Theory of Elasticity and Stress Concentration

YUKITAKA MURAKAMI

WILEY
THEORY OF ELASTICITY
AND STRESS
CONCENTRATION
Contents

Preface xiii
Preface for Part I: Theory of Elasticity xv
Part I Nomenclature xvii
Preface for Part II: Stress Concentration xix
Part II Nomenclature xxiii
Acknowledgments xxv

Part I Theory of Elasticity 1

1 Stress 3
 1.1 Stress at the Surface of a Body 3
 1.1.1 Normal Stress 3
 1.1.2 Shear Stress 3
 1.2 Stress in the Interior of a Body 4
 1.3 Two Dimensional Stress, Three Dimensional Stress and Stress Transformation 5
 1.3.1 Normal Stress 5
 1.3.2 Shear Stress 6
 1.3.3 Stress in an Arbitrary Direction 7
 1.3.4 Principal Stresses 14
 1.3.5 Principal Shear Stresses 18
Problems of Chapter 1 19

2 Strain 21
 2.1 Strains in Two Dimensional Problems 21
 2.2 Strains in Three Dimensional Problems 24
 2.3 Strain in an Arbitrary Direction 24
 2.3.1 Two Dimensional Case 24
 2.3.2 Three Dimensional Case 26
 2.4 Principal Strains 26
2.5 Conditions of Compatibility ... 28
Problems of Chapter 2 ... 30
Reference ... 31

3 Relationship between Stresses and Strains: Generalized Hooke’s Law .. 33
Problems of Chapter 3 ... 38

4 Equilibrium Equations .. 41
Problems of Chapter 4 ... 44

5 Saint Venant’s Principle and Boundary Conditions 45

5.1 Saint Venant’s Principle .. 45
5.2 Boundary Conditions ... 47

5.2.1 Stress Boundary Conditions ... 47
5.2.2 Displacement Boundary Conditions 48
5.2.3 Mixed Boundary Conditions ... 48

Problems of Chapter 5 ... 49

6 Two Dimensional Problems ... 53

6.1 Plane Stress and Plane Strain ... 53
6.1.1 Plane Stress .. 53
6.1.2 Plane Strain .. 54
6.2 Basic Conditions for Exact Solutions: Nature of Solutions 56
6.3 Airy’s Stress Function ... 58
6.4 Hollow Cylinder ... 60
6.5 Stress Concentration at a Circular Hole 63
6.6 Stress Concentration at an Elliptical Hole 69
6.7 Stress Concentration at a Hole in a Finite Width Plate 73
6.8 Stress Concentration at a Crack ... 75
6.9 Stress Field due to a Point Force Applied at the Edge of a Semi-Infinite Plate .. 82

6.10 Circular Disk Subjected to Concentrated Force 87
Problems of Chapter 6 ... 88
Appendix of Chapter 6 ... 91
References .. 92

7 Torsion of a Bar with Uniform Section 95

7.1 Torsion of Cylindrical Bars ... 95
7.2 Torsion of Bars Having Thin Closed Section 97
7.3 Saint Venant’s Torsion Problems .. 99
7.4 Stress Function in Torsion .. 100

7.4.1 Equilibrium Condition .. 101
7.4.2 Compatibility Equation ... 101
7.4.3 Boundary Conditions ... 102

7.5 Membrane Analogy: Solution of Torsion Problems by Using the Deformation of Pressurized Membrane 105
7.6 Torsion of Bars Having a Thin Unclosed Cross Section 107
7.7 Comparison of Torsional Rigidity between a Bar with an Open Section and a Bar with a Closed Section 112
Problems of Chapter 7 114
Reference 115

8 Energy Principles 117
8.1 Strain Energy 117
8.2 Uniqueness of the Solutions of Elasticity Problems 122
8.3 Principle of Virtual Work 123
8.4 Principle of Minimum Potential Energy 126
8.5 Castigliano’s Theorem 129
8.6 The Reciprocal Theorem 133
Problems of Chapter 8 136
Reference 136

