Advanced Surface Engineering Materials
Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Advanced Materials Series
The Advanced Materials Series provides recent advancements of the fascinating field of advanced materials science and technology, particularly in the area of structure, synthesis and processing, characterization, advanced-state properties, and applications. The volumes will cover theoretical and experimental approaches of molecular device materials, biomimetic materials, hybrid-type composite materials, functionalized polymers, supramolecular systems, information- and energy-transfer materials, biobased and biodegradable or environmental friendly materials. Each volume will be devoted to one broad subject and the multidisciplinary aspects will be drawn out in full.

Series Editor: Ashutosh Tiwari
Biosensors and Bioelectronics Centre
Linköping University
SE-581 83 Linköping
Sweden
E-mail: ashutosh.tiwari@liu.se

Managing Editors: Sachin Mishra and Sophie Thompson

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Contents

Preface xvii

Part 1 Functional Coatings and Adhesives

1 Bio-inspired Coatings and Adhesives 3
 Saurabh Das and B. Kollbe Ahn
 1.1 Introduction 4
 1.2 The Interfacial Biochemistry of a Mussel Adhesive 4
 1.3 Tough Coating Proteins in the Mussel Thread 12
 1.4 Mussel-inspired Coatings and Adhesives 15
 1.5 Conclusions and Future Research Avenues for
 Bio-inspired Adhesives and Coatings 25
 References 26

2 Advancement of Surface by Applying a Seemingly
 Simple Sol–gel Oxide Materials 33
 Justyna Krzak, Beata Borak, Anna Łukowiak,
 Anna Donesz-Sikorska, Bartosz Babiarczuk,
 Krzysztof Marycz and Anna Szczurek
 2.1 Introduction 33
 2.2 Are Simple Sol–gel Oxides Only Simple Materials? 35
 2.2.1 Sol–gel Synthesis 36
 2.2.1.1 Precursor 36
 2.2.1.2 Water 39
 2.2.1.3 Catalyst and pH 40
 2.2.1.4 Solvents 41
 2.2.1.5 Synthesis Drawbacks 42
 2.2.2 Differences in Coating Techniques Depending
 on the Substrate Form 43
 2.2.2.1 Planar Substrates 43

References
2.2.2.2 Particles 44
2.2.2.3 Fibers 44
2.2.3 Sol–gel Oxides: Properties and Applications 45
2.3 Hybrid Coating Materials 55
2.4 Functionalized Oxide Coatings 62
 2.4.1 Volume Functionalization 63
 2.4.2 Surface Functionalization 68
2.5 Coatings for Cells 70
2.6 Sol–gel Materials as Interface Materials 75
2.7 Conclusions 81
References 83

3 Femtosecond Laser Texturing of Bio-based Polymer Films for Surface Functionalization 97

A. Daskalova
3.1 Introduction 98
3.2 Naturally Derived Biomaterials 100
 3.2.1 Collagen 100
 3.2.2 Gelatin 101
 3.2.3 Elastin 102
 3.2.4 Optical Properties of Biopolymers 102
3.3 Surface Modification Features 102
3.4 Mechanisms of Laser–tissue Interaction 104
 3.4.1 Characteristics of Ultra-fast Laser Radiation 106
 3.4.1.1 Ultra-short Pulses 107
 3.4.2 Femtosecond Laser Interaction with Polymers 112
3.5 Laser-based Methods for Surface Treatment of Biomaterials 113
 3.5.1 Laser Surface Patterning 114
 3.5.2 Ultra-short Laser Processing 117
 3.5.3 Material and Methods 119
 3.5.4 Morphology of Surface Patterns of Thin Biopolymer Films 119
 3.5.4.1 Wettability Studies 120
 3.5.4.2 Morphological Analysis of Laser Produced Porous Matrices 120
 3.5.4.3 Atomic Force Microscopy and Confocal Examination of the Laser Produced Modification 125
 3.5.5 Cell Cultivation on Laser-modified Substrates 129
 3.5.6 Mechanism of Cell Locomotion 133
4 Engineered Electromagnetic Surfaces and Their Applications 141
Mirko Barbuto, Filiberto Bilotti, Alessio Monti, Davide Ramaccia and Alessandro Toscano
4.1 Introduction 142
4.2 Impedance Boundary Condition 143
4.3 Metasurfaces Based on Metallic Strips 145
 4.3.1 Anisotropic Metasurfaces 145
 4.3.2 Model Validation 151
 4.3.3 Applications to Electromagnetic Cloaking 153
4.4 Metasurfaces Based on Circular Inclusions 155
 4.4.1 Holey Metasurfaces 156
 4.4.2 High-impedance Surfaces with Circular Elements 160
4.5 Metasurfaces Based on Crossed Dipoles 163
 4.5.1 Crossed-aperture Metasurfaces 164
 4.5.2 Full-wave Numerical Simulations 167
References 169

