TNM Classification of MALIGNANT TUMOURS
Eighth Edition

Edited by James D. Brierley, Mary K. Gospodarowicz and Christian Wittekind
TNM Classification of Malignant Tumours
TNM
Classification of Malignant Tumours

Eighth Edition

Editors in Chief

James D. Brierley BSc, MB, FRCP, FRCR, FRCPC
Mary K. Gospodarowicz MD, FRCPC, FRCR (Hon)
Christian Wittekind MD

Editors

B. O’Sullivan MD
M. Mason MD
H. Asamura MD
A. Lee MD
E. Van Eycken MD
L. Denny MB, ChB
M.B. Amin MD
S. Gupta MD

WILEY Blackwell
Editors in Chief

James D. Brierley, BSc, MB, FRCP, FRCR, FRCPC
Professor, Department of Radiation Oncology, University of Toronto;
Princess Margaret Cancer Centre, Toronto, Ontario, Canada
Dr Brierley trained in Clinical Oncology in the UK and developed his interest in cancer staging and surveillance when moving to Canada and has been involved in cancer surveillance, locally, nationally and internationally. He is Co-Chair of the UICC TNM Prognostic Factors Project. He has co-edited the TNM Supplement 4th edition (Wiley 2012) and the UICC Manual of Clinical Oncology (Wiley 2015).

Mary K. Gospodarowicz, MD, FRCPC, FRCR (Hon)
Professor, Department of Radiation Oncology, University of Toronto;
Medical Director, Princess Margaret Cancer Centre, University Health Network; Regional Vice-President of Cancer Care Ontario for Toronto South, Toronto, Ontario, Canada
Dr Gospodarowicz is the Past-President of UICC. She has a long-standing interest in cancer classification with an emphasis on staging and prognostic factors and she has been involved in the UICC TNM Project for many years. Her interests include the application of modern information and communication technologies in cancer control. Dr Gospodarowicz was co-editor of the 7th edition of the TNM Classification of Malignant Tumours (Wiley 2009) and editor of the 2nd and 3rd editions of the UICC Prognostic Factors in Cancer (Wiley 2001, 2006).

Christian Wittekind, MD
Professor of Pathology, Chairman Institute of Pathology, University of Leipzig, Leipzig, Germany
Dr Wittekind been involved in cancer staging and tumour classifications for over 20 years. He is a member of the UICC TNM Core Committee, Head of the German Speaking TNM-Komitee, and personally responds to all the questions to the UICC TNM helpdesk. He was the co-editor of the 5th, 6th and 7th editions of the TNM Classification of Malignant Tumours (Wiley 1997, 2002, 2009), editor of the 2nd 3rd, and 4th editions of the TNM Supplement (Wiley 2001, 2003 and 2012) and editor of the 6th edition of the TNM Atlas (Wiley 2014).
Editors

B. O'Sullivan, MD
Professor, Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, Ontario, Canada

M. Mason, MD
Professor of Cancer Studies, School of Medicine, Cardiff University, Cardiff, UK

H. Asamura, MD
Professor of Surgery, Chief, Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan

A. Lee, MD
Professor and Head, Department of Clinical Oncology, The University of Hong Kong and the University of Hong Kong-Shenzhen Hospital, Hong Kong, China

E. Van Eycken, MD
Belgian Cancer Registry, Brussels, Belgium

L. Denny, MB, ChB
Head, Department of Obstetrics and Gynaecology, SA Medical Research Council, Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa

M.B. Amin, MD
Professor and Chair of the Department of Pathology, the College of Medicine, University of Tennessee, Tennessee, USA

S. Gupta, MD
Assistant Professor, Department of Paediatrics, University of Toronto, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
They are called wise
who put things in their right order
 Thomas Aquinas

This Eighth Edition is dedicated to Dr Leslie H. Sobin MD, a pathologist and previous long term Chair of UICC TNM Prognostic Factor Committee. Les, as he is known to colleagues all over the world, has devoted most of his career to help promote globally unified classifications of disease in particular in pathology and cancer staging. This is the first edition since the fourth that has not benefitted from his direct involvement; however his imprint is found throughout this edition.
Contents

