Edited by
Claude Fermon and
Marcel Van de Voorde

Nanomagnetism
Further Volumes of the Series “Nanotechnology Innovation & Applications”

Axelos, M. A. V. and Van de Voorde, M. (eds.)

Nanotechnology in Agriculture and Food Science
2017
Print ISBN: 9783527339891

Müller, B. and Van de Voorde, M. (eds.)

Nanoscience and Nanotechnology for Human Health
2017
Print ISBN: 978-3-527-33860-3

Cornier, J., Kwade, A., Owen, A., Van de Voorde, M. (eds.)

Pharmaceutical Nanotechnology Innovation and Production
2017
Print ISBN: 9783527340545

Puers, R., Baldi, L., van Nooten, S. E., Van de Voorde, M. (eds.)

Nanoelectronics Materials, Devices, Applications
2017
Print ISBN: 9783527340538

Metrology and Standardization for Nanotechnology Protocols and Industrial Innovations
2017
Print ISBN: 9783527340392

Raj, B., Van de Voorde, M., Mahajan, Y. (eds.)

Nanotechnology for Energy Sustainability
2017
Print ISBN: 9783527340149

Meyrueis, P., Sakoda, K., Van de Voorde, M. (eds.)

Nanotechnology in Catalysis Applications in the Chemical Industry, Energy Development, and Environment Protection
2017
Print ISBN: 9783527339143

Micro- and Nanophotonic Technologies
2017
Print ISBN: 9783527340378

Meyrueis, P., Sakoda, K., Van de Voorde, M. (eds.)

Nanotechnology in Catalysis Applications in the Chemical Industry, Energy Development, and Environment Protection
2017
Print ISBN: 9783527339143
Nanomagnetism

Applications and Perspectives
Volume Editor

Dr. Claude Fermon
CEA Saclay
NanoMagnetism Laboratories
Orme des Merisiers
91191 Gif-sur-Yvette
France

Prof. Dr. Dr. h.c. Marcel H. Van de Voorde
Member of the Science Council of the French Senate and National Assembly, Paris
Rue du Rhodania, 5
BRISTOL A, Appartement 31
3963 Crans-Montana
Switzerland

Series Editor

Prof. Dr. Dr. h.c. Marcel H. Van de Voorde
Member of the Science Council of the French Senate and National Assembly, Paris
Rue du Rhodania, 5
BRISTOL A, Appartement 31
3963 Crans-Montana
Switzerland

Cover credits:
Metallic balls: fotolia_©Klaus Eppele
Background image: fotolia_©sakkmesterke

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33985-3
ePDF ISBN: 978-3-527-69905-6
ePub ISBN: 978-3-527-69906-3
Mobi ISBN: 978-3-527-69907-0
oBook ISBN: 978-3-527-69850-9

Cover Design Adam Design
Typesetting Thomson Digital, Noida, India
Printing and Binding

Printed on acid-free paper
Thanks to my wife for her patience with me spending many hours working on the book series through the nights and over weekends. The assistance of my son Marc Philip related to the complex and large computer files with many sophisticated scientific figures is also greatly appreciated.

Marcel Van de Voorde
Series Editor Preface

Since years, nanoscience and nanotechnology have become particularly an important technology areas worldwide. As a result, there are many universities that offer courses as well as degrees in nanotechnology. Many governments including European institutions and research agencies have vast nanotechnology programmes and many companies file nanotechnology-related patents to protect their innovations. In short, nanoscience is a hot topic!

Nanoscience started in the physics field with electronics as a forerunner, quickly followed by the chemical and pharmacy industries. Today, nanotechnology finds interests in all branches of research and industry worldwide. In addition, governments and consumers are also keen to follow the developments, particularly from a safety and security point of view.

This books series fills the gap between books that are available on various specific topics and the encyclopedias on nanoscience. This well-selected series of books consists of volumes that are all edited by experts in the field from all over the world and assemble top-class contributions. The topical scope of the book is broad, ranging from nanoelectronics and nanocatalysis to nanometrology. Common to all the books in the series is that they represent top-notch research and are highly application-oriented, innovative, and relevant for industry. Finally they collect a valuable source of information on safety aspects for governments, consumer agencies and the society.

The titles of the volumes in the series are as follows:

Human-related nanoscience and nanotechnology

- *Nanoscience and Nanotechnology for Human Health*
- *Pharmaceutical Nanotechnology*
- *Nanotechnology in Agriculture and Food Science*

Nanoscience and nanotechnology in information and communication

- *Nanoelectronics*
- *Micro- and Nanophotonic Technologies*
- *Nanomagnetism: Perspectives and Applications*
Nanoscience and nanotechnology in industry

- Nanotechnology for Energy Sustainability
- Metrology and Standardization of Nanomaterials
- Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environmental Protection

The book series appeals to a wide range of readers with backgrounds in physics, chemistry, biology, and medicine, from students at universities to scientists at institutes, in industrial companies and government agencies and ministries.

