Neuroprotective Effects of Phytochemicals in Neurological Disorders
Neuroprotective Effects of Phytochemicals in Neurological Disorders

Edited by Tahira Farooqui and Akhlaq A. Farooqui
Phytochemicals hold a special, elite place in the nutritional landscape.

Joel Fuhrman, MD
Contents

Contributors xi
Preface xlix
Acknowledgments xxiii

1 Use of Phytochemicals against Neuroinflammation 1
Wei-Yi Ong, Tahira Farooqui, Christabel Fung-Yih Ho, Yee-Kong Ng, and Akhlaq A. Farooqui

2 Flavonoids in Transgenic Alzheimer’s Disease Mouse Models: Current Insights and Future Perspectives 43
Angélica Maria Sabogal-Guáqueta, Edison Osorio, and Gloria Patricia Cardona-Gómez

3 Neuroprotective Effects of Polyphenols in Aging and Age-Related Neurological Disorders 65
Giulia Corona and David Vauzour

4 Indian Herbs and their Therapeutic Potential against Alzheimer’s Disease and Other Neurological Disorders 79
Navrattan Kaur, Bibekananda Sarkar, Iqbal Gill, Sukhchain Kaur, Sunil Mittal, Monisha Dhiman, Prasad R. Padala, Regino Perez-Polo, and Anil K. Mantha

5 Garlic and its Effects in Neurological Disorders 113
Akhlaq A. Farooqui and Tahira Farooqui

6 Effects of Extra-Virgin Olive Oil in Neurological Disorders 133
Akhlaq A. Farooqui and Tahira Farooqui

7 Ginger Components as Anti-Alzheimer Drugs: Focus on Drug Design 149
Faizul Azam

8 Phytomedicine: A Possible Tool for Alzheimer’s Disease Therapeutics 167
Jai Malik

9 Effects of Phytochemicals on Diabetic Retinoneuropathy 199
Mohammad Shamsul Ola, Mohd Imtiaz Nawaz, and Abdullah S. Alhomida
10 Herbal Drugs: A New Hope for Huntington's Disease 213
Jai Malik

11 Neuroprotective Properties of Dietary Polyphenols in Parkinson’s Disease 243
Altaf S. Darvesh, McKenna McClure, Prabodh Sadana, Chris Paxos, Werner J. Geldenhuys, Joshua D. Lambert, Tariq M. Haqqi, and Jason R. Richardson

12 Potential of Polyphenols in the Treatment of Major Depression: Focus on Molecular Aspects 265
Ashish Dhir

13 Effect of Phytochemicals on Diabetes-Related Neurological Disorders 283
Abubakar Mohammed, Kanti Bhooshan Pandey, and Syed Ibrahim Rizvi

14 Neuroprotective Effects of Extra-Virgin Olive Oil and its Components in Alzheimer’s Disease 299
Alaa H. Abuznait, Hisham Qosa, Loqman A. Mohamed, Yazan S. Batarseh, and Amal Kaddoumi

15 Protective Role of Black-Tea Extract in a Transgenic Drosophila Model of Parkinson’s Disease 317
Yasir Hasan Siddique

16 Apitherapy: Therapeutic Effects of Propolis on Neurological Disorders 335
Tahira Farooqui and Akhlaq A. Farooqui

17 Molecular Mechanisms behind the Beneficial Activity of Polyunsaturated Fatty Acids in Alzheimer’s Disease and Related Conditions 359
Undurti N. Das

18 Prevention of Neuroinflammation by Resveratrol: Focus on Experimental Models and Molecular Mechanisms 377
Justine Renaud and Maria-Grazia Martinoli

19 Modulation of the Estradiol and Neprilysin Pathways by Resveratrol in a Lipopolysaccharide Model of Cognitive Impairment 395
Nesrine S. El Sayed

20 Neuroprotective Effect of Resveratrol in Cerebral Ischemia 407
Nilanjan Ghosh, Rituparna Ghosh, Subhash C. Mandal, and Mahadeb Pal

21 Effects of Nobiletin in Animal Models of Cognitive Impairment: Current Insights and Future Perspectives 421
Akira Nakajima, Yasushi Ohizumi, and Kiyofumi Yamada

22 Potential Neuroprotective Effects of Curcumin against Dementia 435
Natascia Brondino, Laura Fusar-Poli, Cristina Panisi, and Pierluigi Politi
23 Neuroprotective Activity of Curcumin and Emblica officinalis Extract against Carbofuran-Induced Neurotoxicity in Wistar Rats 447
Ramadasan Kuttan and P.P. Binitha

24 Potential Use of Curcuminoids for the Treatment of Alzheimer’s Disease 463
Touqeer Ahmed, Sana Javed, Ameema Tariq, and Anwarul-Hassan Gilani

25 Prevention by Curcumin of Neuroinflammation in Intracerebral Hemorrhage 489
Yujie Chen and Hua Feng

26 Effect of Polyphenols on Protein Misfolding 501
Rona Banerjee

27 Molecular Mechanisms Involved in the Neuroprotective Action of Phytochemicals 515
Aditya Sunkaria, Aarti Yadav, Sunil Kumar Sharma, and Rajat Sandhir

28 Nutraceuticals and Cognitive Dysfunction: Focus on Alzheimer’s Disease 561
Virginia Boccardi, Clara Tinarelli, and Patrizia Mecocci

29 Summary and Perspective 581
Tahira Farooqui and Akhlaq A. Farooqui

Index 595
Contributors

Alaa H. Abuznait
Department of Basic Pharmaceutical Sciences
School of Pharmacy
University of Louisiana at Monroe
Monroe, LA
USA