9 Finite Element Method 137
9.1 FEM for One Dimensional Problems 138
9.2 Analysis of Plane Stress Problems by the Finite Element Method 142
 9.2.1 Approximation of 2D Plate Problems by a Set of Triangular Elements 142
 9.2.2 Relationship between Stress and Strain in Plane Stress Problem 145
 9.2.3 Stiffness Matrix of a Triangular Plate Element 145
 9.2.4 Stiffness Matrix of the Total Structure 152
 9.2.5 Expression of Boundary Conditions and Basic Knowledge for Element Meshing 155
Problems of Chapter 9 157

10 Bending of Plates 161
10.1 Simple Examples of Plate Bending 161
10.2 General Problems of Plate Bending 165
10.3 Transformation of Bending Moment and Torsional Moment 166
10.4 Differential Equations for a Plate Subjected to Surface Loads and their Applications 169
10.5 Boundary Conditions in Plate Bending Problems 173
10.6 Polar Coordinate Expression of the Quantities of Plate Bending 176
10.7 Stress Concentration in Plate Bending Problems 177
 10.7.1 Stress Concentration at a Circular Hole in Bending a Wide Plate 177
 10.7.2 Stress Concentration at an Elliptical Hole in Bending a Wide Plate 177
10.8 Bending of a Circular Plate 178
Problems of Chapter 10 185
References 186

11 Deformation and Stress in Cylindrical Shells 187
11.1 Basic Equations 187
 11.1.1 Equilibrium Condition 187
11.1.2 Forces and Deformations 189
11.1.3 Basic Differential Equation 191
11.2 Various Problems of Cylindrical Shells 192
Problems of Chapter 11 194

12 Thermal Stress 197
12.1 Thermal Stress in a Rectangular Plate – Simple Examples of Thermal Stress 197
12.1.1 Constant Temperature Rise \(\Delta T(x,y) = T_0 \) (Constant) 197
12.1.2 Linear Temperature Distribution \(\Delta T(x,y) = 2T_0y/h \) 198
12.1.3 Quadratic Temperature Distribution \(\Delta T(x,y) = 2T_0(y/h)^2 \) 199
12.2 Thermal Stress in a Circular Plate 201
12.3 Thermal Stress in a Cylinder 204
Problems of Chapter 12 205

13 Contact Stress 207
13.1 2D Contact Stress 208
13.1.1 Stress and Deformation for Uniform Pressure Distribution 208
13.1.2 Contact Stress by a Rigid Punch 211
13.1.3 Stress Field by Elliptical Contact Stress Distribution 212
13.2 3D Contact Stress 213
13.2.1 Stress and Displacement Due to a Constant Distributed Loading 214
13.2.2 Contact Stress Due to a Rigid Circular Punch 216
13.2.3 Contact Between Two Spheres 216
13.2.4 Contact Between Two Cylinders 217
Problems of Chapter 13 218
References 219

Answers and Hints for Part I Problems 221

Appendix for Part I 241
A.1 Rule of Direction Cosines 241
A.2 Green’s Theorem and Gauss’ Divergence Theorem 241
A.2.1 2D Green’s Theorem 241
A.2.2 3D Green’s Theorem 244

Part II Stress Concentration 245

1 Stress Concentration in Two Dimensional Problems 247
1.1 Stress Concentration at a Circular Hole 247
1.2 Stress Concentration at an Elliptical Hole 253
1.2.1 Stress Distribution and Stress Concentration Under Remote Stress \(\sigma_y \) or \(\sigma_x \) 253
1.2.2 Stress Concentration and Stress Distribution Under Remote Shear Stress \(\tau_{xy} \) 257
1.3 Stress Concentration at a Hole in a Finite Width Plate 260
1.4 Concept of Equivalent Ellipse 263
 1.4.1 Basic Concept 263
 1.4.2 Difference of Stress Concentration at a Circular Hole in an Infinite Plate and at a Semi-Circular Hole on the Edge of a Semi-Infinite Plate 267
 1.4.3 Limitation of Applicability of the Concept of the Equivalent Ellipse 268
1.5 Stress Concentration at Inclusions 270

Problems of Chapter 1 274
References 278

2 Stress Concentration at Cracks 279
 2.1 Singular Stress Distribution in the Neighborhood of a Crack Tip 279
 2.2 Stress Distribution Near Crack Tip Under Biaxial Stress Field 281
 2.3 Distribution of Shear Stress Near Crack Tip 282
 2.4 Short Cracks and Long Cracks 283
 2.5 Plastic Zone Ahead of Crack Tip: Dugdale Model 284
 2.6 Approximate Estimation Method of K_I 286
 2.7 Crack Propagation Path 288
 2.7.1 Propagation Direction of Mode I Crack 290
 2.7.2 Propagation Direction of Mode II Crack 294
 2.7.3 Propagation Direction of Mode III Crack 294

