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Preface

Bionics has become more and more popular during the last few decades. Many

engineering problems are now solved by copying solutions found in nature. Espe-

cially the broad field of optimization has been inspired by the variety of methods to

accomplish tasks that can be observed in nature. Popularly known examples include

the strategies that ant colonies use to reduce their transport distances to feed their

always hungry population, the dynamics of swarms of birds or fishes, and even

replication of the brain’s learning and adapting to different challenges.

Over more than a decade, we have been studying Bionic Optimization at the

Reutlingen Research Institute (RRI). After early attempts to design optimization

solutions using parameterized CAD-systems and evolutionary strategies, our field

of interest became broader. Our work taught us how the different bionic optimiza-

tion strategies might be applied, which strong points and which weaknesses they

exhibited, and where they might be powerful and where inappropriate.

During a series of joint research projects with different partners and supported by

the German government and other sponsors, we studied many aspects of these

techniques. Additionally, the interest of the scientific community in Bionic Opti-

mization is increasing along with the fuller understanding of how engineering can

be influenced by non-deterministic phenomena. In this book we intend to give an

introduction to the use of Bionic Optimization in structural design. Readers should

be enabled to begin applying these nature inspired procedures. Furthermore, hints

about the implementation, useful parameter combinations, and criteria to accelerate

the processes are included.

To formulate most bionic optimization processes, scientists have attempted to

base the strategies on a strong and reproducible theoretical foundation. On the other

hand, most of these methods are so easy to understand that we realize they are

working even if we decline to base them on a strict mathematical background. In

this book we decided to explain the basic principles, show examples that are easy to

understand, and list easily reproducible pseudocode to help new users to start

working immediately. Comments on meaningful parameter combinations and

warnings on problems and critical configurations may motivate readers to verify

whether our proposals are justified, or if they can be expanded to broader regimes.
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The work presented in this book mostly is a re-composition of different papers,

theses, work reports, and presentations written throughout the last decade. The

authors are former or current students at Reutlingen University, colleagues at the

RRI, people who like working in Bionics, and young engineers who had, and have,

plenty of ideas and are not too easily frustrated by flops. We have been following

many tangents, have done thousands of studies, and have found solutions to many

questions, but sometimes have failed to find the answers to others.

We begin with basic definitions and motivations, giving simple examples, and

explaining how to set up an optimization environment. Some more elaborate

applications then exhibit the power of these methods. Finally, a discussion about

the future developments indicates how we expect optimization to be used in the

future.

All this work would not have been possible without the support of many

different sponsors. Besides the financial support of the German government in

some research projects, many software companies and manufacturing enterprises

gave us the opportunity to scan the wide range of bionic optimization in industry.

We recognize their help, the fruitful discussions, and the generous handling of the

licensing of the software packages. Additionally, we would like to express our

gratitude to the heads of Reutlingen University, the RRI, and the faculty of

engineering all of whom gave us access to space, time, and nearly endless comput-

ing power. We want to express our gratitude to Springer, especially Mrs. Eva

Hestermann-Beyerle and her staff, who have helped so much to transform the

collection of many different papers in different formats into one readable book.

Reutlingen, Germany Simon Gekeler

April 2015 Rolf Steinbuch
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Chapter 1

Motivation

Rolf Steinbuch

Since human beings started to work consciously with their environment, they have

tried to improve the world they were living in. Early use of tools, increasing quality

of these tools, use of new materials, fabrication of clay pots, and heat treatment of

metals: all these were early steps of optimization. But even on lower levels of life

than human beings or human society, we find optimization processes. The organi-

zation of a herd of buffalos to face their enemies, the coordinated strategies of these

enemies to isolate some of the herd’s members, and the organization of bird swarms

on their long flights to their winter quarters: all these social interactions are

optimized strategies of long learning processes, most of them the result of a kind

of collective intelligence acquired during long selection periods.

1.1 A Short Historical Look at Optimization

In consequence it is not surprising to find optimization approaches in more highly

organized human societies, focusing, for example, not only on the organization of

social life but also on craftsmanship as well. Qualified professionals learn, try, fail,

and improve until they are capable of performing their craft to certain perfection.

And then new workers come, with the desire to surpass their antecessors, and create

even better ideas and products. With increased productivity and the shorter lifetime

cycles of industrial production, the need to deliver higher qualities in shorter times

has become a continuous challenge. Today optimization is an inherent part of the

industrial process. Since engineering, especially the design of machinery, started to

R. Steinbuch (*)
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become a discipline, more than merely an appendix of the manufacturing process,

the task of optimization has been incorporated within its precincts.

