Cover Page

Answers to Problems

CHAPTER 1

1. m = 500 slugs; 2. a = 12 fps2; 3. Drag = 282 lb, Lift = 102.6 lb; 4. Tan = 0.75, Distance = 5 mi; 5. s = 8 ft, F = 30 lb; 6. Time = 16.7 sec; 7. Takeoff roll = 1667 ft; 8. a = 5 fps2; 9. V1 = 450 fps; 10. PE = 80 × 106 ft‐lb, KE = 10 × 106 ft‐lb, TE = 90 × 106 ft‐lb; 11. HP = 5000 hp; 12. images

CHAPTER 2

1. c; 2. c; 3. a; 4. a; 5. d; 6. d; 7. c; 8. b; 9. a; 10. b; 11. d = 0.929, PA = 2000 ft, q = 1.078, s = 0.8618, DA = 5000 ft; 12. H = 2062.8 psf, P2 = 1931 psf, q2 = 131 psf, images, images, images; 13. q = 116.8 psf; 14. EAS = 337.5 knots; 15. TAS = 498 knots

CHAPTER 3

1. d; 2. c; 3. d; 4. d; 5. c; 6. e; 7. d; 8. d; 9. b; 10. d

CHAPTER 4

1. a; 2. c; 3. a; 4. c; 5. d; 6. d; 7. c; 8. b; 9. d; 10. a. combination, b. energy add, c. combination, d. camber chg; 11. AOA = 4°; 12. images; 13. images; 14. images

CHAPTER 5

1. d; 2. c; 3. d; 4. d; 5. b; 6. d; 7. d; 8. c; 9. b; 10. b; 11. images; 12. V = 172 knots; 13. images

14.

V2 (V2/V1) Dp (V1/V2)2 Di Dt
125 0.530 270 1.89 963 1233
150 0.763 389 1.31 669 1058
172 1.0 510 1.0 510 1020
200 1.35 690 0.74 377 1067
300 3.04 1562 0.33 168 1720
400 5.42 2766 0.184 94 2860

CHAPTER 6

1. d; 2. d; 3. a; 4. a; 5. a; 6. a; 7. d; 8. c; 9. c; 10. b; 11. T = 3000 lb, Efficiency = 77%; 12. images, T = 4100 lb, FF0 = 6150 lb/hr; 13. images; 14. a. 500 knots, b. 240 knots, c. 0.327 (19°), d. 10,940 fpm, e. 240 knots, f. 300 knots, g. 350 knots

CHAPTER 7

1. d; 2. c; 3. a; 4. b; 5. d; 6. a; 7. d; 8. c; 9. b; 10. d; 11. images, images; 12. images, images; 13. images, SR improvement in Problem 13 = 14.154%, SR improvement in Problem 12 = 27.6%, conclusion: reduce throttle as fuel is burned; 14. SR0 = 0.2973, SR20 = 0.4108, SR improvement = 38%

CHAPTER 8

1. a; 2. d; 3. c; 4. b; 5. d; 6. b; 7. b; 8. d; 9. c; 10. b; 11. 474 HP, 488 HP, 540 HP, 657 HP, 1588 HP, 3520 HP; 12. a. 340 knots, b. 0.542 (32.8°), c. 0.37 (21.7°), d. 4125 fpm, e. 4950 fpm, f. 100 knots, g. 140 knots, h. 160 knots

CHAPTER 9

1. c; 2. a; 3. b; 4. c; 5. c; 6. c; 7. c; 8. b; 9. b; 10. a; 11. images, images; 12. images, images; 13. images, Improvement = 18.7%, Improvement in Problem 12 = 53.5%; conclusion: reduce throttle as fuel is burned; 14. SR0 = SR = 0.58 nmi/lb; conclusion: no change in SR with altitude (considering airframe only)

CHAPTER 10

1. d; 2. c; 3. c; 4. d; 5. a; 6. d; 7. d; 8. a; 9. a; 10. images; 11. V = 126.5 fps (75 knots); 12. S = 2576 ft; 13. S = 5796 ft; 14. S = 2087 ft; 15. S = 4025 ft

CHAPTER 11

1. d; 2. b; 3. d; 4. d; 5. d; 6. a; 7. a; 8. c; 9. a; 10. a; 11. images; 12. S = 1785 ft; 13. S = 2901 ft; 14. S = 2160 ft; 15. S = 2231 ft

CHAPTER 12

1. d; 2. b; 3. d; 4. b; 5. b; 6. a; 7. c; 8. c; 9. d; 10. d; 11. RC = 506.5 fpm; 12. RC = −658.5 fpm

