DRUG SAFETY EVALUATION
To the memory of my mother Norma Jean Cox Gad, who crossed over nine years ago, and my brother Scott Michael Gad who joined her six years ago. I hope that all your beloved little friends are there with you. I will see you both again.

—Shayne Cox Gad
ACKNOWLEDGEMENT

While all of my interns assisted in the preparation of this volume, its completion would not have occurred without the efforts of Leslie Eagle and indexing by my beloved wife, Novie Beth Ragan Gad.
CONTENTS

PREFACE xxv
ABOUT THE AUTHOR xxvii

1 The Drug Development Process and the Global Pharmaceutical Marketplace 1
 1.1 Introduction, 1
 1.2 The Marketplace, 1
 1.3 History of Modern Therapeutics, 4
 1.4 The Drug Development Process, 6
 1.5 Strategies for Development: Large Versus Small Company or the Short Versus Long Game, 7
 1.5.1 Do Only What You Must, 8
 1.5.2 Minimize the Risk of Subsequent Failure, 9
 1.6 Safety Assessment and the Evolution of Drug Safety, 11
 1.7 The Three Stages of Drug Safety Evaluation in the General Case, 11
 References, 12

2 Regulation of Human Pharmaceutical Safety: Routes to Human Use and Market 13
 2.1 Introduction, 13
 2.2 Brief History of US Pharmaceutical Law, 13
 2.2.1 1906: Pure Food and Drug Act, 13
 2.2.2 1938: Food, Drug, and Cosmetic Act, 15
 2.2.3 1962: Major Amendment, 17
 2.3 FDAMA Summary: Consequences and Other Regulations, 19
 2.4 Overview of US Regulations, 21
 2.4.1 Regulations: General Considerations, 21
 2.4.2 Regulations: Human Pharmaceuticals, 22
 2.4.3 Regulations: Environmental Impact, 23
 2.4.4 Regulations: Antibiotics, 23
 2.4.5 Regulations: Biologics, 24
 2.4.6 Regulations versus Law, 24
2.5 Organizations Regulating Drug and Device Safety in the United States, 24
2.6 Process of Pharmaceutical Product Development and Approval, 25
2.7 Testing Guidelines, 28
 2.7.1 Toxicity Testing: Traditional Pharmaceuticals, 28
 2.7.2 General or Systematic Toxicity Assessment, 28
 2.7.3 Genetic Toxicity Assessment, 28
 2.7.4 Safety Pharmacology, 30
 2.7.5 Local Tissue Tolerance, 30
 2.7.6 Toxicity Testing: Biotechnology Products, 31
2.8 Toxicity/Safety Testing: Cellular and Gene Therapy Products, 33
 2.8.1 Cellular Therapies, 34
 2.8.2 Gene Therapies, 34
 2.8.3 Ex Vivo, 34
 2.8.4 In Vivo, 34
 2.8.5 Preclinical Safety Evaluation, 34
 2.8.6 Basic Principles for Preclinical Safety Evaluation
 of Cellular and Gene Therapies, 35
 2.8.7 Additional Considerations for Cellular Therapies, 35
 2.8.8 Additional Considerations for Gene Therapies, 35
2.9 Toxicity Testing: Special Cases, 35
 2.9.1 Oral Contraceptives, 35
 2.9.2 Life-Threatening Diseases (Compassionate Use), 35
 2.9.3 Optical Isomers, 36
 2.9.4 Special Populations: Pediatric and Geriatric Claims, 37
 2.9.5 Orphan Drugs, 38
 2.9.6 Botanical Drug Products, 41
 2.9.7 Types of New Drug Applications (NDAs), 41
2.10 International Pharmaceutical Regulation and Registration, 41
 2.10.1 International Conference on Harmonization, 41
 2.10.2 Other International Considerations, 45
 2.10.3 Safety Pharmacology, 50
2.11 Combination Products, 50
 2.11.1 Device Programs That CDER and CBRH Each Will Administer, 51
 2.11.2 Coordination, 51
 2.11.3 Submissions, 51
2.12 Conclusions, 55
References, 55
Further Reading, 57

3 Data Mining: Sources of Information for Consideration
 in Study and Program Design and in Safety Evaluation 59
3.1 Introduction, 59
 3.1.1 Claims, 59
 3.1.2 Time and Economies, 59
 3.1.3 Prior Knowledge, 59
 3.1.4 Miscellaneous Reference Sources, 60
 3.1.5 Search Procedure, 62
 3.1.6 Monitoring Published Literature and Other Research in Progress, 62
 3.1.7 Kinds of Information, 63
 3.1.8 Toxic Release Inventory (TRI), 63
 3.1.9 Material Safety Data Sheets (MSDS), 63
 3.1.10 Canadian Centre for Occupational Health and Safety (CCINFO), 64
 3.1.11 Pollution and Toxicology (POLTOX), 64
 3.1.12 MEDLINE, 64
3.2 PC-Based Information Products: Laser DISC, 65
 3.2.1 International Veterinary Pathology Slide Bank (IVPSB), 65
3.3 Conclusions, 65
References, 65

4 Screens in Safety and Hazard Assessment 67
 4.1 Introduction, 67
 4.2 Characteristics of Screens, 68
 4.3 Uses of Screens, 70
 4.4 Types of Screens, 71
 4.4.1 Single Stage, 71
 4.4.2 Sequential, 71
 4.4.3 Tier (or Multistage), 71
 4.5 Criterion: Development and Use, 71
 4.6 Analysis of Screening Data, 73
 4.7 Univariate Data, 73
 4.7.1 Control Charts, 73
 4.7.2 Central Tendency Plots, 74
 4.7.3 Multivariate Data, 75
 4.7.4 The Analog Plot, 75
References, 76