Problems of Chapter 2 296
References 299

3 Stress Concentration in Three Dimensional Problems 301
 3.1 Stress Concentration at a Spherical Cavity 301
 3.2 Stress Concentration at a Spherical Inclusion 302
 3.3 Stress Concentration at an Axially Symmetric Ellipsoidal Inclusion 303
 3.4 Stress Concentration at a Surface Pit 303
 3.5 Stress Concentration at a 3D Crack 310
 3.5.1 Basic Problems 310
 3.5.2 Approximate Equation for the Stress Intensity Factor K_I for a Crack of Arbitrary Shape in an Infinite Body 312
 3.5.3 Approximate Formula of the Stress Intensity Factor K_I for a Crack of Arbitrary Shape at the Surface of a Semi-Infinite Body 314

Problems of Chapter 3 315
References 316

4 Interaction Effects of Stress Concentration 319
 4.1 Interaction Effect which Enhances Stress Concentration 319
 4.2 Interaction Effect which Mitigates Stress Concentration 322
 4.3 Stress Concentration at Bolt Threads 324

Problems of Chapter 4 332
References 334
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Notch Effect and Size Effect in Fatigue: Viewpoint from Stress Concentration</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Problem of Chapter 5</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>341</td>
</tr>
<tr>
<td>6</td>
<td>Stress Concentration in Plate Bending</td>
<td>343</td>
</tr>
<tr>
<td>6.1</td>
<td>Stress Concentration at a Circular Hole in a Wide Plate Under Bending</td>
<td>343</td>
</tr>
<tr>
<td>6.2</td>
<td>Stress Concentration at an Elliptical Hole in a Wide Plate Under Bending</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Problems of Chapter 6</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>346</td>
</tr>
<tr>
<td>7</td>
<td>Relevant Usage of Finite Element Method</td>
<td>347</td>
</tr>
<tr>
<td>7.1</td>
<td>Fundamentals for Element Meshing</td>
<td>347</td>
</tr>
<tr>
<td>7.2</td>
<td>Elastic–Plastic Analysis</td>
<td>348</td>
</tr>
<tr>
<td>7.3</td>
<td>Element Meshing for Cracks and Very Sharp Notches</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Problems of Chapter 7</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>355</td>
</tr>
<tr>
<td>8</td>
<td>Hollow Cylinder Subjected to Internal or External Pressure</td>
<td>357</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic Solution</td>
<td>357</td>
</tr>
<tr>
<td>8.2</td>
<td>Crack at Inner Wall of Hollow Cylinder Under Internal Pressure</td>
<td>358</td>
</tr>
<tr>
<td>8.3</td>
<td>Shrink Fit Problems</td>
<td>359</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Shrink Fit of Shaft and Hollow Cylinder</td>
<td>363</td>
</tr>
<tr>
<td>8.4</td>
<td>Other Related Problems</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Problem of Chapter 8</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>374</td>
</tr>
<tr>
<td>9</td>
<td>Circular Disk Subjected to Concentrated Point Forces</td>
<td>375</td>
</tr>
<tr>
<td>9.1</td>
<td>Basic Solution</td>
<td>375</td>
</tr>
<tr>
<td>9.2</td>
<td>Circular Hole in Circular Disk</td>
<td>376</td>
</tr>
<tr>
<td>9.3</td>
<td>Various Concentrated Forces</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>Problems of Chapter 9</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>382</td>
</tr>
<tr>
<td>10</td>
<td>Stress Concentration by Point Force</td>
<td>383</td>
</tr>
<tr>
<td>10.1</td>
<td>Point Force Acting at the Edge of Semi-Infinite Plate</td>
<td>383</td>
</tr>
<tr>
<td>10.2</td>
<td>Point Force Acting in Infinite Plate</td>
<td>385</td>
</tr>
<tr>
<td>10.3</td>
<td>Point Force Acting at the Inner Edge of a Circular Hole</td>
<td>385</td>
</tr>
<tr>
<td>10.4</td>
<td>Applications of Solutions</td>
<td>386</td>
</tr>
<tr>
<td>10.5</td>
<td>Point Force Acting on the Surface of Semi-Infinite Body</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>389</td>
</tr>
<tr>
<td>11</td>
<td>Stress Concentration by Thermal Stress</td>
<td>391</td>
</tr>
<tr>
<td>11.1</td>
<td>Thermal Residual Stress Around a 2D Circular Inclusion</td>
<td>391</td>
</tr>
<tr>
<td>11.2</td>
<td>Stress Concentration Due to Thermal Shock</td>
<td>394</td>
</tr>
<tr>
<td>11.3</td>
<td>Thermal Residual Stress Around a Spherical Inclusion</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>396</td>
</tr>
</tbody>
</table>
Preface