Preface XII
Acknowledgments XIV
Organizations Associated with the TNM System XV
Members of UICC Committees Associated with the TNM System XVI
Section Editors XVII

Introduction 1

Head and Neck Tumours 17
Lip and Oral Cavity 18
Pharynx 22
Larynx 31
Nasal Cavity and Paranasal Sinuses 36
Unknown Primary – Cervical Nodes 40
Malignant Melanoma of Upper Aerodigestive Tract 45
Major Salivary Glands 47
Thyroid Gland 51

Digestive System Tumours 55
Oesophagus and Oesophagogastric Junction 57
Stomach 63
Small Intestine 67
Appendix 70
Colon and Rectum 73
Anal Canal and Perianal Skin 77
Liver 80
Intrahepatic Bile Ducts 83
Gallbladder 85
Perihilar Bile Ducts 87
Distal Extrahepatic Bile Duct 89
Ampulla of Vater 91
Contents

Pancreas 93
Well-Differentiated Neuroendocrine Tumours of the Gastrointestinal Tract 96

Lung, Pleural, and Thymic Tumours 105
Lung 106
Pleural Mesothelioma 113
Thymic Tumours 115

Tumours of Bone and Soft Tissues 119
Bone 120
Soft Tissues 124
Gastrointestinal Stromal Tumour (GIST) 127

Skin Tumours 131
Carcinoma of Skin 133
Skin Carcinoma of the Head and Neck 136
Carcinoma of Skin of the Eyelid 139
Malignant Melanoma of Skin 142
Merkel Cell Carcinoma of Skin 147

Breast Tumours 151

Gynaecological Tumours 159
Vulva 161
Vagina 164
Cervix Uteri 166
Uterus – Endometrium 171
Uterine Sarcomas 175
Ovarian, Fallopian Tube, and Primary Peritoneal Carcinoma 179
Gestational Trophoblastic Neoplasms 184

Urological Tumours 187
Penis 188
Prostate 191
Testis 195
Kidney 199
Renal Pelvis and Ureter 202
Urinary Bladder 204
Urethra 208

Adrenal Cortex 211

Ophthalmic Tumours 215
Carcinoma of Conjunctiva 216
Malignant Melanoma of Conjunctiva 218
Malignant Melanoma of Uvea 221
Retinoblastoma 226
Sarcoma of Orbit 230
Carcinoma of Lacrimal Gland 232

Hodgkin Lymphoma 235

Non-Hodgkin Lymphomas 239

Essential TNM 241

Paediatric Tumours 247
Gastrointestinal Tumours 247
Bone and Soft Tissue Tumours 248
Gynaecological Tumours 249
Urological Tumours 250
Ophthalmic Tumours 251
Malignant Lymphoma 252
Central Nervous System 252
Preface

In this eighth edition of TNM Classification of Malignant Tumours, many of the tumour sites are unchanged from the seventh edition. However, some tumour entities and anatomic sites have been newly introduced and some tumours contain modifications: this follows the basic philosophy of maintaining stability of the classification over time. The modifications and additions reflect new data on prognosis as well as new methods for assessing prognosis. Some changes had already appeared in the TNM Supplement as proposals. Subsequent support warrants their incorporation into the classification. New proposals for tumours of parathyroid carcinoma, and paraganglionoma will be published in the next edition of the TNM Supplement.

In the seventh edition a new approach was adopted to separate stage groupings from prognostic groupings in which other prognostic factors are added to T, N, and M categories. These new prognostic groupings were presented for oesophagus and prostate. In this eighth edition, the term ‘stage’ is used when only descriptions of anatomic extent of disease are used and ‘prognostic group’ for when additional prognostic factors are incorporated.

Changes made between the seventh and eighth editions are indicated by a bar at the left-hand side of the text. To avoid ambiguity, users are encouraged to cite the edition and year of the TNM publication they have used in their list of references.