Ever since nanoscience was introduced many years ago, it has greatly changed our lives – and will continue to do so!

March 2016

Marcel Van de Voorde
About the Series Editor

Marcel Van de Voorde, Prof. Dr. ir. Ing. Dr. h.c., has 40 years’ experience in European Research Organisations, including CERN-Geneva and the European Commission, with 10 years at the Max Planck Institute for Metals Research, Stuttgart. For many years, he was involved in research and research strategies, policy, and management, especially in European research institutions.

He has been a member of many Research Councils and Governing Boards of research institutions across Europe, the United States, and Japan. In addition to his Professorship at the University of Technology in Delft, the Netherlands, he holds multiple visiting professorships in Europe and worldwide. He holds a doctor honoris causa and various honorary professorships.

He is a senator of the European Academy for Sciences and Arts, Salzburg, and Fellow of the World Academy for Sciences. He is a member of the Science Council of the French Senate/National Assembly in Paris. He has also provided executive advisory services to presidents, ministers of science policy, rectors of Universities, and CEOs of technology institutions, for example, to the president and CEO of IMEC, Technology Centre in Leuven, Belgium. He is also a Fellow of various scientific societies. He has been honored by the Belgian King and European authorities, for example, he received an award for European merits in Luxemburg given by the former President of the European Commission. He is author of multiple scientific and technical publications and has coedited multiple books, especially in the field of nanoscience and nanotechnology.
Contents

Part One Spin Electronics and Magnetic Sensing Applications 1

1 Introduction on Magnetic Sensing and Spin Electronics 3
 Claude Fermon
 1.1 Magnetic Fields 3
 1.1.1 Introduction 3
 1.1.2 Magnetic Field, Magnetic Induction, and Units 4
 1.1.3 Magnetic Materials 4
 1.1.4 Magnetic Field Created by a Magnet 6
 1.1.5 Magnetic Fields Created by Electrical Currents 6
 1.1.6 Magnetic Thin Films 7
 1.1.6.1 Magnetic Anisotropy 8
 1.1.6.2 Magnetic Domains 8
 1.2 Magnetic Field Sensing 9
 1.2.1 Magnetic Sensors for DC and Low-Frequency Applications 9
 1.2.2 Magnetic Sensors for High-Frequency Applications 11
 1.2.3 Very Sensitive Magnetic Sensors 11
 1.3 Introduction to Spin Electronics 12
 1.3.1 Bases 12
 1.3.1.1 Spin Polarization 12
 1.3.1.2 Spin Diffusion Length 12
 1.3.1.3 Spin Currents and Spin Hall Effects 12
 1.4 Main Applications of Spin Electronics 13
 1.4.1 GMR and TMR Sensors 13
 1.4.1.1 Principle 13
 1.4.1.2 Spin Valve Devices 13
 1.4.1.3 Electric Response 14
 1.4.2 Spin Electronics Devices for Storage, MRAM, and Magnetic Logics 16
 1.4.3 Spin Dynamics and Magnonics 16
 References 17
2 Spin Electronics for Biomagnetism and Nuclear Magnetic Resonance 19
Myriam Pannetier Lecoeur, Reina Ayde, and Claude Fermon
 2.1 Introduction 19
 2.2 Biomagnetic Signals Detection with Spin Electronics Sensors 19
 2.2.1 Biomagnetism 19
 2.2.2 Sensors for Biomagnetism at Large Scale 21
 2.2.2.1 SQUIDs and Atomic Magnetometers 21
 2.2.2.2 Mixed Sensors 22
 2.2.2.3 MCG Recordings with Mixed Sensors 22
 2.2.3 Sensors for Biomagnetism at Local Scale 23
 2.2.3.1 Specificities and State of the Art 23
 2.2.3.2 Magnetrodes 24
 2.3 Nuclear Magnetic Resonance 24
 2.3.1 Introduction to NMR 25
 2.3.1.1 Spin Manipulation 28
 2.3.1.2 Magnetic Resonance Imaging 29
 2.3.2 Low-Field MRI 29
 2.3.3 Local NMR Spectroscopy 32
 2.4 Conclusion and Perspectives 35
 References 35

3 Large-Volume Applications of Spin Electronics-Based Sensors 37
Paolo Campiglio and Claude Fermon
 3.1 Introduction 37
 3.2 General Concepts 38
 3.2.1 GMR or TMR Spin Valves? 38
 3.2.1.1 Sensitivity and Detectivity 39
 3.2.1.2 Resistance and Design Constraints 39
 3.2.1.3 ESD Sensitivity and CMOS Integration 39
 3.2.1.4 Hysteresis, Field, and Temperature Stability 40
 3.2.2 Electronics 41
 3.3 Read Heads 42
 3.4 Current Sensors 43
 3.4.1 Principle 43
 3.4.2 Low-Current Integrated Sensors 44
 3.4.3 High-Current Sensors 45
 3.5 Angle and Compass Sensors 45
 3.5.1 Principle of 2D and 3D Measurements 46
 3.5.2 Angle Sensors: The Saturated Configuration 47
 3.5.3 Compass: The Linear Configuration 48
 3.6 Speed Sensors 49
 3.6.1 General Principle 49
 3.6.2 Rotating Magnets 50
 3.6.3 Rotating Ferrous Targets 51
3.7 Switches and Position Sensors 52
3.7.1 Switches 52
3.7.2 Linear Position Sensors 52
3.8 Conclusion and Perspectives 53
References 53