5 Formulations, Routes, and Dosage Regimens 79
 5.1 Mechanisms, 81
 5.1.1 Local Effects, 81
 5.1.2 Absorption and Distribution, 81
 5.1.3 Metabolism, 82
 5.2 Common Routes, 83
 5.2.1 Dermal Route, 83
 5.2.2 Parenteral Route, 84
 5.2.3 Bolus versus Infusion, 85
 5.2.4 Oral Route, 86
 5.2.5 Minor Routes, 94
 5.2.6 Route Comparisons and Contrasts, 96
 5.3 Formulation of Test Materials, 96
 5.3.1 Preformulation, 97
 5.3.2 Dermal Formulations, 100
 5.3.3 Interactions between Skin, Vehicle, and Test Chemical, 102
 5.3.4 Oral Formulations, 103
 5.3.5 Parenteral Formulations, 104
 5.4 Dosing Calculations, 105
 5.5 Calculating Material Requirements, 105
 5.6 Excipients, 106
 5.6.1 Regulation of Excipients, 106
References, 111

6 Nonclinical Manifestations, Mechanisms, and End Points of Drug Toxicity 115
 6.1 Manifestations, 115
 6.2 Mechanisms of Toxicity, 116
 6.3 End Points Measured in General Toxicity Studies, 116
 6.3.1 Clinical Observations, 116
 6.3.2 Body Weights, 116
 6.3.3 Food and Water Consumption, 116
6.3.4 Clinical Signs, 117
6.3.5 Clinical Chemistry and Pathology, 117
6.3.6 Hematology, 124
6.3.7 Gross Necropsy and Organ Weights, 124
6.3.8 Histopathology, 125
6.3.9 Ophthalmology, 125
6.3.10 Cardiovascular Function, 125
6.3.11 Neurotoxicology, 125
6.3.12 Immunotoxicology, 125
6.4 Complications, 126
References, 126

7 Pilot Toxicity Testing in Drug Safety Evaluation: MTD and DRF 129
7.1 Introduction, 129
7.2 Range-Finding Studies, 130
7.2.1 Lethality Testing, 130
7.2.2 Using Range-Finding Lethality Data in Drug Development:
 The Minimum Lethal Dose, 136
7.3 Acute Systemic Toxicity Characterization, 138
 7.3.1 Minimal Acute Toxicity Test, 139
 7.3.2 Complete Acute Toxicity Testing, 142
 7.3.3 Acute Toxicity Testing with Nonrodent Species, 146
 7.3.4 Factors that Can Affect Acute Tests, 148
 7.3.5 Selection of Dosages, 149
7.4 Screens, 150
 7.4.1 General Toxicity Screens, 151
 7.4.2 Specific Toxicity Screening, 153
7.5 PILOT and DRF Studies, 154
References, 156

8 Repeat-Dose Toxicity Studies 159
8.1 Objectives, 159
8.2 Regulatory Considerations, 161
 8.2.1 Good Laboratory Practices, 161
 8.2.2 Animal Welfare Act, 161
 8.2.3 Regulatory Requirements for Study Design, 162
8.3 Study Design and Conduct, 162
 8.3.1 Animals, 162
 8.3.2 Routes and Setting Doses, 163
 8.3.3 Parameters to Measure, 164
 8.3.4 Study Designs, 164
8.4 Study Interpretation and Reporting, 165
References, 166

9 Genotoxicity 169
9.1 ICH Test Profile, 169
9.2 DNA Structure, 169
 9.2.1 Transcription, 171
 9.2.2 Translation, 171
 9.2.3 Gene Regulation, 171
 9.2.4 DNA Repair, 171
 9.2.5 Error-Prone Repair, 172
 9.2.6 Mismatch Repair, 172
 9.2.7 The Adaptive Repair Pathway, 172
 9.2.8 Plasmids, 172
 9.2.9 Plasmids and DNA Repair, 173
9.2.10 Nature of Point Mutations, 173
9.2.11 Suppressor Mutations, 173
9.2.12 Adduct Formation, 173
9.2.13 Mutations Due to Insertion Sequences, 174
9.2.14 The Link between Mutation and Cancer, 174
9.2.15 Genotoxic versus Nongenotoxic Mechanisms of Carcinogenesis, 174
9.2.16 Genetic Damage and Heritable Defects, 175
9.2.17 Reproductive Effects, 176

9.3 Cytogenetics, 176
9.3.1 Cytogenetic Damage and Its Consequences, 176
9.3.2 Individual Chromosomal Damage, 176
9.3.3 Chromosome Set Damage, 177
9.3.4 Test Systems, 177
9.3.5 In Vitro Test Systems, 178
9.3.6 Bacterial Mutation Tests, 180
9.3.7 Controls, 182
9.3.8 Plate Incorporation Assay, 184
9.3.9 Eukaryotic Mutation Tests, 185
9.3.10 In Vitro Tests for the Detection of Mammalian Mutation, 185
9.3.11 In Vivo Mammalian Mutation Tests, 193

9.4 In Vitro Cytogenetic Assays, 193
9.4.1 Cell Types, 194
9.4.2 Chinese Hamster Cell Lines, 194
9.4.3 Human Peripheral Blood Lymphocytes, 194
9.4.4 Positive and Negative Controls, 194
9.4.5 Treatment of Cells, 195
9.4.6 Scoring Procedures, 195
9.4.7 Data Recording, 196
9.4.8 Presentation of Results, 196

9.5 In Vivo Cytogenetic Assays, 196
9.5.1 Somatic Cell Assays, 196
9.5.2 Germ Cell Assays, 197
9.5.3 Heritable Chromosome Assays, 197
9.5.4 Germ Cell Cytogenetic Assays, 197