A TNM homepage with Frequently Asked Questions (FAQs) and a form for submitting questions or comments on the TNM can be found at: http://www.uicc.org.

The UICC’s TNM Prognostic Factors Project has a process for evaluating proposals to change the TNM Classification. This procedure aims at a continuous systematic approach composed of two arms: (1) review formal proposals from investigators and (2) an annual literature search for articles concerning improvements to TNM. The proposals and results of the literature search are evaluated by a UICC panel of experts as well as by the TNM Prognostic Factors committee members. The national TNM Committees participated in this process. More details and a checklist that will facilitate the formulation of proposals can be obtained at www.uicc.org.

Union for International Cancer Control (UICC)
62, route de Frontenex
CH-1207 Geneva, Switzerland
Fax +41 22 8091810
References

Acknowledgments

The Editors have much pleasure in acknowledging the great help received from the members of the TNM Prognostic Factors Project Committee and the National Staging Committees Global Representatives and international organizations listed on pages XVI, all of whom volunteered their time.

We thank Professor Patti Groome and Ms Colleen Webber for supervising and performing the literature watch from its inception until 2015 and 2016, respectively. The eighth edition of the TNM Classification is the result of a number of consultative meetings organized and supported by the UICC and AJCC secretariats.

This publication was made possible by grants 1U58DP001818 and 1U58DP004965 from the Centers for Disease Control and Prevention (CDC) (USA). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC.
Organizations Associated with the TNM System

<table>
<thead>
<tr>
<th>Organization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention (USA)</td>
</tr>
<tr>
<td>FIGO</td>
<td>International Federation of Gynaecology and Obstetrics</td>
</tr>
<tr>
<td>IACR</td>
<td>International Association of Cancer Registries</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IASLC</td>
<td>International Association for the Study of Lung Cancer</td>
</tr>
<tr>
<td>ICCR</td>
<td>International Collaboration on Cancer Reporting</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>

National Committees

<table>
<thead>
<tr>
<th>Country</th>
<th>Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia and New Zealand</td>
<td>National TNM Committee</td>
</tr>
<tr>
<td>Austria, Germany, Switzerland</td>
<td>Deutschsprachiges TNM-Komite</td>
</tr>
<tr>
<td>Belgium</td>
<td>National TNM Committee</td>
</tr>
<tr>
<td>Brazil</td>
<td>National TNM Committee</td>
</tr>
<tr>
<td>Canada</td>
<td>National Staging Steering Committee</td>
</tr>
<tr>
<td>China</td>
<td>National TNM Cancer Staging Committee of China</td>
</tr>
<tr>
<td>Denmark</td>
<td>National TNM Committee</td>
</tr>
<tr>
<td>Gulf States</td>
<td>TNM Committee</td>
</tr>
<tr>
<td>India</td>
<td>National TNM Committee</td>
</tr>
<tr>
<td>Israel</td>
<td>National Cancer Staging Committee</td>
</tr>
<tr>
<td>Italy</td>
<td>Italian Prognostic Systems Project</td>
</tr>
<tr>
<td>Japan</td>
<td>Japanese Joint Committee</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>Sociedad Latinoamericana y del Caribe de Oncología Médica</td>
</tr>
<tr>
<td>Netherlands</td>
<td>National Staging Committee</td>
</tr>
<tr>
<td>Poland</td>
<td>National Staging Committee</td>
</tr>
<tr>
<td>Singapore</td>
<td>National Staging Committee</td>
</tr>
<tr>
<td>Spain</td>
<td>National Staging Committee</td>
</tr>
<tr>
<td>South Africa</td>
<td>National Staging Committee</td>
</tr>
<tr>
<td>Turkey</td>
<td>Turkish National Cancer Staging Committee</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>National Staging Committee</td>
</tr>
<tr>
<td>United States of America</td>
<td>American Joint Committee on Cancer</td>
</tr>
</tbody>
</table>
Members of UICC Committees Associated with the TNM System