4 Magnetic Random Access Memories 55
Sebastien Bandiera and Bernard Dieny
4.1 Introduction 55
4.2 MRAM General Principles 56
4.3 Field-induced Switching MRAM 58
4.3.1 Stoner–Wohlfarth MRAM 58
4.3.2 Toggle MRAM 59
4.3.3 Thermally Assisted MRAM 60
4.4 Spin Transfer Torque Switching MRAM 62
4.4.1 In-plane Magnetized STT MRAM 63
4.4.2 Out-of-plane Magnetized STT-MRAM 65
4.5 Emerging MRAM Technologies 68
4.5.1 Thermally Induced Anisotropy Reorientation-Assisted Switching 68
4.5.2 Electric Field-Assisted Switching 70
4.5.3 Three Terminal Devices 73
4.6 Conclusions 76
Acknowledgment 77
References 77

5 Spin Electronics for Non Destructive Testing 81
Matthias Pelkner and Marc Kreutzbruck
5.1 Introduction 81
5.2 Basic Concepts of Electromagnetic Testing Methods 82
5.2.1 Magnetic Flux Leakage Testing and Magnetic Particle Inspection 82
5.2.2 Eddy Current Testing 84
5.2.3 Magnetic Field Sensors in NDT 86
5.3 GMR in MFL Testing 86
5.3.1 Adapted GMR Sensor Arrays 87
5.3.2 Automated Testing of Roller Bearings 89
5.4 MR and Eddy Current Testing 94
5.4.1 Emitter Design Study for Surface-Breaking Defects 95
5.5 Concluding Remarks 99
Acknowledgment 100
References 100

6 Diamond Spin Sensors: A New Way to Probe Nanomagnetism 103
Jean-Philippe Tetienne, Liam P. McGuinness, and Vincent Jacques
6.1 Introduction 103
6.2 Magnetic Sensing with Nitrogen Vacancy Defects in Diamond 104
6.2.1 Physics of the NV Defect in Diamond 105
6.2.1.1 Optical Properties 105
6.2.1.2 Optically Detected Magnetic Resonance 105
6.2.1.3 Magnetometry 106
6.2.2 Magnetic Sensing Methods 106
6.2.2.1 ODMR Spectroscopy 106
6.2.2.2 Spin Phase Sensing 107
6.2.2.3 Spin Relaxometry 108
6.3 Experimental Implementations for Sensing and Imaging 109
6.3.1 With a Scanning NV Defect 109
6.3.2 With a Stationary NV Defect 110
6.3.3 Wide-field Imaging of an NV Ensemble 112
6.3.4 Challenges and Further Improvements 113
6.3.4.1 Stand-off Distance 113
6.3.4.2 Sensor Readout 114
6.3.4.3 Diamond Material 114
6.4 Applications 115
6.4.1 Imaging Spin Textures in Ultrathin Ferromagnets 115
6.4.2 Single-Molecule Imaging and Nano-MRI 120
6.5 Conclusions 124
References 124

Part Two Magnetic Nanoparticles 127

7 Introduction to Magnetic Nanoparticles 129
 Claude Fermon
7.1 Introduction 129
7.2 Main Properties of Magnetic Nanoparticles 129
7.2.1 Composition and Size 129
7.2.2 Main Magnetic Properties 130
7.3 Synthesis of Magnetic Nanoparticles 132
7.3.1 Toxicity 132
7.4 Main Classes of Applications of Magnetic Nanoparticles 132
7.4.1 Contrast Agents for MRI 132
7.4.2 Labeled Nanoparticles for Cell Manipulation and Counting 133
7.4.3 Hyperthermia for Cancer Treatment 134
7.4.4 Ferrofluids 134
7.4.5 Magnetic Particle Imaging 135
7.5 Conclusions and Perspectives 135
References 136