9.6 Sister Chromatid Exchange Assays, 197
9.6.1 Relevance of SCE in Terms of Genotoxicity, 198
9.6.2 Experimental Design, 198

References, 199

10 QSAR Tools for Drug Safety
10.1 Structure–Activity Relationships, 209
10.1.1 Basic Assumptions, 210
10.1.2 Molecular Parameters of Interest, 210
10.2 SAR Modeling Methods, 210
10.3 Applications in Toxicology, 212
10.3.1 Metabolism, 213
10.3.2 Reproductive, 213
10.3.3 Eye Irritation, 213
10.3.4 Lethality, 214
10.3.5 Carcinogenicity, 214
10.4 Genotoxicity, 215
10.4.1 QSAR for Mutagenicity, 215
10.5 Comparison of Available Models/Applications, 216
10.5.1 QSAR of Metabolism, 216
10.5.2 Meteor, 216
10.5.3 Derek, 218
10.5.4 Leadscope, 219
10.5.5 VEGA, 219
10.5.6 Derek versus Leadscope, 222

References, 222

11 Immunotoxicology in Drug Development

11.1 Introduction, 225
11.2 Overview of the Immune System, 227
11.3 Immunotoxic Effects, 229
11.4 Immunosuppression, 231
 11.4.1 Immunosuppressive Drugs, 232
11.5 Immunostimulation, 235
 11.5.1 Hypersensitivity (or Allergenicity), 235
 11.5.2 Photosensitization, 238
 11.5.3 Autoimmunity, 238
11.6 Regulatory Positions, 240
 11.6.1 CDER Guidance for Investigational New Drugs, 242
11.7 Evaluation of the Immune System, 245
 11.7.1 Immunopathologic Assessments, 246
 11.7.2 Humoral (Innate) Immune Response and Possible
 Entry Points for Immunotoxic Actions, 246
 11.7.3 Cell-Mediated Immunity, 250
11.8 Nonspecific Immunity Function Assay, 251
 11.8.1 Natural Killer Cell Assays, 251
 11.8.2 Macrophage Function, 251
 11.8.3 Mast Cell/Basophil Function, 252
11.9 T-Cell-Dependent Antibody Response (TDAR), 253
 11.9.1 Treatment, 253
 11.9.2 Hypersensitivity, 253
 11.9.3 Local Lymph Node Assay (LLNA), 255
 11.9.4 Photosensitization, 258
11.10 Approaches to Compound Evaluation, 259
 11.10.1 Use of In Vivo Tests, 260
 11.10.2 Use of In Vitro Tests, 261
 11.10.3 Assessment of Immunotoxicity and Immunogenicity/
 Allergenicity of Biotechnology-Derived Drugs, 261
 11.10.4 Suggested Approaches to Evaluation of Results, 262
11.11 Problems and Future Directions, 263
 11.11.1 Data Interpretation, 263
 11.11.2 Appropriate Animal Models, 263
 11.11.3 Indirect Immunotoxic Effects, 263
 11.11.4 Hypersensitivity Tests, 263
 11.11.5 Autoimmunity, 264
 11.11.6 Functional Reserve Capacity, 264
 11.11.7 Significance of Minor Perturbations, 264
 11.11.8 Biotechnology Products, 264

References, 264

12 Nonrodent Animal Studies

12.1 Introduction, 269
12.2 Comparison Between Rodent and Nonrodent
 Experimental Design, 269
 12.2.1 Number of Animals, 269
12.3 Differences in Study Activities, 270
12.3.1 Blood Collection, 270
12.3.2 Dosing, 270
12.3.3 Handling of Animals, 270
12.3.4 Behavioral Evaluation, 270
12.4 Nonrodent Models, 270
12.5 Dog, 270
12.5.1 Environmental and Dietary Requirements, 270
12.5.2 Common Study Protocols, 271
12.5.3 General Study Activities, 272
12.5.4 Advantages and Disadvantages, 272
12.6 The Ferret, 273
12.6.1 Environmental and Dietary Requirements, 273
12.6.2 Study Protocols, 273
12.6.3 General Study Activities, 274
12.6.4 Advantages and Disadvantages, 272
12.7 The Pig, 275
12.7.1 Background, 275
12.7.2 Clinical Laboratory, 276
12.7.3 Xenobiotic Metabolism, 277
12.7.4 Dermal Toxicity, 278
12.7.5 Cardiovascular Toxicity, 279
12.7.6 Advantages and Disadvantages, 279
12.8 Nonhuman Primates, 279
12.8.1 Environmental and Dietary Requirements, 281
12.8.2 Common Study Protocols, 281
12.8.3 General Study Activities, 281
12.8.4 Advantages and Disadvantages, 283
12.9 Statistics in Large Animal Studies, 283
12.9.1 Reasons for Small Sample Sizes in Large Animal Toxicology, 284
12.9.2 Cross-Sectional or Longitudinal Analysis?, 284
12.9.3 Repeated Measures: Advantages, 284
12.9.4 Repeated Measures: Disadvantages, 284
12.9.5 Common Practices in Large Animal Toxicology, 284
12.9.6 Univariate (Repeated Measures) Techniques: Advantages, 285
12.9.7 Univariate (Repeated Measures) Techniques: Disadvantages, 285
12.9.8 Multivariate Techniques: Advantages, 285
12.9.9 Multivariate Techniques: Disadvantages, 285
12.9.10 Some Other Design Factors to Be Considered in Analysis, 285
12.9.11 Covariates: Advantages, 285
12.9.12 Covariates: Disadvantages, 285
12.9.13 Missing Values, 288
12.10 Summary, 288
References, 288

