropical roots and tuber crops are varied. Roots and tubers are generally produced by small-scale farmers, debarring a few exceptions using traditional tools and without the adequate input of fertilizers or chemicals for pest and weed control. Therefore, the correct use of less expensive and effective dosages of pesticides and fertilizers is important to increase the productivity of
these crops. Moreover, the activities need to be designed to reduce environmental degradation. Biochemical approaches need to be followed to reduce the damage due to pests and pathogens. The assessment of loss caused by pests and pathogens cannot be overlooked, which otherwise affects the production of tropical roots and tubers. In addition, pest and pathogens are of particular concern because of their direct effect on human and animal health. The effect of climatic conditions on the damaging action of pests and pathogens needs to be highlighted. Therefore, proper crop protection, involving different management practices, needs to be followed to reduce the damage due to pests and pathogens and to enhance the productivity of tropical roots and tubers.

1.3.3 Genetic Systems and Strategies for Genetic Improvement

The genetic system of roots and tubers widely differs, so the strategies for genetic improvements also differ. The breeding of root and tuber crops is primarily done sexually. The fact is that the different genetic systems suffer from many breeding complications along with limited opportunities for genetic development and further modifications (Mackenzie, 1995).

Some of the tubers, such as sweet potato and potato, may benefit from breeding cultivars, which are adapted to shorter growing seasons, while other crops (e.g. cassava) may need to fit into some other system, as they have contrasting growing cycles (Mackenzie, 1995). Hundreds of genetically distinct varieties of the roots and tubers are known to exist. Therefore, a focus is needed to genetically improve and develop the variety of roots and tubers, depending upon the requirement to achieve the required target. The dissemination of knowledge to the field is also a great concern in the area. Other considerations (e.g. crop management practices and crop diversification) specify that the decision-making should be carried out in individual breeding programs so as to benefit from these advancements. The needs for improvement in the programs are actually unique for a specific crop, rather than to the group of these crops classified as tropical roots and tubers.

Higher production can be achieved by exploring the genetic yield potential and by gaining knowledge about the genetic background of tropical roots and tubers (Okoth et al., 2013). Proper plant breeding approaches and genetic modification need to be followed for creating new genetic varieties. Overall, modern breeding technologies open up new possibilities to create genetic variation and to improve selection, but conventional breeding techniques remain important to improve the production of these crops.

1.3.4 Marketing Strategy

Tropical roots and tubers produced for off-farm markets can vary considerably in their transportation, storage facilities, processing techniques, consumption patterns, economics, etc. These differences need to be taken into account when various opportunities are assessed for improving trade. In fact, some individual root and tuber crops are presently experiencing a segmentation of markets that will undoubtedly require substantially different types of cultivars to meet divergent market needs (www.fao.org).