In 1950 the UICC appointed a Committee on Tumour Nomenclature and Statistics. In 1954 this Committee became known as the Committee on Clinical Stage Classification and Applied Statistics and in 1966 it was named the Committee on TNM Classification. Taking into consideration new prognostic factors the Committee was named in 1994 the TNM Prognostic Factors Project Committee, and in 2003 the main committee was named “TNM Prognostic Factors Core Group”. A list of members who have served on these committees is available at: www.uicc.org

UICC TNM Prognostic Factors Core Group 2016

Asamura, H. Japan
Brierley, J.D. Canada
Compton, C.C. USA
Gospodarowicz, M.K. Canada
Lee, Anne China
Mason, M. UK
O’Sullivan, B. Canada
Van Eycken, E. Belgium
Wittekind, Ch. Germany
Section Editors

General Rules
J.D. Brierley
M. K. Gospodarowicz
B. O’Sullivan
Ch. Wittekind

Head and Neck
B. O’Sullivan

Thyroid
J.D. Brierley

Upper Gastrointestinal Tract
Ch. Wittekind

Lower Gastrointestinal Tract
J.D. Brierley

Hepatobiliary
Ch. Wittekind

Lung, Pleura and Thymic Tumours
H. Asamura

Bone and Soft Tissues
B. O’Sullivan

Skin
A. Lee, J.D. Brierley, B. O’Sullivan

Breast
E. Van Eckyen

Gynecological
L. Denny

Genitourinary
M.K. Gospodarowicz, M. Mason

Ophthalmic Tumours
Ch. Wittekind

Malignant Lymphoma
M.K. Gospodarowicz

Paediatric Tumours
S. Gupta, J.D. Brierley

Essential TNM
J.D. Brierley, B. O’Sullivan

AJCC Liaison
M.B. Amin
In addition, the Editors wish to acknowledge the invaluable contributions of:

Head and Neck Cancers
UICC Advisory Committee
(see www.uicc.org)

Thymic Tumours
F. Detterbeck

Cutaneous Squamous Cell Carcinoma
C. Schmults, K. Nehal

Essential TNM
F. Bray, M. Parkin, M. Pineros, K. Ward, M. Ervik, A. Znaor

Paediatric Tumours
L. Frazier, J. Aitken

Expert Panel Members
See www.uicc.org

Global Advisory Group Members
See www.uicc.org
Introduction

The History of the TNM System*

The TNM system for the classification of malignant tumours was developed by Pierre Denoix (France) between the years 1943 and 1952.¹

In 1950, the UICC appointed a Committee on Tumour Nomenclature and Statistics. As a basis for its work on clinical stage classification, it adopted the general definitions of local extension of malignant tumours suggested by the World Health Organization (WHO) Sub-Committee on The Registration of Cases of Cancer as well as Their Statistical Presentation.²

In 1958, the Committee published the first recommendations for the clinical stage classification of cancers of the breast and larynx and for the presentation of results.³

A second publication in 1959 presented revised proposals for the breast, for clinical use and evaluation over a 5-year period (1960–1964).⁴ In 1968, a booklet, the Livre de Poche⁵ and, a year later, a complementary booklet was published detailing recommendations for the setting-up of field trials, for the presentation of end results, and for the determination and expression of cancer survival rates.⁶ The Livre de Poche was subsequently translated into 11 languages. In 1974 and 1978, second and third editions⁷,⁸ were published containing new site classifications, and the fourth edition of TNM in 1987.⁹

In 1993, the project published the TNM Supplement¹⁰ to promote the uniform use of TNM by providing detailed explanations of the TNM rules with practical examples. Second, third, and fourth editions appeared in 2001, 2003, and 2012.¹¹–¹³

The project also publishes the TNM Atlas an Illustrated Guide to the TNM Classification of Malignant Tumours, the sixth edition was published in 2014 as a companion to the seventh edition of the TNM Classification.¹⁴

In 1995, the project published Prognostic Factors in Cancer,¹⁵ a compilation and discussion of prognostic factors in cancer, both anatomical and

Introduction

non-anatomical, at each of the body sites. This was expanded in the second edition in 200116 and the third edition in 200617.