13 Developmental and Reproductive Toxicity Testing, 291
13.1 Introduction, 291
13.2 ICH Study Designs, 293
13.2.1 Male and Female Fertility and Early Embryonic Development to Implantation, 294
13.2.2 Embryo-Fetal Development, 295
13.2.3 Adverse Effects, 295
13.2.4 Pre- and Postnatal Development, 295
13.2.5 Single-Study and Two-Study Designs for Rodents, 296
13.2.6 Preliminary Studies, 297
13.2.7 Toxicokinetics, 297
13.2.8 Timing of Studies, 297

13.3 Methodological Issues, 298
13.3.1 Control of Bias, 298
13.3.2 Diet, 298
13.3.3 Clinical Pathology, 299
13.3.4 Gravid Uterine Weights, 299
13.3.5 Implant Counts and Determination of Pregnancy, 301
13.3.6 Fetal Examinations, 301
13.3.7 Developmental Signs, 302
13.3.8 Behavioral Tests, 303
13.3.9 Detecting Effects on Male Reproduction, 303

13.4 Developmental Studies in Primates, 303
13.5 Data Interpretation, 304
13.5.1 Use of Statistical Analyses, 304
13.5.2 Potential Hazard Categories of Developmental Toxins, 307
13.5.3 Associations between Developmental and Maternal Toxicity, 308
13.5.4 Assessment of Human Risk, 308

13.6 Juvenile and Pediatric Toxicology, 310

13.7 In Vitro Tests for Developmental Toxicity, 312
13.8 Appraisal of Current Approaches for Determining Developmental and Reproductive Hazards, 316

References, 317

14 Carcinogenicity Studies

14.1 Introduction, 321
14.1.1 History of Xenobiotic Carcinogenesis, 322
14.2 Mechanisms and Classes of Carcinogens, 322
14.3 Genotoxic Carcinogens, 322
14.4 Epigenetic Carcinogens, 325
14.5 Regulatory Requirements and Timing, 328
14.6 Species and Strain, 328
14.7 Animal Husbandry, 330
14.8 Dose Selection, 330
14.8.1 Number of Dose Levels, 330
14.8.2 Number of Control Groups, 330
14.8.3 Criteria for Dose Selection, 331
14.9 Group Size, 331
14.10 Route of Administration, 332
14.11 Study Duration, 332
14.12 Survival, 332
14.13 End Points Measured, 333
14.14 Transgenic Mouse Models, 335
14.14.1 The Tg.AC Mouse Model, 335
14.14.2 The Tg.rasH2 Mouse Model, 336
14.14.3 The P53+/− Mouse Model, 336
14.14.4 The XPA−/− Mouse Model, 337
14.15 Interpretation of Results: Criteria for a Positive Result, 338
14.16 Statistical Analysis, 338
 14.16.1 Exact Tests, 339
 14.16.2 Trend Tests, 340
 14.16.3 Life Table and Survival Analysis, 341
 14.16.4 Peto Analysis, 341
 14.16.5 Methods to Be Avoided, 342
 14.16.6 Use of Historical Controls, 342
 14.16.7 Relevance to Humans, 342
14.17 Weight-of-Evidence Factors for Consideration in a Carcinogenicity Assessment Document (CAD), 344
14.18 Conclusions, 345
References, 345

15 Histopathology in Nonclinical Pharmaceutical Safety Assessment 351
 15.1 Introduction, 351
 15.1.1 Pathological Techniques, 354
 15.1.2 Organ Weights, 354
 15.2 Clinical Pathology, 355
 15.2.1 Clinical Chemistry, 355
 15.2.2 Target Organ Toxicity Biomarkers, 355
References, 356

16 Irritation and Local Tissue Tolerance in Pharmaceutical Safety Assessment 359
 16.1 Introduction, 359
 16.2 Factors Affecting Irritation Responses and Test Outcome, 359
 16.3 Primary Dermal Irritation (PDI) Test, 360
 16.4 Other Nonparenteral Route Irritation Tests, 362
 16.5 Ocular Irritation Testing, 362
 16.6 Vaginal Irritation, 364
 16.7 Acute Primary Vaginal Irritation Study in the Female Rabbit, 365
 16.7.1 Repeated-Dose Vaginal Irritation in the Female Rabbit, 365
 16.7.2 Repeated-Dose Vaginal Irritation in the Ovariectomized Rats, 366
 16.8 Parenteral Irritation/Tolerance, 367
 16.8.1 Parenteral Routes, 367
 16.8.2 Test Systems for Parenteral Irritation, 368
 16.9 Problems in Testing (and Their Resolutions), 370
 16.9.1 Alternatives to In Vivo Parenteral Tests, 371
 16.10 Phototoxicity, 371
 16.10.1 Theory and Mechanisms, 371
 16.10.2 Factors Influencing Phototoxicity/Photosensitization, 372
 16.10.3 Predictive Tests for Phototoxicity, 373
 16.10.4 3T3 In Vitro Test, 373
 16.10.5 Rabbit Phototoxicity Test, 373
 16.10.6 Guinea Pig, 374
 16.10.7 Pyrogenicity, 376
 16.11 Hemocompatibility, 377
References, 378

17 Pharmacokinetics and Toxicokinetics in Drug Safety Evaluation 381
 17.1 Introduction, 381
 17.2 Regulations, 382
17.3 Principles, 382
17.3.1 Preliminary Work, 382
17.3.2 Absorption, 384
17.3.3 Distribution, 388
17.3.4 Metabolism/Biotransformation, 389
17.3.5 Excretion, 394
17.4 Pharmacokinetics, 395
17.5 Laboratory Methods, 395
17.5.1 Analytical Methods, 395
17.6 Sampling Methods and Intervals, 397
17.6.1 Blood, 397
17.6.2 Excreta, 398
17.6.3 Bile, 398
17.6.4 Expired Air, 398
17.6.5 Milk, 398
17.7 Study Types, 400
17.7.1 Whole-Body Autoradiography, 401
17.7.2 Mass Balance Studies, 402
17.8 Analysis of Data, 402
17.8.1 Use of Data from Metabolism and Pharmacokinetic Studies, 404
17.9 Physiologically Based Pharmacokinetic (PBPK) Modeling, 404
17.10 Points to Consider, 405
17.11 Biologically Derived Materials, 406
17.11.1 Immunoassay Methods, 407
17.12 Points to Consider, 410
References, 410