The theory of elasticity is not applied mathematics. Solving differential equations and integral equations is not the objective of the theory of elasticity. Students and young researchers, who can use the modern commercial finite element method (FEM) software, are not attracted by the classical approach of applied mathematics. This situation is not good. Students, young researchers and young engineers skip directly from the elementary theory of the strength of materials to FEM without understanding the basic principles of the theory of elasticity. The author has seen many mistakes and judgement errors made by students, young researchers and young engineers in their applications of FEM to practical problems. These mistakes and judgement errors mostly come from a lack of basic knowledge of the theory of elasticity. Firstly, this book provides the basic but very important essence of the theory of elasticity. Second, many useful and interesting applications of the basic way of thinking are presented and explained. Readers do not need special mathematical knowledge to study this book. They will be able to understand the new approach of the theory of elasticity which is different from the classical mathematical theory of elasticity and will enjoy solving many interesting problems without using FEM.

The basic knowledge and engineering judgement acquired in Part I will encourage the readers to enter smoothly into Part II in which various important new ways of thinking and simple solution methods for stress concentration problems are presented. Approximate estimation methods for stress concentration will be very useful from the viewpoint of correct boundary conditions as well as the magnitude and relative importance of numerical variables. Thus, readers will be able to quickly find approximate solutions with practically sufficient accuracy and to avoid fatal mistakes produced by FEM calculations, performed without basic knowledge of the theory of elasticity and stress concentration.

The author believes with confidence that readers of this book will be able to develop themselves to a higher level of research and structural design.
Preface for Part I: Theory of Elasticity

Part I of this book presents a new way of thinking for the theory of elasticity. Several good quality textbooks on this topic have already been published, but they tend to be too mathematically based. Students can become confused by the very different approaches taken towards the elementary theory of strength of materials (ETSM) and the theory of elasticity and, therefore, believe that these two cannot be easily used cooperatively.

To study this book, readers do not need special mathematical knowledge such as differential equations, integral equations and tensor analysis. The concepts of stress field and strain are the most important themes in the study of the theory of elasticity. However, these concepts are not explored in sufficient depth within ETSM in order to teach engineers how to apply simple solutions using the theory of elasticity to solve practical problems. As various examples included in this book demonstrate, this book will help readers to understand not only the difference between ETSM and the theory of elasticity but also the essential relationship between them.

In addition to the concepts of field, the concepts of infinity and infinitesimal are also important. It is natural that everyone experiences difficulties in imagining infinity or infinitesimal. As a result, we must use caution when using unbounded or very small values, as the results are sometimes unexpected. We should be aware that infinity and infinitesimal are relative quantities.

Once the concepts of field and those of infinity and infinitesimal are mastered, the reader will become a true engineer having true engineering judgement, even if they cannot solve the problems using lengthy and troublesome differential or integral equations. However, the existing solutions must be used fully and care must be taken at times, very large values being treated as infinitesimal and very small values as infinite values depending on the specific problem. It will be seen in many cases treated in this book that small and large are only our impressions and that approximation is not only reasonable but very important.
Stresses and strains in an orthogonal coordinate system
\((x, y, z)\)

Normal stress \((\sigma_x, \sigma_y, \sigma_z)\)
Normal strain \((\epsilon_x, \epsilon_y, \epsilon_z)\)
Shear stress \((\tau_{xy}, \tau_{yz}, \tau_{zx})\)
Shear strain \((\gamma_{xy}, \gamma_{yz}, \gamma_{zx})\)