5 Structural and Hydroxyapatite-like Surface Functionalization of Advanced Biomimetic Prototype Interface for RA Endoprostheses to Enhance Osteoconduction and Osteointegration 175
Ryszard Uklejewski, Piotr Rogala and Mariusz Winiecki
5.1 Introduction 176
5.2 Biomimetic Multi-spiked Connecting Scaffold Prototype – The Promising Breakthrough in Bone-implant Advanced Interfacing in Joint Resurfacing Endoprostheses Fixation Technique 180
5.3 Bioengineering Design of the MSC-scaffold Prototype, Its Additive Manufacturing and Post-SLM_processing of Bone Contacting Surfaces 183
 5.3.1 Bioengineering Design and the CAD Modelling of the Bone-RA Endoprostheses Interfacing MSC-scaffold 183
 5.3.2 Additive Manufacturing in Selective Laser Melting Technology 192
 5.3.3 Post-production Processing of Bone Contacting Surfaces 202
5.4 Structural Pro-osteocoinduction Functionalization of the MSC-scaffold Interfacing System for Biomimetic Entirely Cementless RA Endoprostheses 208
 5.4.1 Possibilities of Affecting the Structural–osteocoinductive Potential of the MSC-scaffold Interfacing System 208
 5.4.2 Initial Pilot Implantation Study on Structurally Functionalized MSC-scaffold Interfacing System 214
 5.4.3 In Vitro Cytobiocompatibility (Biofunctionality) Tests on Prototypes of the MSC-scaffold 217
5.5 Hydroxyapatite-like Functionalization of Bone Contacting Surfaces of the MSC-scaffold to Enhance Osteointegration 220
 5.5.1 Initial Attempts to Modify Bone Contacting Surfaces of the MSC-scaffold Prototype by the Method of Electrochemical Cathodic Deposition of Calcium Phosphates 220
 5.5.2 Evaluation of Biointegration of the Implanted MSC-scaffold Preprototypes with Surfaces Modified with Calcium Phosphates and Unmodified Surfaces 224
 5.5.3 Research on the MSC-scaffold Prototypes (Ca-P Surface Modified and Non-modified) in Osteoblast Cell Culture 227
5.6 Conclusions 229
Acknowledgments 232
References 232

Part 2 Engineering of Nanosurfaces

6 Biosynthesis of Metal Nanoparticles and Graphene 243
 Ujjal Kumar Sur
 6.1 Introduction 244
 6.2 Synthesis of Gold and Silver Nanoparticles Using Microorganisms 257
 6.2.1 Synthesis of Gold and Silver Nanoparticles Using Bacteria 258
 6.2.2 Synthesis of Gold and Silver Nanoparticles Using the Fungal Systems 260
 6.2.3 Synthesis of Gold and Silver Nanoparticles Using the Actinomycete 262
6.3 Synthesis of Gold and Silver Nanoparticles Using Fruit Extract 263
6.4 Synthesis of Gold and Silver Nanoparticles Using Plant Extract 265
6.5 Synthesis of Gold and Silver Nanoparticles Using Honey 273
6.6 Synthesis of Gold and Silver Nanoparticles Using Animal Tissue 273
6.7 Synthesis of Semiconductor Nanoparticles from Plant, Fruit Extract and Honey 274
6.8 Biosynthesis of Other Nanoparticles 276
6.9 Biosynthesis of Graphene 279
6.10 Applications of Metal Nanoparticles and Graphene 283
6.11 Future Trends and Prospects 286
6.12 Conclusions 287
Acknowledgements 288
References 289