8 Use of Magnetic Nanoparticles in Biomedical Applications 137
 Frank Wiekhorst and Lutz Trahms
8.1 Introduction 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>The Physics of Magnetic Nanoparticles Used in Biomedical Applications</td>
<td>138</td>
</tr>
<tr>
<td>8.3</td>
<td>Applied Nanotechnology: Biomedical Applications of MNP</td>
<td>142</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Therapeutic Applications</td>
<td>142</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Diagnostic Applications</td>
<td>144</td>
</tr>
<tr>
<td>8.4</td>
<td>Preparation of Magnetic Nanoparticles for Biomedical Applications</td>
<td>145</td>
</tr>
<tr>
<td>8.5</td>
<td>MNP Imaging in Biomedicine</td>
<td>147</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Magnetorelaxometry</td>
<td>147</td>
</tr>
<tr>
<td>8.5.1.1</td>
<td>Signal Generation in Magnetorelaxometry</td>
<td>147</td>
</tr>
<tr>
<td>8.5.1.2</td>
<td>Analytical MRX</td>
<td>150</td>
</tr>
<tr>
<td>8.5.1.3</td>
<td>MRX Imaging</td>
<td>151</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Magnetic Particle Spectroscopy and Magnetic Particle Imaging</td>
<td>155</td>
</tr>
<tr>
<td>8.5.2.1</td>
<td>Magnetic Particle Spectroscopy</td>
<td>155</td>
</tr>
<tr>
<td>8.5.2.2</td>
<td>MPI as an Alternative Approach to Determine MNP Distributions</td>
<td>156</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary and Conclusions</td>
<td>158</td>
</tr>
</tbody>
</table>

9 Spintronic Biochips: From the Laboratory to Pre-Clinical Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>9.2</td>
<td>Static Multiplexed Biosensors</td>
<td>166</td>
</tr>
<tr>
<td>9.2.1</td>
<td>State of the Art</td>
<td>166</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Sensor Architecture and System Integration</td>
<td>173</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Biochip Functionalization</td>
<td>175</td>
</tr>
<tr>
<td>9.2.4</td>
<td>The Spintronic DNA Chip</td>
<td>178</td>
</tr>
<tr>
<td>9.2.4.1</td>
<td>Detecting Pathogenic DNA in Biological Samples</td>
<td>178</td>
</tr>
<tr>
<td>9.2.4.2</td>
<td>Sample Preparation: Nucleic Acid Purification Using Magnetic Particles</td>
<td>179</td>
</tr>
<tr>
<td>9.2.5</td>
<td>The Spintronic Protein Chip: Detection of Biomarkers for Ischemic Stroke</td>
<td>182</td>
</tr>
<tr>
<td>9.2.5.1</td>
<td>Detecting Protein Biomarkers (MMP9)</td>
<td>182</td>
</tr>
<tr>
<td>9.2.5.2</td>
<td>Protocol Description</td>
<td>184</td>
</tr>
<tr>
<td>9.3</td>
<td>Magnetoresistive Cytometers and the Detection of Rare Cells in Blood/Serum</td>
<td>185</td>
</tr>
<tr>
<td>9.3.1</td>
<td>State of the Art</td>
<td>185</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Sensor Architecture and System Integration</td>
<td>188</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Magnetic Bead Functionalization</td>
<td>190</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Detection of SW480 Cells in PBS</td>
<td>191</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Detection of CTCs in Serum</td>
<td>192</td>
</tr>
<tr>
<td>9.4</td>
<td>Lateral Flow Magnetoresistive Biochips</td>
<td>193</td>
</tr>
</tbody>
</table>
Contents

9.5 Conclusions 194
Acknowledgment 194
References 196

Part Three Future Applications 201

10 Promising Prospects for Chiral Domain Walls and Magnetic Skyrmions as a New Way to Manipulate and Store Information 203
Stefania Pizinni and Vincent Cros

10.1 Introduction 203
10.2 Origin and Consequences of an Antisymmetric Exchange Interaction 204
10.2.1 From Antisymmetric Exchange Interaction to Chiral Magnetic Textures 205
10.2.2 First Observations of Chiral Magnetic States in Magnetic Thin Films 208
10.2.3 Chiral Interaction and Skyrmion Lattices 209
10.3 Chiral Néel Walls in Systems with Perpendicular Magnetic Anisotropy and Dzyaloshinskii–Moriya Interaction 211
10.3.1 Dynamics of Chiral Magnetic Domain Wall 213
10.3.2 DW Dynamics as a Probe of the Strength of the DM Interaction 216
10.3.3 Internal Spin Texture of Chiral Domain Walls 218
10.4 Magnetic Skyrmions in Noncrystalline Materials for Stabilization at Room Temperature 221
10.4.1 Room-Temperature Observation of Skyrmions Stabilized by Interfacial Chiral Interaction 222
10.4.2 Creation and Displacement of Skyrmionic Bubbles through Spin Torque 226
10.5 New Device Concepts Based on Chiral Magnetic Objects 228
10.5.1 Chiral Domain Wall-Based Racetrack Memory 229
10.5.2 Skyrmion-Based Racetrack: Advantages Over DW 230
10.5.3 Skyrmion-Based Multilevel MTJs 231
10.5.4 Skyrmion-Based High-Frequency Oscillators 231
10.5.5 Skyrmion Spin Logic Devices 234
10.6 Conclusions and Perspectives 235
Acknowledgments 236
References 236