CHAPTER 13

1. b; 2. c; 3. d; 4. d; 5. d; 6. a; 7. c; 8. d; 9. d; 10. b; 11. 30.6°; 12. Verified; 13. 1.162G; 14. ROT = 3.23°/sec; 15. Verified

CHAPTER 14

1. b; 2. c; 3. d; 4. c; 5. c; 6. d; 7. a; 8. c; 9. b; 10. d

CHAPTER 15

1. b; 2. c; 3. a; 4. a; 5. c; 6. a; 7. c; 8. a; 9. b; 10. b

CHAPTER 16

1. d; 2. b; 3. b; 4. e; 5. a; 6. h; 7. a; 8. a; 9. b; 10. d

CHAPTER 17

1. c; 2. b; 3. c; 4. a; 5. d; 6. b

References

  1. Abbott, I. H., and A. E. von Doenhoff. Theory of Wing Sections. New York: Dover, 1959.
  2. Anderson, J. D., Jr. Fundamentals of Aerodynamics. New York: McGraw‐Hill, 2007.
  3. ———. Introduction to Flight. New York: McGraw‐Hill, 1978, 2012.
  4. Bent, R. D., and J. L. McKinley. Aircraft Powerplants, 4th ed. New York: McGraw‐Hill, Gregg Div., 1978.
  5. Carrol, R. L. The Aerodynamics of Powered Flight. New York: Wiley, 1960.
  6. Dalton, S. The Miracle of Flight. New York: McGraw‐Hill, 1977.
  7. Dole, C. E. Flight Theory and Aerodynamics. New York: Wiley, 1981.
  8. ———. Flight Theory for Pilots. Casper, Wyo.: IAP, 1993.
  9. ———. Fundamentals of Aircraft Material Factors. Casper, Wyo.: IAP, 1991.
  10. ———. Mathematics and Physics for Aviation Personnel. Casper, Wyo.: IAP, 1991.
  11. Domasch, D. O., S. S. Sherby, and T. F. Connolly. Airplane Aerodynamics, 4th ed. New York: Pitman, 1967.
  12. Dwinnell, J. H. Principles of Aerodynamics. New York: McGraw‐Hill, 1949.
  13. Etkin, B. Dynamics of Atmospheric Flight. New York: Wiley, 1972.
  14. Fielding, J. P. Introduction to Aircraft Design. Cambridge, UK: Cambridge University Press, 1999.
  15. Hoerner, S. F. Fluid‐Dynamic Drag. Self‐published, 1965.
  16. Hoerner, S. F., and H. V. Borst. Fluid‐Dynamic Lift. Self‐published, 1967.
  17. Kuethe, S. Foundations of Aerodynamics, 3rd ed. New York: Wiley, 1976.
  18. Martynov, A. K. Practical Aerodynamics. New York: Macmillan, 1965.
  19. McCormick, B. W. Aerodynamics, Astronautics, and Flight Mechanics. New York: Wiley, 1979.
  20. ———. Aerodynamics, Astronautics, and Flight Mechanics, 2nd ed. New York: Wiley, 1995.
  21. Montgomery, J. R. Sikorsky Helicopter Flight Theory for Pilots and Mechanics. Stanford, Conn.: Sikorsky Aircraft, 1964.
  22. Nicolai, L. M. Design of Airlift Vehicles. Dayton, Ohio: University of Dayton, 1974.
  23. Perkins, C. D., and R. E. Hage. Airplane Performance, Stability and Control. New York: Wiley, 1949.
  24. Piper Aircraft Corporation. Cherokee 140 Owner's Handbook. Vero Beach, Fla.: Piper Aircraft Corporation, 1965.
  25. Prouty, R. W. Practical Helicopter Aerodynamics. Peoria, Ill.: PJS Publications, 1982.
  26. Rodrigues, C. C., and S. K. Cusick. Commercial Aviation Safety. New York: McGraw‐Hill, 2012.
  27. Roed, A. Flight Safety Aerodynamics. Kungsangen, Sweden: Aerotech, 1972.
  28. Roland, H. E., and J. F. Detwiler. Fundamentals of Fixed and Rotary Wing Aerodynamics. ISSM, Los Angeles: University of Southern California, 1967.
  29. Saunders, G. H. Dynamics of Helicopter Flight. New York: Wiley, 1975.
  30. Seckel, E. Stability and Control of Airplanes and Helicopters. New York: Academic Press, 1964.
  31. Shapiro, A. H. The Dynamics and Thermodynamics of Compressible Fluid Flow, vols. 1 and 2. New York: Ronald Press, 1953.
  32. Smith, H. C. The Illustrated Guide to Aerodynamics. New York: McGraw‐Hill, 1992.
  33. Sutton, O. G. The Science of Flight. New York: Pelican Books (A209), 1955.