The current eighth edition of TNM contains rules of classification and staging that correspond with those appearing in the eighth edition of the \textit{AJCC Cancer Staging Manual} (2017)18. While the aim of the UICC and AJCC is to have identical classifications, small differences exist and are identified as footnotes to the text. Wherever possible, the UICC classification is based on published evidence-based recommendation.

To develop and sustain a classification system acceptable to all requires the closest liaison between national and international organizations. As noted, while the classification is based on published evidence, in areas where high-level evidence is not available it is based on international consensus. The continuing objective of the UICC is to present the classification of anatomical extent of cancer globally.

\textbf{Note}

* A more detailed history is available on the website at www.uicc.org

\textbf{The Principles of the TNM System}

The practice of classifying cancer cases into groups according to anatomical extent, termed ‘stage’, arose from the observation that survival rates were higher for cases in which the disease was localized than for those in which the disease had extended beyond the organ of origin. The stage of disease at the time of diagnosis is a reflection not only of the rate of growth and extension of the neoplasm but also the type of tumour and the tumour–host relationship.

It is important to record accurate information on the anatomical extent of the disease for each site at the time of diagnosis, to meet the following objectives:

1. to aid the clinician in the planning of treatment
2. to give some indication of prognosis for survival
3. to assist in evaluation of the results of treatment
4. to facilitate the exchange of information between treatment centres
5. to contribute to the continuing investigation of human cancer
6. to support cancer control activities.

Cancer staging is essential to patient care, research, and cancer control. Cancer control activities include direct patient care-related activities, the
development and implementation of clinical practice guidelines, and centralized activities such as recording disease extent in cancer registries for surveillance purposes and planning cancer systems. Recording of stage is essential for the evaluation of outcomes of clinical practice and cancer programmes. However, in order to evaluate the long-term outcomes of populations, it is important for the classification to remain stable. There is therefore a conflict between a classification that is updated to include the most current forms of medical knowledge while also maintaining a classification that facilitating longitudinal studies. The UICC TNM Project aims to address both needs.

International agreement on the classification of cancer by extent of disease provides a method of conveying disease extent to others without ambiguity.

There are many axes of tumour classification: for example, the anatomical site and the clinical and pathological extent of disease, the duration of symptoms or signs, the gender and age of the patient, and the histological type and grade of the tumour. All of these have an influence on the outcome of the disease. Classification by anatomical extent of disease is the one with which the TNM system primarily deals.

The clinician’s immediate task when meeting a patient with a new diagnosis of cancer is to make a judgment as to prognosis and a decision as to the most effective course of treatment. This judgment and this decision require, among other things, an objective assessment of the anatomical extent of the disease.

To meet the stated objectives a system of classification is needed:
1. that is applicable to all sites regardless of treatment; and
2. that may be supplemented later by further information that becomes available from histopathology and/or surgery.

The TNM system meets these requirements.

The General Rules of the TNM System

The TNM system for describing the anatomical extent of disease is based on the assessment of three components:

- **T** – the extent of the primary tumour
- **N** – the absence or presence and extent of regional lymph node metastasis
- **M** – the absence or presence of distant metastasis.
The addition of numbers to these three components indicates the extent of the malignant disease, thus:

T0, T1, T2, T3, T4, N0, N1, N2, N3, M0, M1

In effect, the system is a ‘shorthand notation’ for describing the extent of a particular malignant tumour.