18 Safety Pharmacology 413
18.1 Regulatory Requirements, 414
18.2 Study Designs and Principles, 415
18.3 Organ System-Specific Tests, 416
18.3.1 General Considerations in Selection and Design of Safety Pharmacology Studies, 416
18.3.2 Studies on Metabolites, Isomers, and Finished Products, 416
18.4 Cardiovascular, 416
18.4.1 Hemodynamics, ECG, and Respiration in Anesthetized Dogs or Primates, 417
18.4.2 Cardiac Conduction Studies, 417
18.4.3 Conscious Dog, Primate, or Minipig Telemetry Studies, 417
18.4.4 Six-Lead ECG Measurement in the Conscious Dog and Minipig, 417
18.4.5 Systems for Recording Cardiac Action Potentials, 418
18.4.6 Special Case (and Concern): QT Prolongation, 418
18.4.7 Some Specific Techniques Which Can Be Employed, 419
18.4.8 Relevance of hERG to QT Prolongation, 419
18.5 Central Nervous System, 419
18.5.1 Isolated Tissue Assays, 420
18.5.2 Electrophysiology Methods, 421
18.5.3 CNS Function: Electroencephalography, 421
18.5.4 Neurochemical and Biochemical Assays, 421
18.6 Respiratory/Pulmonary System, 422
18.6.1 Design of Respiratory Function Safety Studies, 425
18.6.2 Capnography, 426
18.7 Secondary Organ System, 427
 18.7.1 Gastric Emptying Rate and Gastric pH Changes: A New Model, 427
18.8 Renal Function Tests, 428
18.9 Summary, 428
References, 428

19 Special Concerns for the Preclinical Evaluation of Biotechnology Products 433
 19.1 Regulation, 436
 19.2 Preclinical Safety Assessment, 437
 19.3 Recombinant DNA Technology, 439
 19.3.1 General Safety Issues, 440
 19.3.2 Specific Toxicological Concerns, 440
 19.4 Immunogenicity/Allergenicity, 440
 19.5 Monoclonal Antibody Technology, 441
 19.5.1 Toxicological Concerns with Monoclonal Antibodies, 442
 19.6 Bioprocess Technology, 446
 19.7 Gene Therapy Products, 446
 19.7.1 Vectors, 447
 19.7.2 Studies to Support the First Dose in Man, 447
 19.7.3 Distribution of the Gene and Gene Product, 447
 19.7.4 Studies to Support Multiple Doses in Humans, 447
 19.7.5 Unnecessary Studies, 448
 19.7.6 Ex Vivo Procedures, 448
 19.7.7 Change of Gene or Vector, 448
 19.7.8 Change of Route, 448
 19.7.9 Insertional Mutagenesis, 448
 19.8 Vaccines, 449
 19.8.1 Approaches to Vaccination, 449
 19.8.2 Genetic Engineering and Vaccine Development, 450
 19.9 Special Challenges, 452
 19.9.1 Purity and Homology, 453
 19.9.2 Immunogenicity, 453
 19.10 Planning a Safety Evaluation Program, 454
 19.10.1 The Producing System, 454
 19.10.2 The Process, 454
 19.10.3 The Product, 455
 19.10.4 Biology of Bioengineered Products, 455
 19.10.5 Animal Models, 455
 19.10.6 Study Design, 457
 19.10.7 Frequency and Route of Administration, 458
 19.10.8 Duration, 458
 19.10.9 Special Toxicity Testing, 458
 19.10.10 Program Design Considerations, 458
 19.11 Challenges: Biosimilars, 458
References, 459

20 Safety Assessment of Inhalant Drugs and Dermal Route Drugs 461
 20.1 Inhaled Therapeutics, 461
 20.2 The Pulmonary System, 461
 20.3 Penetration and Absorption of Inhaled Gases and Vapors, 462
 20.4 Deposition of Inhaled Aerosols, 463
 20.5 Absorption and Clearance of Inhaled Aerosols, 464
 20.6 Pharmacokinetics and Pharmacodynamics of Inhaled Aerosols, 464
20.7 Methods for Safety Assessment of Inhaled Therapeutics, 465
20.8 Parameters of Toxicity Evaluation, 467
 20.8.1 The Inhaled “Dose”, 467
 20.8.2 The Dose–Response Relationship, 468
 20.8.3 Exposure Concentration versus Response, 469
 20.8.4 Product of Concentration and Duration (C_t) versus Responses, 469
 20.8.5 Units for Exposure Concentration, 469
20.9 Inhalation Exposure Techniques, 470
20.10 The Utility of Toxicity Data, 473
20.11 Formulation and Potential Mucosal Damage, 473
 20.11.1 Methods to Assess Irritancy and Damage, 473
20.12 Therapeutic Drug Delivery by the Dermal Route, 474
References, 476

21 Special Case Products: Imaging Agents
 21.1 Introduction, 483
 21.2 Imaging Agents, 483
 21.2.1 Contrast Agents, 484
 21.2.2 Diagnostic Radiopharmaceuticals, 484
 21.2.3 Medical Imaging Agent Characteristics Relevant to Safety, 485
 21.2.4 Performance of Nonclinical Safety Assessments, 485
References, 487