7 Surface Modifiers for the Generation of Advanced Nanomaterials 297
Pınar Akkuş Süt, Melike Belenli, Özlem Şen, Melis Emanet, Mine Altunbek and Mustafa Çulha
7.1 Introduction 297
7.2 Most Commonly Used NMs and Their Possible Surface Chemistry 298
7.3 Parameters Influencing NP Functionalization 298
7.3.1 Nature of Attachment onto NM Surface 299
7.3.2 Molecular Density on NP Surface 299
7.3.3 Orientation of Attached Molecule on NP Surface 304
7.3.4 Separation Distance Between Modifier and NP Surface 304
7.3.5 Reproducibility of Chemistry 304
7.4 Modification Strategies 304
7.4.1 Noncovalent Interactions 304
7.4.1.1 π–π Stacking Interactions 305
7.4.1.2 Electrostatic Interactions 306
7.4.1.3 Hydrogen Bonding 307
7.4.1.4 Hydrophobic Interactions 307
7.4.2 Covalent Modification 308
7.4.2.1 Carbodiimide Coupling 309
7.4.2.2 Maleimide Coupling 310
7.4.2.3 Imine Formation (Glutaraldehyde–Amine Coupling) 310
7.4.2.4 Epoxide Opening 312
7.4.2.5 Addition to Cyanates 312
7.4.2.6 Silanization 313
7.4.2.7 Click Chemistry 313
7.4.2.8 1,3-Dipolar Cycloaddition 313
7.4.2.9 Diels–Alder Reactions 314
7.4.2.10 Staudinger Ligation 315
7.4.2.11 The Michael Addition 315

7.5 The Potential Problems During NPs Modifications 316
7.5.1 Over-activation of Surface Functional Groups 316
7.5.2 Dispersion During Modification 316
7.5.3 Purification 316
7.5.4 Inter NP–NP or Modifier–Modifier Cross-linking 317
7.5.5 Oxidation of NPs Surface and/or Modifier 317
7.5.6 Complex Reaction Conditions 317

7.6 Surface Modifiers 317
7.6.1 Carbohydrates 317
 7.6.1.1 Monosaccharide-, Disaccharide-, and Oligosaccharide-Functionalized NPs 320
7.6.2 Polysaccharide-functionalized NPs 321
 7.6.2.1 Cellulose 321
 7.6.2.2 Chitosan 322
 7.6.2.3 Dextran 323
 7.6.2.4 Pullulan 323
 7.6.2.5 Starch 324
 7.6.2.6 Xanthan Gum 324
7.6.3 Oligonucleotides 326
7.6.4 Peptides 329
7.6.5 Polymers 332
 7.6.5.1 Biodegradability 333
 7.6.5.2 Amphiphilicity 333
 7.6.5.3 Ionic Strength 333

7.7 Conclusions 334
References 335
8 Nanoassisted Functional Modulation of Enzymes: Concept and Applications

Arka Mukhopadhyay and Hirak K. Patra

8.1 Introduction

8.2 Enzyme Modifying Nanomaterials

- 8.2.1 Carbon Nanotube
- 8.2.2 Graphene Oxide Nanomaterials
- 8.2.3 Quantum Dots
- 8.2.4 Single Enzyme Nanoparticles (SEN)
- 8.2.5 Nanoscale Enzyme Reactor (NER)
- 8.2.6 Nanofibers
- 8.2.7 Nanowires
- 8.2.8 Nanogels
- 8.2.9 Nanoflowers
- 8.2.10 Magnetic Nanoparticles

8.3 Regulations of Enzyme Properties by Several Nanomaterials

- 8.3.1 Regulation of Enzyme Activity and Stability on Nanomaterial Interactions
- 8.3.2 Regulation of Enzyme Structure on Nanomaterial Interactions

8.4 Conclusions

Abbreviations

References

9 Electrospun Fibers Based on Biopolymers

Alicia Mujica-Garcia, Agueda Sonseca, Marina P. Arrieta, Maysa Yusef, Daniel López, Enrique Gimenez, José M. Kenny and Laura Peponi

9.1 Electrospinning: Background and Set-up

9.2 Biopolymers

9.3 Electrospinning of Biopolymer Nanofibers

- 9.3.1 Cellulose and Cellulose Derivatives
- 9.3.2 Chitosan
- 9.3.3 Poly(vinyl Alcohol)
- 9.3.4 Silk
- 9.3.5 Collagen
- 9.3.6 Gelatin