11 Nanomagnetic Devices 239
Rolf Allenspach

11.1 Introduction 239
11.2 Memory and Storage-Class Memory 240
11.2.1 MRAM 240
11.2.2 Racetrack Shift Register 243
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.3</td>
<td>Ratchet Shift Register</td>
<td>245</td>
</tr>
<tr>
<td>11.3</td>
<td>Logic Devices</td>
<td>247</td>
</tr>
<tr>
<td>11.3.1</td>
<td>The Requirements of Digital Logic</td>
<td>247</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Nanomagnet Logic</td>
<td>248</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Domain-Wall Logic</td>
<td>252</td>
</tr>
<tr>
<td>11.3.4</td>
<td>All-Spin Devices</td>
<td>253</td>
</tr>
<tr>
<td>11.3.4.1</td>
<td>A Spin Transfer Torque Domain-Wall Device</td>
<td>254</td>
</tr>
<tr>
<td>11.3.4.2</td>
<td>All-Spin Logic</td>
<td>256</td>
</tr>
<tr>
<td>11.3.4.3</td>
<td>Spin-Wave Devices</td>
<td>258</td>
</tr>
<tr>
<td>11.4</td>
<td>Concluding Remarks</td>
<td>261</td>
</tr>
</tbody>
</table>

References 262

12 Microwave Nanomagnetism: Spin Torque Oscillators and Magnonics 269

Grégoire de Loubens and Matthieu Bailleul

12.1 Introduction 269

12.2 Basics of Magnetization Dynamics 269

12.3 Spin Torque Oscillators 272

12.3.1 Basics of Spin Torque Oscillators 272

12.3.1.1 Working Principles 272

12.3.1.2 Microwave Characteristics 275

12.3.2 Frequency Generation and Signal Processing 276

12.3.3 Frequency Detection 278

12.3.4 Magnetic Recording 279

12.3.5 Advanced Concepts 280

12.4 Magnonics 282

12.4.1 Spin-Wave Basics 282

12.4.2 Control of Spin-Wave Propagation 284

12.4.3 Magnonic Crystals 285

12.4.4 Spin Waves and Spintronics 287

12.4.5 Applications of Magnonics 288

12.5 Conclusions 290

References 291

13 Applications of Magnetic Oxides Thin Films and Nanostructures 297

Aurélie Solignac, Thomas Maroutian, and Philippe Lecoeur

13.1 Introduction 297

13.2 Magnetism of Oxides: Theory 299

13.2.1 Magnetic Order 299

13.2.2 Localized Ferromagnetism 300

13.2.3 Itinerant Ferromagnetism 301

13.2.4 Strongly Electron-Correlated Systems 302

13.2.5 Other Couplings due to Environment 304

13.2.5.1 Crystalline Field 304

13.2.5.2 Spin–Orbit Coupling 305
Contents

13.3 Interest in Oxides: Strong Coupling Between Properties 307
 13.3.1 Transport and Magnetism 307
 13.3.2 Ferroelectricity and Magnetism 311
 13.3.2.1 Strain Effect 312
 13.3.2.2 Electrostatic Effect 312
 13.3.2.3 Interfacial Effect (Tunnel Electroresistance and Exchange Bias) 313
 13.4 Conclusions 314
 References 314

Index 319
Part One
Spin Electronics and Magnetic Sensing Applications
1
Introduction on Magnetic Sensing and Spin Electronics

Claude Fermon

DRF/IRAMIS/SPEC/LNO, CEA CNRS Paris Saclay, 91191 Gif sur Yvette Cedex, France

This introductory chapter provides the basic knowledge of magnetism and spin electronics, which will help the reader to understand the contents of the book. Then, after a brief introduction to magnetic fields, some bases of magnetic sensing and spin electronics are proposed. The last part of the chapter provides definitions that are useful for understanding spin electronics applications. More in-depth information can be found [1,2]. A number of books have been published on nanomagnetism [3], spin electronics [4,5], GMR [6], and spin dynamics [7], where each particular topic is discussed in detail.

1.1
Magnetic Fields

1.1.1
Introduction

Magnetism and magnetic field are known since thousands of years. First magnetic sensors were compass made of magnetite stones in China during the Han dynasty rule and later used by sailors to navigate. Today, magnetic objects, such as fridge magnets, are used as ornaments or for health purposes. In parallel, electricity is associated with electrons flowing in conductors and its use in domestic applications. Rotating magnetic fields seen by a coil is today the major source of electricity and, inversely, current in a coil produces magnetic fields like in MRI devices. The fundamental reason is that both are, in fact, identical depending on the reference frame taken. This has been highlighted by the well-known Maxwell equations that link electric fields and magnetic fields, one being the derivative of the other.

In parallel to the enormous importance of electricity in our life, electromagnetism has a fundamental property that justifies the billions of magnetic sensors and antennas produced each year: it is the only long-range interaction that we can create, modify, and detect. This long-range interaction property takes
various forms. Light is an electromagnetic wave. Radiofrequency transmissions used for radio, TV, or mobiles are electromagnetic waves at lower frequencies. Static or low-frequency magnetic fields are the extremely low or zero frequency aspect of the same interaction.