Stresses and strains in a cylindrical coordinate system
\((r, \theta, z)\)

Normal stress \((\sigma_r, \sigma_\theta, \sigma_z)\)
Normal strain \((\epsilon_r, \epsilon_\theta, \epsilon_z)\)
Shear stress \((\tau_{r\theta}, \tau_{\theta z}, \tau_{zr})\)
Shear strain \((\gamma_{r\theta}, \gamma_{\theta z}, \gamma_{zr})\)

Rotation
Normal stress and shear stress in a \(\xi-\eta-\zeta\) coordinate system

Remote stress
Principal stresses
Principal strains
Direction cosines
Pressure
Concentrated force
Body force
Bending moment per unit length
Twisting moment per unit length
Twisting moment (torsional moment) or temperature
Torsional angle per unit length or crack propagation angle
Surface tension
Airy’s stress function or stress function in torsion
Stress concentration factor
Stress intensity factor of Mode I
Stress intensity factor of Mode II
Stress intensity factor of Mode III

Normal stress \((\sigma_x, \sigma_y, \sigma_z)\)
Normal strain \((\epsilon_x, \epsilon_y, \epsilon_z)\)
Shear stress \((\tau_{xy}, \tau_{yz}, \tau_{zx})\)
Shear strain \((\gamma_{xy}, \gamma_{yz}, \gamma_{zx})\)
Normal stress \((\sigma_r, \sigma_\theta, \sigma_z)\)
Normal strain \((\epsilon_r, \epsilon_\theta, \epsilon_z)\)
Shear stress \((\tau_{r\theta}, \tau_{\theta z}, \tau_{zr})\)
Shear strain \((\gamma_{r\theta}, \gamma_{\theta z}, \gamma_{zr})\)
Rotation
Normal stress and shear stress in a \(\xi-\eta-\zeta\) coordinate system
Remote stress
Principal stresses
Principal strains
Direction cosines
Pressure
Concentrated force
Body force
Bending moment per unit length
Twisting moment per unit length
Twisting moment (torsional moment) or temperature
Torsional angle per unit length or crack propagation angle
Surface tension
Airy’s stress function or stress function in torsion
Stress concentration factor
Stress intensity factor of Mode I
Stress intensity factor of Mode II
Stress intensity factor of Mode III

\(\omega\)
Normal stress \((\sigma_{\xi}, \sigma_{\eta}, \sigma_{\zeta})\)
Shear stress \((\tau_{\xi\eta}, \tau_{\eta\zeta}, \tau_{\zeta\xi})\)
\(\sigma_0, \tau_0\) or \(\sigma_{x00}, \sigma_{y00}, \tau_{xy00}\)
\(\sigma_1, \sigma_2, \sigma_3\)
\(\epsilon_1, \epsilon_2, \epsilon_3\)
l, m, n, (i = 1, 2, 3)
p or q
P, Q
\(X, Y, Z\) or \(F_x, F_y\)
\(M_x, M_y\)
\(M_{xy}\) or \(M_{yx}\)
\(T\)
\(\theta_0\)
\(S\)
\(\phi\)
\(K_I\)
\(K_{II}\)
\(K_{III}\)
Radius of circle or major radius of ellipse or crack	a
Minor radius of ellipse	b
Notch root radius or radius of curvature in membrane	ρ
Notch depth	t
Young’s modulus	E
Poisson’s ratio	ν
Shear modulus	G
Displacement in x, y, z coordinate system	u, v, w
Displacement of membrane	z
Width of plate	W

(Note: v looks the same as Poisson’s ratio but is different.)
Preface for Part II: Stress Concentration

Part II of this book is a compilation of the ideas on stress concentration which the author has developed over many years of teaching and research. This is not a handbook of stress concentration factors. This book guides a fundamental way of thinking for stress concentration. Fundamentals, typical misconceptions and new ways of thinking about stress concentration are presented. One of the motivations for writing this book is the concern about a decreasing basic knowledge of recent engineers about the nature of stress concentration.

It was reported in the United States and Europe [1–3] that the economic loss of fracture accidents reaches about 4% of GDP. Fracture accidents occur repeatedly regardless of the progress of science and technology. It seems that the number and severity of serious accidents is increasing. The author was involved in teaching strength of materials and theory of elasticity for many years in universities and industry and a recent impression based on the author’s experience is that many engineers do not understand the fundamentals of the theory of elasticity.