9.4 Electrospun Fibers Based on Biopolymers Blends
9.5 Bionanocomposites Electrospun Fibers
9.5.1 Electrospun Biopolymeric Fibers
 Reinforced with 0-D
9.5.2 Electrospun Biopolymeric Fibers
 Reinforced with 1-D
 9.5.2.1 Electrospun Nanocomposites Fibers
 with Cellulose Nanocrystals
 9.5.2.2 Electrospun Nanocomposite Fibers
 with Carbon Nanotubes
 9.5.2.3 Electrospun Nanocomposite Fibers
 with Halloysite Nanotubes
9.5.3 Electrospun Biopolymeric Fibers
 Reinforced with 2-D
 9.5.3.1 Electrospun Nanocomposites Fibers
 with Graphene
9.6 Conclusions
Acknowledgments
References

10 Nanostructured Materials as Biosensor Transducers:
 Achievements and Future Developments
 N.F. Starodub, K.E. Shavanova, N.F. Shpyrka,
 M.M. Mel’nichenko and R.V. Viter
10.1 Introduction
10.2 Biosensors According to the Main Principles of
 Their Classification
10.3 Ion-selective Field Effect Transistors-based Biosensors:
 Origins and Perspective Development
 10.3.1 Cerium Oxide IsFETs-based Biosensors
 10.3.1.1 Technology of IsFETs Creation
 10.3.1.2 Characterization of
 Physical–chemical Properties
 of IsFETs Based on the Silicon Nitride and Cerium Oxide
 10.3.1.3 Preparation of IsFET-based
 Immune Biosensor
 10.3.1.4 Determination of Main
 Conditions of the Immune Biosensor Analysis Fulfillment
 10.3.1.5 IsFET-based Immune Detection
 of Patulin and Salmonella
 10.3.1.6 Conclusions
10.3.2 Nanostructured IsFETs-based Biosensors 457
10.3.2.1 Conclusions 461
10.4 Optical Biosensors 461
10.4.1 Nanostructured Porous Silicon-based Biosensors 462
10.4.1.1 Fabrication of the nSPS Layers and Their Optochemical Characteristics 464
10.4.1.2 Biologically Used Components 469
10.4.1.3 Devices for Registering Specific Signals of Biosensors 469
10.4.1.4 The Main Algorithm of Analysis by the Immune Biosensors 471
10.4.1.5 Effectiveness of the nSPS Immune Biosensor at the Diagnosis of RBL 471
10.4.1.6 Mycotoxin-level Control by the nSPS-based Immune Biosensors 473
10.4.1.7 Comparison of the Efficiency of Mycotoxins Detection and Biochemical Diagnosis of RBL by Different Types of Optical Immune Biosensors 474
10.4.2 PhL of Nanomaterials for Biosensor Applications 478
10.4.3 Graphene-based SPR Biosensors 483
10.4.4 Surface-enhanced Raman Scattering Biosensors 486
Acknowledgments 488
References 488

Part 3 High-tech Surface, Characterisation, and New Applications

Dana-Cristina Toncu

11.1 Theoretical Background of Optical Emission Spectroscopy in Plasma Diagnosis 498
11.2 Direct Current Micro-plasma Experimental Investigation for Carbon Structures 500
11.3 Optical Emission Spectroscopy Results 502
11.3.1 OES for Investigating Variation in Pressure 504
11.3.2 OES for Investigating the Variation in Electron Temperature 506
11.3.3 Optical Emission Temperature Measurement from C₂ Radical 507
11.3.4 OES Investigation for Variation in Substrate Temperature 510
11.3.5 OES Investigation during Diamond Deposition 511

Acknowledgement 514
References 515

12 Advanced Titanium Surfaces and Its Alloys for Orthopedic and Dental Applications Based on Digital SEM Imaging Analysis 517

Sahar A. Fadlallah, Amira S. Ashour and Nilanjan Dey
12.1 Introduction 518
12.2 Titanium Implants Basic Concepts 521
12.2.1 Titanium Oxide as Biocompatible Coatings 522
12.2.2 Nanostructures Importance 523
12.2.3 Natural Nanostructures 524
12.2.4 Fabrication of Titania Nanostructures 526
12.2.5 Electrochemical Anodization Method 528
12.2.6 Experimental Tools for Surface Characterization 529
12.2.7 In-vitro and In-vivo Studies 530
12.2.7.1 Stability of Titanium Implants 531
12.2.7.2 Mechanical Characterization 535
12.2.7.3 Antibacterial Activity 536
12.2.7.4 In-vivo and In-vitro Cellular Behavior 537