1.1.1 Optimization in Engineering History

The founding days of Technical Mechanics, starting with the analysis of simple

rods and beams, enabled engineers to predict the load carrying capability of a

theoretical part and to select acceptable variants. At these early stages, an essential

part of mechanical and civil engineering was devoted to finding methods, formulas,

and predictions of the response of systems and structures. Engineers used these

formulas to discover better solutions. Optimization might be regarded at least as

one of the central items in mechanical engineering. Good engineers understand the

processes they deal with, improve them, apply the relevant theoretical approaches,

work out the essential consequences of the theory, and interpret them in an

appropriate way. Following this approach, which is based on abstract thinking,

the optimization is then transferred to the physical models. Through this process,

engineers analyzed why the models did not work as expected, improved their

understanding of the processes, and then designed new and better models. Parallel

to this development, the efficiency of mathematical methods became more and

more important. Among the central difficulties at that time was dealing with

non-trivial formula, solving problems with more than two or three unknowns,

studies of processes in time and space, and many other mathematical problems

that required powerful handling of numerical tasks.

1.1.2 Finding Relevant Numbers in Engineering

Early on, finding the correct numbers for specific problems became a central

challenge in the mathematical analysis of engineering problems, so there were

many attempts to build calculators. Charles Babbage’s difference engine and

analytical engine, built at the beginning of the nineteenth century, was among the

first and certainly among the most famous. But it was not until the 1930s that

various developers, using electric current instead of mechanical contacts as leading

technology, succeeded to produce relatively fast and reliable computers. The

development of the transistor in the late 1940s allowed for the assembly of

computers which were not built with relays or electronic valves and which were

both very fast and very reliable compared to their predecessors. Up to today, we do

not see any limits to the growing calculation capacity of these transistorized

computers. In consequence, we are able to solve large problems with many

unknowns in a short time, and this has caused Technical Mechanics to lose much

of its frustrating aspects to engineers.

2 R. Steinbuch



1.1.3 High Level Mechanical Methods

Parallel to the development of computers, new methods in mechanics arose.

Beginning with early steps in the nineteenth century, Walter Ritz (1908) and

Boris Galerkin (1915) proposed a method to solve structural problems that might

be essentially more complex than the ones handled by the classical formula

(Fig. 1.1). Richard Courant (c. 1923) was the first mathematician to understand

the potential of their proposal, but development of these ideas was limited by lack

of computing power. However, during the Second World War and in the years

following it, scientists started to propose variants of these original ideas, which we

know today as the Finite Element Method (FEM). Parallel to the FEM, the

Boundary Element Method (BEM), often associated with Erich Trefftz, was devel-

oped and became an important tool in many engineering applications.

In the first years of use, the industrial application of both FEM and BEM was

restricted to applications in which minimizing cost was a lower priority. So, air- and

spacecraft, military weapons, nuclear industries, and some high level vehicle

applications were using the then expensive numerical tools. In addition to the

expense of computing power, up to the 1980s, the large effort to define and to

enter the geometrical properties such as nodes and elements in FEM reduced the

applications to simple problems and isolated studies. Consequently, in the early

1990s the meshing of a motor-head took about 6 months, not taking into account the

other 6 months required to develop the wireframe CAD-model that served as basis

for this FEM-model.

1.1.4 Drop of Hardware Costs and Better CAD Systems

In the 1990s two essential developments took place. 3D-CAD-Systems using solid

models were developed. They required many fast and well performing local

graphical systems be installed on powerful workstations. Since the workstations

Fig. 1.1 Walter Ritz (Ritz), Boris Galerkin (Galerkin), Richard Courant (Courant), Erich Trefftz
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of individual engineers could perform much of the computation, there was no

longer a need for large central mainframes. More importantly, the FEM-meshes

could be easily derived from the 3D-CAD-Models. Only with these advancements

would FEM became a tool available to more diverse segments of industry as well.

The new, less expensive application of FEM and other simulation systems, such

as BEM or the Finite Volume Method (FVM) for fluid mechanics problems, opened

up possibilities to apply field-integrated optimization (Fig. 1.2). It was once accept-

able to spend hours building a model. But it is far too expensive to spend many

hours on the repeated process than to build and study variants of the initial design.

a) b) 

c) d) 

Fig. 1.2 Examples of simulation tools. (a) CAD-model. (b) FEM-mesh. (c) Stresses around

tunnels in a mountain (BEM). (d) Flow through a nozzle pair (FVM)
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