22 Special Case Products: Drugs for Treatment of Cancer
 22.1 Introduction, 489
 22.1.1 Dose Conversions: Perspective, 493
 22.1.2 The Use of the mg/m² Dose Unit, 493
References, 493

23 Pediatric Product Safety Assessment (2006 Guidance, Including Juvenile Toxicology)
 23.1 Introduction, 495
 23.1.1 Scope of Nonclinical Safety Evaluation, 497
 23.1.2 Timing of Juvenile Animal Studies in Relation to Clinical Testing, 497
 23.2 Issues to Consider Regarding Juvenile Animal Studies, 498
 23.2.1 Developmental Stage of Intended Population, 498
 23.2.2 Evaluating Data to Determine When Juvenile Animal Studies Should Be Used, 498
 23.2.3 Considering Developmental Windows When Determining Duration of Clinical Use, 498
 23.2.4 Timing of Exposure, 498
 23.2.5 Selection of Study Models, 499
 23.3 General Considerations in Designing Toxicity Studies in Juvenile Animals, 499
 23.4 Study Designs and Considerations, 500
References, 501

24 Use of Imaging, Imaging Agents, and Radiopharmaceuticals in Nonclinical Toxicology
 24.1 Introduction, 503
 24.1.1 Multimodality Imaging Techniques, 504
 24.1.2 Dynamic Molecular Imaging Techniques, 504
24.2 X-ray, 505
 24.2.1 Angiography, 505
24.3 Positron Emission Tomography (PET), 505
24.4 Single-photon Emission Computed Tomography (SPECT), 505
24.5 Computed Tomography (CT), 506
24.6 Magnetic Resonance Imaging (MRI), 506
24.7 Optical Imaging, 507
24.8 Ultrasound, 508
 24.8.1 Echocardiography, 508
24.9 Nanoparticle Contrast Agents, 509
24.10 Radiopharmaceuticals, 509
24.11 Applications of Preclinical Imaging in Laboratory Animals, 509
 24.11.1 Molecular Imaging as an ADME Platform in Drug Screen, 509
 24.11.2 Preclinical Imaging in Oncology, 510
 24.11.3 Preclinical Imaging of CNS Disease, 514
 24.11.4 Preclinical Imaging of Autoimmune Disease, 514
 24.11.5 Imaging Animal Model of Infectious Disease, 515
 24.11.6 Preclinical Imaging of Cardiac Disease, 515
24.12 Nonclinical Safety Assessment for Imaging Agents, 515
24.13 Radiopharmaceuticals, 517
24.14 Nonclinical Late Radiation Toxicity Studies, 519
 24.14.1 Study Goals, 519
24.15 Study Design, 519
 24.15.1 Good Laboratory Practices, 519
 24.15.2 Species Selection, 519
 24.15.3 Timing of Study, 519
 24.15.4 General Study Design, 519
 24.15.5 Dose Levels, 520
 24.15.6 Clinical Pathology, 520
 24.15.7 Necropsy and Histopathology, 520
References, 520

25 Occupational Toxicology in the Pharmaceutical Industry 523
25.1 Introduction, 523
25.2 Occupational Toxicology versus Drug Safety Evaluation, 523
25.3 Regulatory Pressures in the United States and the European Community, 525
25.4 Organizational Structure, 526
25.5 Activities, 527
 25.5.1 Data Evaluation and Dissemination, 527
 25.5.2 Data Development, 528
 25.5.3 Occupational Exposure Limits (OELs), 531
 25.5.4 Hazard Assessment, 531
 25.5.5 Employee Training, 532
25.6 Conclusion, 534
References, 534

26 Strategy and Phasing for Nonclinical Drug Safety Evaluation in the Discovery and Development of Pharmaceuticals 537
26.1 Introduction, 537
26.2 Regulatory Requirements, 539
26.3 Essential Elements of Project Management, 542
26.4 Screens: Their Use and Interpretation in Safety Assessment, 544
 26.4.1 Characteristics of Screens, 545
26.5 Strategy and Phasing, 546
26.6 Critical Considerations, 550
26.7 Special Cases in Safety Assessment, 551
26.8 Summary, 551
References, 551

27 The Application of In Vitro Techniques in Drug Safety Assessment 553
27.1 Introduction, 553
27.2 In Vitro Testing in Pharmaceutical Safety Assessment, 555
27.3 Defining Testing Objective, 558
 27.3.1 Objectives behind Data Generation and Utilization, 558
27.4 Test Systems: Characteristics, Development, and Selection, 558
27.5 In Vitro Models, 559
27.6 Lethality, 560
 27.6.1 Ocular Irritation, 564
 27.6.2 Dermal Irritation, 564
 27.6.3 Irritation of Parenterally Administered Pharmaceuticals, 565
 27.6.4 Sensitization and Photosensitization, 566
 27.6.5 Phototoxicity and Photosensitization, 567
 27.6.6 Developmental Toxicity, 568
 27.6.7 Target Organ Toxicity Models, 568
27.7 In Silico Methods, 572
27.8 The Final Frontier and Barrier: Regulatory Acceptance, 573
27.9 Summary, 573
References, 575
Further Reading, 581