12.3 Automated Nanostructures Image Analysis-based Morphology 540
12.3.1 Nanostructures Morphology and Properties: TiO₂ 540
12.3.2 Image Processing and Analysis 540
12.3.3 Nanostructures/Particles Image Analysis in In-vitro and In-vivo Studies 545
12.3.4 Orthopedic and Dental Applications Using Titanium Surfaces and Its Alloys Based on Digital SEM Imaging Analysis 548

12.4 Conclusion 550
References 551
13 Deep-blue Organic Light-emitting Diodes: From Fluorophores to Phosphors for High-efficiency Devices
Frédéric Dumur

13.1 Introduction 561
13.2 Fluorescent Emitters 565
 13.2.1 Anthracene Derivatives 565
 13.2.2 Fluorene Derivatives 578
 13.2.3 Indenofluorene and Indenopyrazine Derivatives 582
 13.2.4 Spiro-annulated Emitters 586
 13.2.5 Starburst Molecules 591
 13.2.6 Benzimidazole and Phenanthroimidazole Derivatives 600
 13.2.7 Styryl Derivatives 605
 13.2.8 Polyaromatic Hydrocarbons 608
 13.2.9 Other Structures 611

13.3 Phosphorescent Emitters 618
13.4 Future Perspectives and Ongoing Challenges 621
References 622

14 Plasma–material Interactions Problems and Dust Creation and Re-suspension in Case of Accidents in Nuclear Fusion Plants: A New Challenge for Reactors like ITER and DEMO

14.1 Introduction 636
14.2 Materials for Nuclear Fusion Plants 638
 14.2.1 Nuclear Fusion Framework 639
 14.2.1.1 Materials Containing Carbon 639
 14.2.1.2 Beryllium 642
 14.2.1.3 Material with High-Z Number 643
 14.2.2 Other Frameworks 652
 14.2.2.1 Steels (Austenitic and Ferritic/Martensitic) 654
 14.2.2.2 Other Advanced Materials 657
14.3 Radioactive Dust in Nuclear Fusion Plants: Security Problems in Case of Re-suspension 660
 14.3.1 Stardust-upgrade Facility 664
 14.3.1.1 STARDUST-U Experimental and Numerical Results 667
Advanced surfaces enrich the high-throughput engineering of physical and chemical phenomenon (e.g., electrical, magnetic, electronics, thermal and optical controls), large surface area, protective coatings against water loss and excessive gas exchange, etc. A more sophisticated example could be a highly selective surface permeability allowing passive diffusion and selective transport of molecules in the water or gases. Smart surface technology provides an interlayer model which prevents the entry of substances without affecting the properties of neighboring layers. A number of methods have been developed for coatings, which are essential building blocks for the top-down and/or bottom-up design of numerous functional materials. They own exclusive surface features in terms of new age device applications. This book, Advanced Surface Engineering Materials, offers detailed up-to-date chapters on functional coatings and adhesives, engineering of nanosurfaces, high-tech surface, characterization and new applications.

With the increasingly deep integration of present and emerging surface engineering technologies for new materials exploration, the last decade has witnessed an inspiring growth in research activities involving multidisciplinary knowledge innovation, some of which have already activated further market demand. Advanced Surface Engineering Materials, part of the “Advanced Materials Series”, provides a wide spectrum of readers with an overview and systematic knowledge of the aforementioned categories. With such a book in hand, one can easily figure out the methodology and essential rationales underlying every aspect of material innovations—from bio-inspired coating or polymer films to biosynthesis of nanomaterials and graphene, from carbon structures growth to deep-blue organic light-emitting diodes, or from latent biosensor application to high efficiency devices assembly—and the topic can be extended even to the modulation of enzymes or the assessment of plasma-material interactions for process safety. As a whole, this book constitutes a state-of-the-art review of the advances in surface engineering materials science and technology.
This book is written for readers from diverse backgrounds across the fields of chemistry, physics, materials science and engineering, medical science, environmental, bio- and nanotechnologies, and biomedical engineering. It offers a comprehensive view of cutting-edge research on surface engineering materials and their technological importance.