How many engineers can give the correct answers to basic problems such as those in Figures 1 and 2?

The theory of elasticity lectures are likely to be abstract and mathematical. This trend is evident in the topics and emphasis of many text books. Such textbooks may be useful for some researchers but are almost useless for most practicing engineers. The author has been aware of this problem for many years and has changed the pedagogy of teaching the theory of elasticity by introducing various useful ways of thinking (see Part I). Engineers specializing in strength design and quality control are especially requested to acquire the fundamentals of theory of elasticity and afterwards to develop a sense about stress concentration. The subject is not difficult. Rather, as readers become familiar with the problems contained in this book, they will understand that the problems of stress concentration are full of interesting paradoxes.

Few accidents occur because of a numerical mistake or lack of precision in a stress analysis. A common attitude that analysis by FEM software will guarantee the correct answer and safety is the root cause of many failures. Most mistakes in the process of FEM analysis are made at the
beginning stage of determining boundary conditions regarding forces and displacements. Even worse, many users of FEM software are often not aware of such mistakes even after looking at strange results because they do not have a fundamental understanding of theory of elasticity and stress concentration.

The origin of fracture related accidents are mostly at the stress concentrations in a structure. As machine components and structures have various shapes for functional reasons, stress concentration cannot be avoided. Therefore, strength designers are required to evaluate stress concentration correctly and to design the shape of structures so that the stress concentration does not exceed the safety limits.

In this book, various elastic stress concentration problems are the main topic. The strains in an elastic state can be determined by Hooke’s law in terms of stresses. In elastic–plastic conditions, the relationship between stresses and strains deviates from Hooke’s law. Once plastic

Figure 1 Stress concentration at a circular hole in a wide plate. How large is the maximum stress? (See Figure 1.2 in Example problem 1.1 in Part II, Chapter 1.)

Figure 2 A cylindrical specimen for comparison of the fracture strengths at a smooth part and a notched part under tension (material is 0.13% annealed carbon steel, dimension unit is mm). Where does this specimen fracture from by tensile test? (See Figure 14.7 in the Example problem 14.1 in Part II, Chapter 14.)
yielding occurs at a notch root, the stress concentration factor decreases compared to the elastic value and approaches one. However, the strain concentration factor increases and approaches the elastic value squared. Therefore, in elastic-plastic conditions, fatigue behavior is described in terms of strain concentration. However, if the stress and strain relationship at the notch root does not deviate much from Hooke’s law or work hardening of material occurs after yielding, the description based on elastic stress concentration is valid. In general, in the case of high cycle fatigue, it is reasonable and effective for the solution of practical problems to consider only the elastic stress concentration. Thus, it is crucially important for strength design engineers to understand the nature of elastic stress concentration.

References

Part II Nomenclature

Stresses and strains in orthogonal coordinate system \((x, y, z)\)
- Normal stress \((\sigma_x, \sigma_y, \sigma_z)\)
- Normal strain \((\varepsilon_x, \varepsilon_y, \varepsilon_z)\)
- Shear stress \((\tau_{xy}, \tau_{yz}, \tau_{zx})\)
- Shear strain \((\gamma_{xy}, \gamma_{yz}, \gamma_{zx})\)

Stresses and strains in cylindrical coordinate system \((r, \theta, z)\)
- Normal stress \((\sigma_r, \sigma_\theta, \sigma_z)\)
- Normal strain \((\varepsilon_r, \varepsilon_\theta, \varepsilon_z)\)
- Shear stress \((\tau_{r\theta}, \tau_{\theta z}, \tau_{rz})\)
- Shear strain \((\gamma_{r\theta}, \gamma_{\theta z}, \gamma_{rz})\)

Normal stress and shear stress in \(\xi-\eta\) coordinate system
- Normal stress \((\sigma_\xi, \sigma_\eta)\)
- Shear stress \(\tau_{\xi\eta}\)