1.1.2
Magnetic Field, Magnetic Induction, and Units

Historically, the magnetic field has been described by two different quantities. The first one is the field created by a magnet that has been called \(\vec{B} \), the magnetic field intensity. The second one is the field created by a current that has been called \(\vec{H} \), the magnetic induction.

It took some time to reconcile the two quantities that are proportional in the vacuum.

Magnetic field intensity \(H \) is given in A/m or in Oersted and magnetic field induction is given in Tesla or in Gauss. They are related by the following relation:

\[
\vec{B} = \mu_0 (\vec{H} + \vec{M}),
\]

where \(\vec{M} \) is the magnetization of the material at the point where the field is measured. In the presence of vacuum or in nonmagnetic materials that quantity is 0. \(\mu_0 \) is a constant equal to \(4\pi \times 10^{-7} \).

\(\text{A/m} \) is not a very useful quantity for a common comparison, and now nearly everybody is using Tesla or Gauss as a unit both for magnetic field intensity and induction. In this book, we will follow the same use knowing that this is just a commodity.

The relationship between these quantities is given in Table 1.1.

1.1.3
Magnetic Materials

Materials present various states of magnetism and they are classified into three main classes: diamagnetic materials, paramagnetic materials, and ordered

<table>
<thead>
<tr>
<th>Table 1.1 Main fields units.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Magnetic field intensity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Magnetic field induction</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
magnetic materials. The first one, diamagnetic materials, corresponds to the large majority of materials. These materials present a very weak magnetization that is proportional and opposite of the applied magnetic field. This magnetization is due to the reaction of electrons. Their magnetization is then simply:

\[
\vec{M} = \chi \vec{H},
\]

where the magnetic susceptibility \(\chi\) is negative of the order of \(10^{-6}\).

Superconducting materials like Niobium at very low temperature are also diamagnetic, but in that case, the susceptibility is nearly equal to \(-1\).

Other materials, called magnetic materials, present an internal magnetization much higher than diamagnetic materials. That magnetization is created by unpaired electrons.

Magnetic materials are disordered at high temperature and become ordered below a critical temperature. When they are disordered, they are called paramagnetic materials and their magnetization can be written as Eq. (1.2) with \(\chi\) positive and relatively large, typically \(10^{-3}\). Magnetic ordered materials are ferromagnetic, antiferromagnetic, or ferromagnetic. Table 1.2 gives a list of the materials you will encounter in this book with their order type and ordering temperature.

Here, we do not consider pure rare earths that exhibit a larger variety of magnetic ordering. Some of them have a different kind of order as function of the temperature.

Table 1.2 Main magnetic materials found in this book.

<table>
<thead>
<tr>
<th>Material</th>
<th>Order</th>
<th>Temperature of ordering (K)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>Ferromagnetic</td>
<td>1388 K</td>
<td>3D metal</td>
</tr>
<tr>
<td>Fe</td>
<td>Ferromagnetic</td>
<td>1043 K</td>
<td>3D metal</td>
</tr>
<tr>
<td>Ni</td>
<td>Ferromagnetic</td>
<td>627 K</td>
<td>3D metal</td>
</tr>
<tr>
<td>Ni79Fe21</td>
<td>Ferromagnetic</td>
<td>553–871</td>
<td>Very soft alloy called micrometal. Ordering temperature depends on crystal structure</td>
</tr>
<tr>
<td>CoFe</td>
<td>Ferromagnetic</td>
<td>1360</td>
<td>Used due to its large spin polarization</td>
</tr>
<tr>
<td>CoFeB</td>
<td>Ferromagnetic</td>
<td>1300</td>
<td>Used due to its large spin polarization and very soft material</td>
</tr>
<tr>
<td>PtMn</td>
<td>Antiferromagnetic</td>
<td>1000 K</td>
<td>Used for spin electronics</td>
</tr>
<tr>
<td>IrMn</td>
<td>Antiferromagnetic</td>
<td>700 K</td>
<td>Unsed for spin electronics</td>
</tr>
<tr>
<td>Fe3O4</td>
<td>Ferrimagnetic</td>
<td>948 K</td>
<td>Called magnetite</td>
</tr>
<tr>
<td>YIG</td>
<td>Ferromagnetic</td>
<td>560 K</td>
<td>Soft magnetic insulator used for its dynamic properties</td>
</tr>
<tr>
<td>Nd2FeB</td>
<td>Ferromagnetic</td>
<td>593–673</td>
<td>Rare earth-based hard magnet</td>
</tr>
<tr>
<td>Co2Sm17</td>
<td>Ferromagnetic</td>
<td>720</td>
<td>Rare earth-based hard magnet</td>
</tr>
</tbody>
</table>
1.1.4 Magnetic Field Created by a Magnet

The magnetic field created by a magnet is the sum of the fields created by the individual components of the material. This principle of superposition is very important and is included in the Maxwell equations. This principle applies for both magnetic materials and fields created by electrical currents. However, in the determination of the field created by a magnetic material, one has to take care of the magnetization induced by the field created by the other parts of the magnetic material or by external currents. This field-induced effect is very important when you have magnetic cores inserted in coils.