We would like to express our gratitude to all the contributors for their collective and fruitful work. It is their efforts and expertise that have made the monograph comprehensive, valuable and unique. We are also grateful to Drs. Sachin Mishra and Sophie Thompson, managing editors of the Advanced Materials Series, for their help and useful suggestions in preparing this book.

Editors
Ashutosh Tiwari, PhD, DSc
Rui Wang, PhD
Bingqing Wei, PhD
July 2016
Part 1

FUNCTIONAL COATINGS
AND ADHESIVES
Bio-inspired Coatings and Adhesives

Saurabh Das1,2,3 and B. Kollbe Ahn1,3*

1Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
2Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
3Materials Research Science and Engineering Center, University of California, Santa Barbara, CA 93106, USA

Abstract

Biological organisms such as marine mussels have attracted attention as a paradigm of strong and versatile adhesion to hard surfaces under the severe chemical and physical environments of the wave-swept shores. Recent studies to understand the molecular mechanisms and mechanochemical aspects of mussel foot protein adhesion to different substrates have inspired the development of a variety of underwater adhesives, strain-resistant materials, hydrogels, self-healing polymers, and surfactants for tissue repair, drug delivery, anti-fouling coatings, and medical adhesives applications. In this chapter, we start to systematically discuss the physicochemical process at the molecular level during the attachment of mussel plaque to a substrate followed by the role of different amino acid residues in the attachment process. We then provide fundamental insights into the molecular architecture–function relationship for synthetic bio-inspired adhesives as well as begin to develop design principles for bio-inspired wet adhesives. This is followed by a thorough review of the recent development in mussel-inspired underwater polymer adhesive coatings and surfactant nano-adhesives that emphasizes the importance of the balance between electrostatic and hydrophobic interactions for wet adhesion and coacervation in addition to catecholic interactions, e.g., oxidative cross-linking, metal coordination, and intermolecular hydrogen bonding. We also shed light on intermolecular hydrogen bonding for surface-initiated underwater self-healing of polymers and metal-mediated cross-linking inspired from the mussel threads that provide sacrificial and reversible bonds at interfaces for strain-resistant materials.

Keywords: Mussel, wet, underwater, adhesives, coatings

*Corresponding author: kollbe.ahn@lifesci.ucsb.edu
1.1 Introduction

Nature has developed surprisingly elegant and diversified adaptations for the survival of the fittest organisms by a smart control of the interfacial forces and regulating surface interactions with the surroundings. For instance, geckos can cling and run with impeccable dexterity on most surfaces regardless of its roughness by controlling the frictional adhesion [1, 2] between its hierarchical fibrillar structures on the footpad and the surface. They avoid slip [3] during sticking and shearing of the nanosized spatula on a surface and employ van der Waals’ forces [4] to adhere to dry surfaces. Similarly, tree frogs that reside in the arboreal habitat of the wet rainforests take advantage of the capillary and viscous forces to prevent it from falling while running on surfaces [5, 6]. Currently, researchers in the wet adhesion community are spearheaded to solve the engineering challenge of wet underwater adhesion through mimicking techniques employed by the marine organisms such as barnacles [7, 8], pearl oysters [9, 10], minicollagens from sea anemones [11], sandcastle worms [12, 13], and the marine mussels [14, 15].

Harsh intertidal oceanic waves are no match for the mighty mussel that produces strong, flexible threads and cling to the surfaces of rocks, piers, and boats and even to other mussels without getting washed by the impact of water. This extraordinary ability of the mussels to adhere to any surface underwater has been baffling researchers for the past few decades. The adhesion mechanism used by the marine mussels has been extensively explored recently, and efforts have been made to develop coatings and adhesives for a variety of applications ranging from dental adhesives [16], self-assembled bilayer nano-adhesives [17], antifouling surfaces [18], self-healing polymers [19], drug delivery chaperons [20], medical glues [21], etc. Understanding the technique used by the mussels to prepare the surface for adhesion and the molecular mechanism underpinning the adhesive strength of the mussel glue (i.e., the mussel foot proteins or mfps) is fundamental to design synthetic mimics of the biological system.