Remote stress \(\sigma_0, \tau_0\) or \(\sigma_\infty, \sigma_{xy}^\infty, \tau_{xy}^\infty\)
Principal stresses \(\sigma_1, \sigma_2\)
Pressure \(p\) or \(q\)
Concentrated force \(P, Q\)
Stress concentration factor \(K_t\)
Stress concentration factor in elastic plastic state \(K_\sigma\)
Strain concentration factor in elastic plastic state \(K_e\)
Stress intensity factor of Mode I \(K_1\)
Stress intensity factor of Mode II \(K_{II}\)
Stress intensity factor of Mode III \(K_{III}\)
Radius of circle or major radius of ellipse \(a\)
Minor radius of ellipse (or Burger’s vector of dislocation) \(b\)
Notch root radius \(\rho\)
Notch depth \(t\)
Young’s modulus \(E\)
Poisson’s ratio \(\nu\)
Shear modulus \(G\)
Displacement in \(x, y, z\) coordinate system \(u, v, w\)
Shape parameter of ellipse \(R = \sqrt{(a + b)/(a - b)}\)
Plastic zone size \(R\)
Acknowledgments

This book is a joint version of two books originally published separately in Japanese by Yokendo, Tokyo: one is Theory of Elasticity and the other is New Way of Thinking for Stress Concentration. The Japanese version of Theory of Elasticity has been used in many universities since its publication in 1984 and it is regarded as one of the best elasticity textbooks in Japan. For the publication of the Japanese versions, the author was indebted especially to the late Prof. Tatsuo Endo and the late Prof. Makoto Isida for their invaluable comments and moreover to Mr. Kiyoshi Oikawa, the president of Yokendo Publishing Co. Ltd. for publishing the original Japanese versions of these two books and kindly approving the publication of this English version.

In advance of publication of the English version, the author gave lectures on the theory of elasticity and stress concentration at several universities in Europe and the United States. Especially at Aalto University in Finland, the author taught this subject for one complete semester and realized the importance of the new way of teaching the theory of elasticity. Throughout the author’s long experience of teaching the theory of elasticity and its relationship with fatigue design, the author got useful comments and encouragements from Prof. Gary Marquis, Dean of the School of Engineering at Aalto University, Prof. Darrell Socie, University of Illinois, Prof. Stefano Beretta, Politecnico di Milano, Prof. Masahiro Endo, Fukuoka University and Prof. Hisao Matsunaga, Kyushu University. The author would like to express his sincere thanks to them.

Prof. Masahiro Endo’s help is greatly appreciated for reading throughout the draft of the book and also for giving the author useful comments on the problems presented at the end of chapters.

Prof. Stefano Beretta organized the author’s lecture on Theory of Elasticity and Stress Concentration for Italian PhD students in the summer school of the Italian Fracture Group in 2008. In the summer school, the author was deeply impressed with the students’ attitudes and their strong curiosity toward the new way of thinking of Theory of Elasticity. The author would like to express his sincere thanks also to them.

The author would like to thank Ms. Hoshiko Utamaru of Kobe Materials Testing Laboratory, Co. Ltd. for her help with illustrating figures and typing equations. The author would like
to thank Mr. Kazuo Takagi, the executive director of Kobe Materials Testing Laboratory, who kindly supported the author’s writing work through the help of Ms. Hoshiko Utamaru’s elaborate work. Without their help, the author could not have completed this book.

The author would like to thank Ms. Eeva Mikkola, PhD student of Aalto University, who also helped the author with illustrating figures and typing equations up to Chapter 6 of Part I during my lecture at Aalto University.

The author would like to thank Ms. Mari Åman, PhD student of Aalto University, who read through a draft of the book, checking typographical mistakes and giving invaluable comments from the viewpoint of students during her research stay in Kyushu University.

During the preparation of the original Japanese version of *Stress Concentration*, the author received invaluable support and help from students and colleagues. The author would like to thank Dr. H. Miyata who contributed to the preparation of the manuscript of the Japanese version when he was in the PhD course at Kyushu University. The author would like to thank Prof. S. Hashimura of Shibaura Institute of Technology, Dr. K. Toyama (a former PhD Student of Kyushu University) and Mr. A. Shiromoto (a former Graduate student of Kyushu University) and Ms. C. Narazaki (a former Graduate student of Kyushu University) for their cooperation in numerical calculations of several example problems. Without their cooperation, the author could not have completed the manuscript.
Part I

Theory of Elasticity