28 Evaluation of Human Tolerance and Safety in Clinical Trials: Phase I and Beyond 583
28.1 The Pharmaceutical Clinical Development Process and Safety, 583
 28.1.1 Pharmacokinetics, 589
 28.1.2 Safety of Clinical Trial Subjects, 591
28.2 Limitations on/of Clinical Trials, 598
28.3 The Clinical Trial Process, 598
 28.3.1 Development of an Application Unrelated to Original Approved Use, 601
28.4 Institutional Review Boards (IRBS)/Ethics Committees in the Clinical Trial Process, 602
 28.4.1 Legal Authority and Responsibilities for IRBs, 602
 28.4.2 Duties of IRBs, 603
 28.4.3 Informed Consent, 603
28.5 Drug Formulations and Excipients, 604
 28.5.1 Route of Administration, 605
28.6 Phase I Designs, 605
 28.6.1 First Administration: Single Dose Escalating (SDE), 606
 28.6.2 First Administration in Humans: Multiple Dose Escalating (MDE), 608
28.7 Clinical Trial Safety Indicators, 609
 28.7.1 Overall Approach to Assessing Safety, 609
 28.7.2 Precautions, 610
 28.7.3 Clinical Chemistry, 613
 28.7.4 Urinalysis, 614
 28.7.5 Urine Screens, 614
28.7.6 Identifying New Diagnostic Laboratory Tests, 614
28.7.7 Ophthalmological Examination, 614
28.7.8 Dermatological Examinations, 614
28.7.9 Cardiovascular Safety, 615
28.7.10 Deaths in Clinical Trials, 615
28.7.11 Behavioral Rating Scales, Performance, Personality, and Disability Tests, 616
28.7.12 Adult Behavioral Rating Scales, 616
28.7.13 Pediatric Behavioral Rating and Diagnostic Scales, 618
28.7.14 Psychometric and Performance Tests, 619
28.7.15 Personality Tests, 621

28.8 Assessment of Unwanted Drug Effects, 621
28.8.1 Separation of Adverse Reactions from Placebo Reactions, 621

References, 626

29 Postmarketing Safety Evaluation: Monitoring, Assessing, and Reporting of Adverse Drug Responses (ADRs) 629
29.1 Causes of Safety Withdrawals, 637
29.2 Regulatory Requirements, 638
 29.2.1 The 15-Day Report versus the US Periodic Report, 639
29.3 Management of ADR and ADE Data, 641
 29.3.1 Sources of Data, 641
 29.3.2 Clinical Trials, 641
 29.3.3 Postmarketing Surveillance Studies, 641
 29.3.4 Spontaneous Reports, 641
 29.3.5 Literature, 642
 29.3.6 Searching for ADRs in the Literature, 642
 29.3.7 Information Required for Reports, 642
 29.3.8 Adverse Drug Reaction Forms and Form Design, 642
 29.3.9 Computerization of Drug Safety Data: Data Collection and Input, 644
 29.3.10 Medical and Drug Terminology, 644
 29.3.11 Dictionaries, 645
 29.3.12 Medical Term Coding Dictionaries, 645
 29.3.13 Medical Dictionary for Regulatory Activities, 645
 29.3.14 Periodic Reports, 646
29.4 Causality Assessment, 647
 29.4.1 Aims of Causality Assessment, 647
29.5 Courses of Corrective Action, 647
29.6 Legal Consequences of Safety Withdrawal, 648
 29.6.1 FDA Tools for Risk Management, 648
 29.6.2 Tier 1: Mandatory Studies, 649
 29.6.3 Tier 2: Labeling and Assessment, 649
 29.6.4 Tier 3: Enhanced Communication, 650
 29.6.5 Tier 4: Safe Use Restriction Defined by Provider, 650
 29.6.6 Tier 5: Safe Use Restriction Defined by Patient, 651

References, 651

30 Statistics in Pharmaceutical Safety Assessment 653
30.1 Introduction, 653
 30.1.1 Bias and Chance, 655
 30.1.2 Hypothesis Testing and Probability (p) Values, 655
 30.1.3 Multiple Comparisons, 656
 30.1.4 Estimating the Size of the Effect, 656
30.1.5 Functions of Statistics, 657
30.1.6 Descriptive Statistics, 658

30.2 Experimental Design, 659
30.2.1 Choice of Species and Strain, 659
30.2.2 Sampling, 659
30.2.3 Dose Levels, 660
30.2.4 Number of Animals, 660
30.2.5 Duration of the Study, 660
30.2.6 Stratification, 661
30.2.7 Randomization, 661
30.2.8 Adequacy of Control Group, 661

30.3 Data Recording, 664

30.4 Generalized Methodology Selection, 665

30.5 Statistical Analysis: General Considerations, 665
30.5.1 Variables to Be Analyzed, 665
30.5.2 Combination of Observations (Such as Pathological Conditions), 667
30.5.3 TakingSeverity into Account, 668
30.5.4 Using Simple Methods Which Avoid Complex Assumptions, 668
30.5.5 Using All the Data, 668
30.5.6 Combining, Pooling, and Stratification, 668
30.5.7 Trend Analysis, Low-Dose Extrapolation, and NOEL Estimation, 669
30.5.8 Need for Age Adjustment, 671
30.5.9 Need to Take Context of Observation into Account, 672
30.5.10 Experimental and Observational Units, 672
30.5.11 Missing Data, 672
30.5.12 Use of Historical Control Data, 673
30.5.13 Methods for Data Examination and Preparation, 673
30.5.14 Scattergram, 673
30.5.15 Bartlett’s Test for Homogeneity of Variance, 675
30.5.16 Statistical Goodness-of-Fit Tests, 676
30.5.17 Randomization, 677
30.5.18 Transformations, 677
30.5.19 Exploratory Data Analysis, 678

30.6 Hypothesis Testing of Categorical and Ranked Data, 679
30.6.1 Fisher’s Exact Test, 679
30.6.2 2×2 Chi-Square, 680
30.6.3 R×C Chi-Square, 680
30.6.4 Wilcoxon Rank-Sum Test, 681
30.6.5 Distribution-Free Multiple Comparison, 682
30.6.6 Mann–Whitney U Test, 682
30.6.7 Kruskal–Wallis Nonparametric ANOVA, 683
30.6.8 Log-Rank Test, 683