1.2 The Interfacial Biochemistry of a Mussel Adhesive

Marine mussels are experts at ‘wet’ adhesion, achieving strong and durable attachment to a variety of surfaces in their marine habitat. Adhesion is mediated by a byssus, essentially a bundle of leathery threads that emerge from living mussel tissue at one end and tipped by flat adhesive plaques at the other (Figure 1.1). The byssal plaques consist of a complex array
of proteins (mostly six different mussel foot proteins, mfps 1–6), each of which has a distinct localization and function in the structure, but all share the unusual amino acid 3,4-dihydroxyphenylalanine (Dopa), a post-translational modification from tyrosine (Tyr or Y), that features prominently in mfps, ranging from less than 5 mol% in mfp-4 to 30 mol% in mfp-5 [24–29]. Mussels use its foot to make a snug contact with a target surface prior to depositing adhesive mfps in a fashion resembling injection molding [30]. The dimpled distal depression of the foot is positioned over a surface like an inverted rubber cup and compressed, thereby pushing out bulk water. Mfps are then secreted into the remaining gap from 8 to 10 pores in the depression ceiling [31].

Strong and durable adhesion is achieved despite the surrounding seawater at pH 8.2, high salt and saturating levels of dissolved O₂. The interfacial pH at which mussels buffer the local environment during mfp deposition was determined using a pH-sensitive surface (e.g., mica functionalized with a fluorescent bilayer) to range from 2.2 to 3.3, which is well below the seawater pH of 8 [14]. The mussel foot significantly acidifies the interface during initial protein deposition (Figure 1.2). The role of acidification is to retard the oxidation of Dopa residues in the mfps for the formation of hydrogen bonds, metal–catechol coordination, or cation–π interactions.
with the surface to secure the proteins/plaque to the substrate. Deposition of adhesive proteins at acidic pH has important implications for mussel-inspired technology. The acidic pH allows delivery of the mfps to a surface as complex coacervate fluids; together with antioxidants [32], stabilizes the catecholic residue in the protein enabling the formation of electrostatic bonds with a mineral surface or coordination bonds with the surface oxides; favors the formation of cationic functionalities, e.g., Lys, Arg, and His for long-range attraction to electronegative surfaces. The acidic pH in combination with seawater (pH 8.2) serves as a switch for initiating
protein insolubility, quinone-based cross-linking and catechol-mediated metal chelation (Figure 1.3).

The oxidation of Dopa to quinones and related products is highly favorable under high-pH conditions of the seawater and undermines
the strength of protein adhesion to mineral surfaces [32, 33]. The acidic pH micro environment used by the mussels was proposed to limit mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides and provide a solubility switch for mfps, most of which aggregate at pH ≥ 7–8 [14] (Figure 1.3).

The mussel foot proteins, mfp-1, a coating protein [34] and, adhesive mussel foot proteins, mfp-3 [22] and mfp-5 [35], have been shown to exhibit remarkable binding to mineral surfaces such as mica, TiO$_2$ [34, 36], and collagen [22], a biological protein that is abundant in bones, muscles, skin, and tendons, where it forms a scaffold to provide strength and structure. The versatility of mussel adhesion to surfaces with wide-ranging chemical and physical properties has inspired much research dedicated to understanding the mechanism of mussel adhesion as well as developing biomimetic coatings and adhesives for wide-ranging industrial and biomedical applications, the latter including paints for coronary arteries [37], fetal membrane sealants [38], cell encapsulants [39], and for securing transplants for diabetics [40].

Several studies with Dopa-functionalized polymers have demonstrated a strong positive linear correlation between Dopa content and adhesion to different surfaces [41–45]. In fact, the binding ability of the mfps to different substrates thus has been mostly attributed to the Dopa functionality in the protein, and the role of the other peptide residues in the adhesive properties of the protein remains elusive. Mfps such as mfp-3 [22] and mfp-5 [35] contain 20–30 mol% Dopa and are highly adhesive (e.g., adhesion energy, $W_{ad} \approx 8 \text{ mJ/m}^2$ for mfp-3 to $\sim 14 \text{ mJ/m}^2$ for mfp-5 on mica) within narrowly defined solution conditions, e.g., low salt <150 mM ionic strength and pH~3–5. However, more recently, it was demonstrated that the adhesion (interaction of the protein with a different substrate) and cohesion (self-interaction between the proteins) of mfps is independent of the Dopa residues in the protein [46]. It was proposed that the mfps adhere to mineral surfaces through cation–π interactions between the aromatic residues in the protein and cations (e.g., potassium ions) adsorbed to the mineral surface rather than bidentate hydrogen bonding (Figure 1.4) [46]. This is a paradigm shift in our understanding of the molecular mechanisms underlying the adhesive properties of mfps and calls for further inquiry into the effects of peptide residues beyond Dopa chemistry.