GOVERNMENT PUBLICATIONS

  1. Aerodynamics. Washington, D.C.: Army Material Command, 1965.
  2. Federal Aviation Administration. Airplane Flying Handbook. Oklahoma City: United States Department of Transportation, 2004.
  3. ———. Aircraft Wake Turbulence. AC No. 90‐23G. Oklahoma City: United States Department of Transportation, 2014.
  4. ———. Aviation Maintenance Technician Handbook: Airframe. Oklahoma City: United States Department of Transportation, 2012.
  5. ———. Glider Flying Handbook. Oklahoma City: United States Department of Transportation, 2013.
  6. ———. Helicopter Flying Handbook. Oklahoma City: United States Department of Transportation, 2012.
  7. ———. Instrument Flying Handbook. Oklahoma City: United States Department of Transportation, 2012.
  8. ———. Low Level Wind Shear. AC No. 00‐50, 1976.
  9. ———. Pilot's Handbook of Aeronautical Knowledge. Oklahoma City: United States Department of Transportation, 2008.
  10. ———. Pilot Windshear Guide. AC No. 00‐54, 1988.
  11. ———. Takeoff Training Aid. AC No. 120‐62. Washington, D.C.: United States Government Printing Office, 1994.
  12. ———. Wake Turbulence. Air Training Command, Pamphlet 51‐12, 1976.
  13. ———. Wind Shear. FAA‐P‐8740‐40. Oklahoma City: Federal Aviation Administration, 2008.
  14. Hurt, H. H., Jr. Aerodynamics for Naval Aviators. NAVWEPS 00‐80T‐80. Washington, D.C.: Government Printing Office, 1965.
  15. NASA. NASA Technology Facts—The Supercritical Airfoil, 2004. Retrieved from www.nasa.gov/pdf/89232main_TF‐2004‐13‐DFRC.pdf.
  16. Transport Canada. Helicopter Flight Training Manual. Retrieved from www.tc.gc.ca/eng/civilaviation/publications/tp9982‐menu‐976.htm, June 2006.
  17. United States Air Force. Academics for Basic. Air Training Command, ATC P‐V4A‐A‐AB‐SW, 1975.
  18. ———. Aerodynamics for Pilots. Air Training Command, Manual 51‐3, 1979.
  19. ———. Applied Aerodynamics. Air Training Command, P‐V4A‐A‐AA‐SW, 1977.
  20. ———. Flight Manual. Series CH‐3E/HH‐3E, 1973.
  21. ———. Interceptor. Air Defense Command, ADCPI 62‐1 through 62‐16, June 1964–April 1966.
  22. United States Army. Rotary Wing Flight. Field Manual 1‐51, 1979.

PERIODICALS

  1. Eggleston, B., and D. L. Jones. “The Design of Lifting Supercritical Airfoils Using a Numerical Optimization Method.” Canadian Aeronautics and Space Journal 23 (no. 3, May–June 1977).
  2. Freitag, W., and E. T. Schulze. “Blended Winglets Improve Performance.” Aeromagazine, March 2009, pp. 9–12.
  3. Garrison, P. Technicalities: A Short History of Airfoils. Retrieved from www.flyingmag.com/technicalities/technicalities‐short‐history‐airfoils, September 25, 2009.
  4. Haines, P., and J. Luers. “Aerodynamic Penalties of Heavy Rain on Landing Aircraft.” Journal of Aircraft 20 (no. 2, February 1983).
  5. Kocivar, B. “Super STOL.” Popular Science, February 1976.
  6. Larson, G. C. “How Things Work: Winglets.” Air and Space Smithsonian, September 2001.
  7. Luers J., and P. Haines. “Heavy Rain Influence on Airplane Accidents.” Journal of Aircraft 20 (no. 2, February 1983).
  8. United States Air Force. “Hydroplaning: Fun or Disaster.” Aerospace Safety. AFISC, May 1964.
  9. ———. “Low Altitude Wind Shear.” Aerospace Safety. AFISC, September 1976.

PERSONAL INTERVIEW

  1. Saunders, S. Personal interview, March 26, 2016.