The field created by a small magnet having a homogeneous magnetization \vec{m} taken, for example, along z at a large distance from it decreases at $1/r^3$ and has a shape given in Figure 1.1. This shape, called dipolar shape, will appear very often in this book. The formula of this field is as follows:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \cdot \left(\frac{3\vec{r} \cdot (\vec{r} \cdot \vec{m})}{|\vec{r}|^6} - \frac{\vec{m}}{|\vec{r}|^5} \right), \quad (1.3)$$

where \vec{r} is the distance from the small magnet considered as a point (Figure 1.1).

The main features to retain are this rapid decrease, the fact that the field created along \vec{m} has the same direction to \vec{m}, and the field created perpendicular is opposite to it and for the same value of r equal to $\frac{1}{2}$ of the longitudinal field.

1.1.5 Magnetic Fields Created by Electrical Currents

In 1819, Hans Christian Oersted discovered that an electric current is able to generate a magnetic field. One year later, Jean-Baptiste Biot and Félix Savart
wrote the famous Biot–Savart law that gave the magnetic field intensity as function of the current in an elementary element. This law is always used to calculate the field created by an arbitrary conductor. If we consider an element of length \(dl\) with a current \(I\), the field created at a distance \(r\) is given by

\[
\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \cdot \frac{I\mathbf{dl} \times \mathbf{r}}{|\mathbf{r}|^3}.
\] (1.4)

For having in mind an order of magnitude, useful for understanding the various concepts described in this book, we are giving here two simple examples.

The first one is the field created by a long wire, assumed as infinite in its neighborhood (see Figure 1.2). The integration of the formula (1.3) is then

\[
B_0(r) = \frac{\mu_0}{2\pi} \cdot \frac{I}{r}.
\] (1.5)

\(B_0\) is the orthoradial component of the field. The two other components are 0 due to symmetry.

The field created by a circular loop can also be calculated by the (1.3) formula. Along the axis, the field is perpendicular to the coil plane and varies as follows:

\[
B_2(r) = \frac{\mu_0}{2\pi} \cdot \frac{Ia}{\sqrt{a^2 + r^2}}.
\] (1.6)

Outside of the axis, the field has a dipolar shape, similar to the field created by a small magnet.

1.1.6

Magnetic Thin Films

Nearly all devices presently fabricated are composed of thin films deposited on flat surfaces, typically silicon wafers. Industrial tools are now able to deposit these films on surfaces up to 300 mm with accuracy better than 0.1 nm and homogeneity on
the whole surface better than 1 % of the thickness. Properties of these thin films are
in general similar to bulk properties, but thin films may exhibit new features. For
example, some films can be crystallized in a structure impossible to achieve with
bulk materials. The second effect of thin-film geometry is to modify strongly the
magnetic anisotropy of the magnetic materials.
Some films can be crystallized in relation to the wafer underneath, we are
hence speaking about epitaxy. A lot of films are textured, that is, they are par-
tially crystallized with a preferred direction imposed by the thin-film geometry.
Some are nearly amorphous: an assembly of small grains with random direc-
tions. Conditions of deposition (method, temperature, and pressure) and anneal-
ing have a large impact on the final structure.

1.1.6.1 Magnetic Anisotropy
A magnetic material may have preferential axis of magnetization induced either
by the crystalline anisotropy or by its shape. The crystalline anisotropy is due to
the coupling between spin orientation and crystalline electric field. The mini-
imization of the corresponding energy gives in general some preferred orienta-
tion.
That anisotropy may be very strong in crystalline materials. Rare earth-based
materials present usually a very high magnetic anisotropy due to their orbital
shape. It is the reason why the strongest permanent magnets are rare earth
based.
A specific magnetic anisotropy appears also at the surface of the magnetic
material. This is due to the breaking of the crystalline electric field symmetry at
the interface. That anisotropy can be larger than the shape anisotropy and help
to create magnetic thin films with a magnetization perpendicular to the plane.
This is the case of, for example, a thin Co layer on Pt.
The shape anisotropy is simply due to the field created by each individual
atom of the layer to the others. This field, called dipolar field or demagnetizing
field, has a dipolar shape given in Eq. (1.3). This field decreases as $1/r^3$, but as the
number of atoms varies as r^3 its impact at long distance is huge for ferromag-
netic or ferrimagnetic materials. The first main effect of this shape anisotropy is
to force magnetization to be in the plane of the film. This can be counteracted
only by using very thin films having an additional surface anisotropy. The second
effect of this shape anisotropy is to create domains, that is, parts of the films,
where the magnetization has the same direction.