A strongly bound stable hydration layer to a surface and/or adhesive polymer (or molecule) is thought to be a potential barrier that averts reliable adhesion of the polymer to the surface. Recently, dynamic nuclear polarization technique was used to demonstrate that hydrophobicity in the mfps mediates dehydration at substrate protein interface to allow
force-free adhesion of the protein to a substrate mediated by Dopa [47]. It was also proposed that Dopa expedites the kinetics of bonding interactions between proteins and surfaces [46] or between polymers under wet environment [19]; however, the eventual strength of adhesion to a surface is more dependent on an optimal balance between the hydrophobic and electrostatic residues in the material [17, 48]. For instance, common amino acids, for example, cationic residues (lysine, K; histidine, H), anionic residues (aspartic acid, D), nonionic polar residues (asparagine, N), aromatic residues (tyrosine, Y; tryptophan, W), and nonpolar residues (alanine, A) are relevant to mfp adhesion and their role in wet adhesion of proteins and synthetic polymers are under increasing scrutiny. Synthetic polymers mimicking the properties of these other aromatic residues with an optimal balance between these different functional residues along with Dopa have recently been incorporated into polymers to achieve the strongest underwater adhesion to date for mussel-inspired polymer adhesives [48].
The adhesion of the natural and recombinant mussel foot proteins has been studied onto substrates other than mica such as collagen [22], silica [23, 49], silicones [23], and titania [41, 50], which are more relevant to biomedical applications. Single-molecule tensile tests using an atomic force microscope (AFM) where Dopa was tethered to a cantilever tip showed that Dopa contributes to nano-Newton adhesion on iron oxide, titania, and amine-functionalized surfaces [51]. The force–distance profiles and adhesion energies of mussel foot protein 3 (mfp-3) to TiO$_2$ surfaces were measured at three different pHs (3, 5.5, and 7.5) using a surface forces apparatus (SFA) [50]. At low pH (3), mfp-3 showed the strongest adhesion force on TiO$_2$, with adhesion energy of ~ 7.0 mJ/m2. Increasing the pH gives rise to two opposing effects: (1) increased oxidation of Dopa, thus decreasing availability for the Dopa-mediated adhesion, and (2) increased bidentate Dopa–Ti coordination (Figure 1.5), leading to the further stabilization of the Dopa group and, thus an increase in adhesion force. Both effects are reflected in the resonance-enhanced Raman spectra obtained at different deposition pHs. The two competing effects give rise to a higher adhesion force of mfp-3 on the TiO$_2$ surface at pH 7.5 than at pH 5.5.

Mfps have an intriguing potential for repair of collagenous tissues and serves as an inspiration for the design of medical glues. In the byssal attachment, mfp-3 mediates adhesion between the collagens of the thread on one side and a foreign surface on the other (Figure 1.1). The adhesive mfps also

![Figure 1.5](image) Possible modes of Dopa (catechol) binding to non-hydrated TiO$_2$ surfaces. The catechol group can form molecular adsorption with (a) two hydrogen bonds, (b) monodentate adsorption with one hydrogen bond and one coordination bond, and (c) bidentate adsorption with two coordination bonds, although which form the Dopa binds to a TiO$_2$ surface depends is pH dependent: at lower pH (<5.5), the molecular adsorption is preferred, and at higher pH (>7), the coordination charge transfer is more favorable. As marked, the red atoms are oxygen and the blue ones are titanium. (d) A summary of the adhesion energies of mfp-3 on TiO$_2$ in different pH buffers. The adsorption of Dopa on TiO$_2$ surface is highly pH dependent. At low pH, the protonated Dopa predominates, whereas at pH 7.5, there exists a mixture of both half- and fully deprotonated catecholates. This figure has been adapted from Ref. [50].