The general rules applicable to all sites are as follows:

1. All cases should be confirmed microscopically. Any cases not so proved must be reported separately.

2. Two classifications are described for each site, namely:

 a) **Clinical classification:** the pretreatment clinical classification) designated TNM (or cTNM) is essential to select and evaluate therapy. This is based on evidence acquired before treatment. Such evidence is gathered from physical examination, imaging, endoscopy, biopsy, surgical exploration, and other relevant examinations.

 b) **Pathological classification:** the postsurgical histopathological classification, designated pTNM, is used to guide adjuvant therapy and provides additional data to estimate prognosis and end results. This is based on evidence acquired before treatment, supplemented or modified by additional evidence acquired from surgery and from pathological examination. The pathological assessment of the primary tumour (pT) entails a resection of the primary tumour or biopsy adequate to evaluate the highest pT category. The pathological assessment of the regional lymph nodes (pN) entails removal of the lymph nodes adequate to validate the absence of regional lymph node metastasis (pN0) or sufficient to evaluate the highest pN category. An excisional biopsy of a lymph node without pathological assessment of the primary is insufficient to fully evaluate the pN category and is a clinical classification. The pathological assessment of distant metastasis (pM) entails microscopic examination of metastatic deposit.

3. After assigning T, N, and M and/or pT, pN, and pM categories, these may be grouped into stages. The TNM classification and stages, are established at diagnosis and must remain unchanged in the medical records. Only for cancer surveillance purposes, clinical and pathological data may be combined when only partial information is available either in the pathological classification or the clinical classification.

4. If there is doubt concerning the correct T, N, or M category to which a particular case should be allotted, then the lower (i.e., less advanced) category should be chosen. This will also be reflected in the stage.
5. In the case of multiple primary tumours in one organ, the tumour with the highest T category should be classified and the multiplicity or the number of tumours should be indicated in parenthesis, e.g., T2(m) or T2(5). In simultaneous bilateral primary cancers of paired organs, each tumour should be classified independently. In tumours of the liver, ovary and fallopian tube, multiplicity is a criterion of T classification, and in tumours of the lung multiplicity may be a criterion of the M classification.

6. Definitions of the TNM categories and stage may be telescoped or expanded for clinical or research purposes as long as the basic definitions recommended are not changed. For instance, any T, N, or M can be divided into subgroups.

Notes

^a For more details on classification the reader is referred to the TNM Supplement.

^b An educational module is available on the UICC website www.uicc.org.

Anatomical Regions and Sites

The sites in this classification are listed by code number of the International Classification of Diseases for Oncology. Each region or site is described under the following headings:

- Rules for classification with the procedures for assessing the T, N, and M categories
- Anatomical sites, and subsites if appropriate
- Definition of the regional lymph nodes
- TNM Clinical classification
- pTNM Pathological classification
- G Histopathological grading if different from that described on page 9
- Stage and prognostic groups
- Prognostic factors grid

TNM Clinical Classification

The following general definitions are used throughout:

T – Primary Tumour

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumour cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumour</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>T1–T4</td>
<td>Increasing size and/or local extent of the primary tumour</td>
</tr>
</tbody>
</table>
N – Regional Lymph Nodes

NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1–N3 Increasing involvement of regional lymph nodes

M – Distant Metastasis*

M0 No distant metastasis
M1 Distant metastasis

Note
* The MX category is considered to be inappropriate as clinical assessment of metastasis can be based on physical examination alone. (The use of MX may result in exclusion from staging.)

The category M1 may be further specified according to the following notation:

- Pulmonary (PUL (C34))
- Bone marrow (MAR (C42.1))
- Osseous (OSS (C40, 41))
- Pleura (PLE (C38.4))
- Hepatic (HEP (C22))
- Peritoneum (PER (C48.1, 2))
- Brain (BRA (C71))
- Adrenals (ADR (C74))
- Lymph nodes (LYM (C77))
- Skin (SKI (C44))
- Others (OTH)

Subdivisions of TNM

Subdivisions of some main categories are available for those who need greater specificity (e.g., T1a, T1b or N2a, N2b).

pTNM Pathological Classification

The following general definitions are used throughout:

pT – Primary Tumour

- pTX Primary tumour cannot be assessed histologically
- pT0 No histological evidence of primary tumour
- pTis Carcinoma in situ
- pT1–4 Increasing size and/or local extent of the primary tumour histologically
pN – Regional Lymph Nodes

pNX Regional lymph nodes cannot be assessed histologically
pN0 No regional lymph node metastasis histologically
pN1–3 Increasing involvement of regional lymph nodes histologically