1.1.6.2 Magnetic Domains
Dipolar interactions responsible for the shape anisotropy impose an overall mag-
netic configuration of the thin film that tends to minimize the overall energy. If
the film is infinite, a uniform magnetization is the lowest energy state, but as
soon as lateral dimensions are reduced, it costs dipolar energy to have a magne-
tization perpendicular to the edge more than rotating smoothly the magnetiza-
tion inside the layer. For that reason, patterned objects in thin films acquire
specific magnetic configurations that you will encounter in this book. Figure 1.3
gives examples of some classical shapes you will see with their stable state.
1.2 Magnetic Field Sensing

There is a large variety of magnetic sensors and it would take several books to describe all of them. Here, we are just giving some indications that will help the teacher to find more information. Some sensors such as Hall effect or inductive sensors have been developed since decades and now main innovations for these sensors are mainly coming from the integration of sophisticated electronics able to perform in real-time complicated algorithms. Others, such as NV sensors (Chapter 6), are very promising for specific applications and are at the stage of research and development. We decided to focus a part of this book on magneto-resistive sensors because they illustrate the dynamism of research in magnetism and are reaching large-volume applications that were mainly covered by Hall sensors. Table 1.3 provides some characteristic properties of the main magnetic sensors technologies.

1.2.1 Magnetic Sensors for DC and Low-Frequency Applications

The main sensor used for DC and low-frequency applications is the Hall sensor based on the Hall effect. When a field is applied on a material where a current is flowing, a voltage appears perpendicular to the current direction due to Lorentz force. This voltage is proportional to the field and the applied current through a factor R_H called Hall resistance.

$$V = R_H \cdot H_{\text{perp}} \cdot I.$$ \hspace{1cm} (1.7)

Today, Hall sensors represent 85% of the world production of magnetic sensors for DC and low-frequencies applications with a growth of about 3% per year. The main competitors are magneto-resistive sensors (AMR, GMR, and TMR) described in this book that represent only 10% but are growing at an annual rate of about 10%. Magneto-electric sensors also appear in some commercial products. They present the advantage to be passive, but they cannot be integrated. Fluxgates are mainly used for very sensitive applications such as earth field mapping for field monitoring.
Table 1.3 Main magnetic sensors technologies with some properties.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Scalar/Vectorial</th>
<th>Operating temperature range</th>
<th>Field range</th>
<th>Frequency range</th>
<th>Linearity</th>
<th>Size</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>Vect.</td>
<td>−200 °C/150 °C</td>
<td>1 µT–10 T</td>
<td>DC-1 MHz</td>
<td>Good</td>
<td>µm–mm</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>AMR</td>
<td>Vect.</td>
<td>−275 °C/200 °C</td>
<td>1 nT–1 mT</td>
<td>DC-10 MHz</td>
<td>Limited</td>
<td>µm–mm</td>
<td>Ferromagnet</td>
</tr>
<tr>
<td>Optical</td>
<td>Vect. or scalar</td>
<td>Room temp.</td>
<td>1 fT–1 µT</td>
<td>DC</td>
<td>Requires feedback</td>
<td>mm–cm</td>
<td>Alkali gas</td>
</tr>
<tr>
<td>GMI</td>
<td>Vect.</td>
<td>−50–150 °C</td>
<td>10 pT–0.1 mT</td>
<td>DC-10 kHz</td>
<td>Requires feedback</td>
<td>mm–cm</td>
<td>Soft ferromagnet</td>
</tr>
<tr>
<td>Magnetoelectric</td>
<td>Vect.</td>
<td>−50–150 °C</td>
<td>100 pT–1 mT</td>
<td>DC-1 kHz</td>
<td>Limited</td>
<td>0.1 mm–cm</td>
<td>Composite</td>
</tr>
<tr>
<td>GMR/TMR</td>
<td>Vect.</td>
<td>−273–180 °C</td>
<td>100 pT–10 mT</td>
<td>DC-GHz</td>
<td>Limited</td>
<td>µm</td>
<td>Multilayer</td>
</tr>
<tr>
<td>Coils</td>
<td>Vect.</td>
<td>−273–600 °C</td>
<td>1 fT–10 T</td>
<td>AC</td>
<td>Excellent</td>
<td>0.1 mm–m</td>
<td>Metal</td>
</tr>
<tr>
<td>Search coil</td>
<td>Vect.</td>
<td>−50–200 °C</td>
<td>1 fT–10 mT</td>
<td>AC</td>
<td>Excellent</td>
<td>0.1 mm–1 m</td>
<td>Ferrite core</td>
</tr>
<tr>
<td>Fluxgate</td>
<td>Vect.</td>
<td>−50–200 °C</td>
<td>5 pT–100 µT</td>
<td>DC-5 kHz</td>
<td>Good</td>
<td>0.1 mm–5 cm</td>
<td>Ferrite core</td>
</tr>
<tr>
<td>SQUID</td>
<td>Vect.</td>
<td>−273–200 °C</td>
<td>1 fT–10 µT</td>
<td>DC-100 kHz</td>
<td>Requires feedback</td>
<td>0.1 mm–1 cm</td>
<td>Metallic</td>
</tr>
</tbody>
</table>