30.7 Hypothesis Testing: Univariate Parametric Tests, 684
30.7.1 Student’s t-Test (Unpaired t-Test), 685
30.7.2 Cochran t-Test, 685
30.7.3 F-Test, 686
30.7.4 Analysis of Variance (ANOVA), 686
30.7.5 Post Hoc Tests, 687
30.7.6 Duncan’s Multiple Range Test, 687
30.7.7 Groups with Equal Number of Data (N₁=N₂), 687
30.7.8 Groups with Unequal Number of Data (N₁≠N₂), 688
30.7.9 Scheffe’s Multiple Comparisons, 688
30.7.10 Dunnett’s t-Test, 688
30.7.11 Williams’ t-Test, 689
30.7.12 Analysis of Covariance, 689
30.7.13 Modeling, 690
30.7.14 Linear Regression, 691
30.7.15 Probit/Log Transforms and Regression, 691
30.7.16 Nonlinear Regression, 692
30.7.17 Correlation Coefficient, 693
30.7.18 Kendall’s Coefficient of Rank Correlation, 694
30.7.19 Trend Analysis, 694

30.8 Methods for the Reduction of Dimensionality, 694
30.8.1 Classification, 695
30.8.2 Statistical Graphics, 696
30.8.3 Multidimensional and Nonmetric Scaling, 697
30.8.4 Cluster Analysis, 699
30.8.5 Fourier or Time Analysis, 699
30.8.6 Life Tables, 700

30.9 Meta-Analysis, 701
30.9.1 Selection of the Studies to Be Analyzed, 701
30.9.2 Pooled (Quantitative) Analysis, 701
30.9.3 Methodological (Qualitative) Analysis, 702

30.10 Bayesian Inference, 702
30.10.1 Bayes’ Theorem and Evaluation of Safety Assessment Studies, 702
30.10.2 Bayes’ Theorem and Individual Animal Evaluation, 703

30.11 Data Analysis Applications in Safety Assessment Studies, 704
30.11.1 Body and Organ Weights, 705
30.11.2 Clinical Chemistry, 706
30.11.3 Hematology, 706
30.11.4 Histopathological Lesion Incidence, 706
30.11.5 Carcinogenesis, 707

References, 708

31 Combination Products: Drugs and Devices 711
31.1 Combination Products, 711
31.1.1 Historical Background, 711
31.1.2 Future Trends, 712

References, 720

32 Qualification of Impurities, Degradants, Residual Solvents, Metals, and Leachables in Pharmaceuticals 721
32.1 Impurities, 721
32.2 Residual Solvents, 726
32.3 Extractables and Leachables, 727
32.4 Residual Metals and Elements, 728

References, 730

33 Tissue, Cell, and Gene Therapy 731
33.1 Safety Assessment of Cell Therapy (CT) Products, 732
33.1.1 Recommendations for General Preclinical Program Design, 732
33.1.2 Model Species Selection, 732
33.1.3 Selection of Animal Models of Disease/Injury, 732
PREFACE

The third edition of Drug Safety Evaluation is a complete revision of the second edition which maintains the central objective of presenting an all-inclusive practical guide for those who are responsible for ensuring the safety of drugs and biologics to patients and shepherding valuable candidates to market, healthcare providers, those involved in the manufacture of medicinal products, and all those who need to understand how the safety of these products is evaluated. The many changes in regulatory requirements, pharmaceutical development, and technology have required both extensive revision to every chapter and the addition of four new chapters.

This practical guide presents a road map for safety assessment as an integral part of the development of new drugs and therapeutics. Individual chapters also address specific approaches to evaluation hazards, including problems that are encountered and their solutions. Also covered are the scientific and philosophical bases for evaluation of specific concerns (e.g., carcinogenicity, development toxicity, etc.) to provide both understanding and guidance for approaching new problems. Drug Safety Evaluation is aimed specifically at the pharmaceutical and biotechnology industries. It not only addresses the general cases for safety evaluation of small and large molecules but also all of the significant major subcases: imaging agents, dermal and inhalation route drugs, vaccines, and gene therapy products. It is hoped that the approaches and methodologies presented here will show a utilitarian yet scientifically valid path to the everyday challenges of safety evaluation and the problem solving that is required in drug discovery and development.

Shayne Cox Gad
Raleigh, North Carolina
ABOUT THE AUTHOR

Shayne Cox Gad, B.S. (Whittier College, Chemistry and Biology, 1971) and Ph.D. in Pharmacology/Toxicology (Texas, 1977) DABT, ATS, is the principal of Gad Consulting Services, a 24-year-old consulting firm with seven employees and more than 450 clients (including 200 pharmaceutical companies in the United States and 50 overseas). Prior to this, he served in director-level and above positions at Searle, Synergen, and Becton Dickinson. He has published 48 books and more than 350 chapters, articles, and abstracts in the fields of toxicology, statistics, pharmacology, drug development, and safety assessment. He has more than 39 years of broad-based experience in toxicology, drug and device development, statistics, and risk assessment. He has specific expertise in neurotoxicology, in vitro methods, cardiovascular toxicology, inhalation toxicology, immunotoxicology, and genotoxicology. Past president of the American College of Toxicology, the Roundtable of Toxicology Consultants, and three of SOT’s specialty sections. He has direct involvement in the preparation of INDs (110 successfully to date), NDA, PLA, ANDA, 501(k), IDE, CTD, clinical databases for phase 1 and 2 studies, and PMAs. He has consulted for FDA, EPA, and NIH and has trained reviewers and been an expert witness for FDA. He has also conducted the triennial toxicology salary survey as a service to the profession for the last 27 years.

Dr. Shayne Cox Gad is also a retired Navy line officer.