Notes

- Direct extension of the primary tumour into lymph nodes is classified as lymph node metastasis.
- Tumour deposits (satellites), i.e., macro- or microscopic nests or nodules, in the lymph drainage area of a primary carcinoma without histological evidence of residual lymph node in the nodule, may represent discontinuous spread, venous invasion (V1/2) or a totally replaced lymph node. If a nodule is considered by the pathologist to be a totally replaced lymph node (generally having a smooth contour), it should be recorded as a positive lymph node, and each such nodule should be counted separately as a lymph node in the final pN determination.
- Metastasis in any lymph node other than regional is classified as a distant metastasis.
- When size is a criterion for pN classification, measurement is made of the metastasis, not of the entire lymph node. The measurement should be that of the largest dimension of the tumour.
- Cases with micrometastasis only, i.e., no metastasis larger than 0.2 cm, can be identified by the addition of ‘(mi)’, e.g., pN1(mi).

Sentinel Lymph Node

The sentinel lymph node is the first lymph node to receive lymphatic drainage from a primary tumour. If it contains metastatic tumour this indicates that other lymph nodes may contain tumour. If it does not contain metastatic tumour, other lymph nodes are not likely to contain tumour. Occasionally, there is more than one sentinel lymph node.

The following designations are applicable when sentinel lymph node assessment is attempted:

(p)NX(sn) Sentinel lymph node could not be assessed
(p)N0(sn) No sentinel lymph node metastasis
(p)N1(sn) Sentinel lymph node metastasis

Isolated Tumour Cells

Isolated tumour cells (ITC) are single tumour cells or small clusters of cells not more than 0.2 mm in greatest extent that can be detected by routine H and E stains or immunohistochemistry. An additional criterion has been
proposed in breast cancer to include a cluster of fewer than 200 cells in a single histological cross-section. Others have proposed for other tumour sites that a cluster should have 20 cells or fewer; definitions of ITC may vary by tumour site. ITCs do not typically show evidence of metastatic activity (e.g., proliferation or stromal reaction) or penetration of vascular or lymphatic sinus walls. Cases with ITC in lymph nodes or at distant sites should be classified as N0 or M0, respectively. The same applies to cases with findings suggestive of tumour cells or their components by non-morphological techniques such as flow cytometry or DNA analysis. The exceptions are in malignant melanoma of the skin and Merkel cell carcinoma, wherein ITC in a lymph node are classified as N1. These cases should be analysed separately.20 Their classification is as follows.

\[(p)N0\] No regional lymph node metastasis histologically, no examination for isolated tumour cells (ITC)

\[(p)N0(i–)\] No regional lymph node metastasis histologically, negative morphological findings for ITC

\[(p)N0(i+)\] No regional lymph node metastasis histologically, positive morphological findings for ITC

\[(p)N0(mol–)\] No regional lymph node metastasis histologically, negative non-morphological findings for ITC

\[(p)N0(mol+)\] No regional lymph node metastasis histologically, positive non-morphological findings for ITC

Cases with or examined for isolated tumour cells (ITC) in sentinel lymph nodes can be classified as follows:

\[(p)N0(i–)(sn)\] No sentinel lymph node metastasis histologically, negative morphological findings for ITC

\[(p)N0(i+)(sn)\] No sentinel lymph node metastasis histologically, positive morphological findings for ITC

\[(p)N0(mol–)(sn)\] No sentinel lymph node metastasis histologically, negative non-morphological findings for ITC

\[(p)N0 (mol+)(sn)\] No sentinel lymph node metastasis histologically, positive non-morphological findings for ITC

\[pM\] – Distant Metastasis*

\[pM1\] Distant metastasis microscopically confirmed

Note

* pM0 and pMX are not valid categories.