Touqeer Ahmed
Atta-ur-Rahman School of Applied Biosciences
National University of Sciences and Technology
Islamabad
Pakistan

Abdullah S. Alhomida
Department of Biochemistry
College of Science
King Saud University
Riyadh
KSA

Faizul Azam
Faculty of Pharmacy
Misurata University
Misurata
Libya

Rona Banerjee
Indian Institute of Technology
Roorkee
India

Yazan S. Batarseh
Department of Basic Pharmaceutical Sciences
School of Pharmacy
University of Louisiana at Monroe
Monroe, LA
USA

P.P. Binitha
Amala Cancer research Centre
Amala Nagar Thrissur
Kerala
India

Virginia Boccardi
Institute of Gerontology and Geriatrics
Department of Medicine
University of Perugia
Perugia
Italy

Natascia Brondino
Department of Brain and Behavioral Sciences
University of Pavia
Pavia
Italy

Gloria Patricia Cardona-Gómez
Cellular and Molecular Neurobiology Area
Neuroscience Group of Antioquia
School of Medicine
SIU
University of Antioquia
Medellín
Colombia
Yujie Chen
Department of Neurosurgery
Southwest Hospital
Third Military Medical University
Chongqing
China

Giulia Corona
Health Sciences Research Centre
University of Roehampton
London
UK

Undurti N. Das
UND Life Sciences
Federal Way, WA
USA

Altaf S. Darvesh
Department of Pharmaceutical Sciences
College of Pharmacy
Neurodegenerative Diseases and Aging Focus Group
and
Department of Psychiatry
College of Medicine
Northeast Ohio Medical University
Rootstown, OH
USA

Monisha Dhiman
Centre for Biochemistry and Microbial Sciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda
India

Ashish Dhir
Department of Neurology
School of Medicine
University of California Davis
Sacramento, CA
USA

Nesrine S. El Sayed
Department of Pharmacology and Toxicology
Faculty of Pharmacy
Cairo University
and
Department of Pharmacology and Toxicology
Faculty of Pharmacy and Biotechnology
German University in Cairo
Cairo
Egypt

Akhalq A. Farooqui
Department of Molecular and Cellular Biochemistry
Ohio State University
Columbus, OH
USA

Tahira Farooqui
Department of Entomology
Ohio State University
Columbus, OH
USA

Hua Feng
Department of Neurosurgery
Southwest Hospital
Third Military Medical University
Chongqing
China

Laura Fusar-Poli
Department of Brain and Behavioral Sciences
University of Pavia
Pavia
Italy

Werner J. Geldenhuys
Department of Pharmaceutical Sciences
School of Pharmacy
Robert C. Byrd Health Sciences Center
West Virginia University
Morgantown, WV
USA
Anwarul-Hassan Gilani
Natural Products Research Unit
Department of Biological and Biomedical Sciences
The Aga Khan University Medical College
Karachi
and
Pakistan Council for Science and Technology
Islamabad
Pakistan

Iqbal Gill
Centre for Animal Sciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda
India

Tariq M. Haqqi
Department of Anatomy & Neurobiology
College of Medicine
Northeast Ohio Medical University
Rootstown, OH
USA

Christabel Fung-Yih Ho
Department of Anatomy
National University of Singapore
Singapore

Sana Javed
Atta-ur-Rahman School of Applied Biosciences
National University of Sciences and Technology
Islamabad
Pakistan

Amal Kaddoumi
Department of Basic Pharmaceutical Sciences
School of Pharmacy
University of Louisiana at Monroe
Monroe, LA
USA

Navrattan Kaur
Centre for Animal Sciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda
India

Sukhchain Kaur
Centre for Biochemistry and Microbial Sciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda
India

Ramadasan Kuttan
Amala Cancer research Centre
Amala Nagar Thrissur
Kerala
India

Joshua D. Lambert
Department of Food Science
College of Agricultural Sciences
The Pennsylvania State University
University Park, PA
USA

Jai Malik
University Institute of Pharmaceutical Sciences
UGC Centre of Advanced Study
Panjab University
Chandigarh
India

Anil K. Mantha
Centre for Animal Sciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda
India
Maria-Grazia Martinoli
Department of Medical Biology and Cellular Signalling Research Group
University of Quebec
Trois-Rivières, QC
and
Department of Psychiatry and Neuroscience
Laval University and CHU Research Center
Quebec City, QC
Canada

McKenna McClure
Department of Pharmaceutical Sciences
College of Pharmacy
Neurodegenerative Diseases and Aging Focus Group
Northeast Ohio Medical University
Rootstown, OH
USA

Patrizia Mecocci
Institute of Gerontology and Geriatrics
Department of Medicine
University of Perugia
Perugia
Italy

Sunil Mittal
Centre for Environmental Science and Technology
School of Environment and Earth Sciences
Central University of Punjab
Bathinda
India

Loqman A. Mohamed
Department of Basic Pharmaceutical Sciences
School of Pharmacy
University of Louisiana at Monroe
Monroe, LA
USA

Abubakar Mohammed
Department of Biochemistry
University of Allahabad
Allahabad
India

Akira Nakajima
Department of Neuropsychopharmacology and Hospital Pharmacy
Graduate School of Medicine
Nagoya University
Showa-ku, Nagoya
Japan

Mohd Imtiaz Nawaz
Department of Molecular and Translational Medicine
University of Brescia
Brescia
Italy

Yee-Kong Ng
Department of Anatomy
National University of Singapore
Singapore

Nilanjan Ghosh
Dr. B.C. Roy College of Pharmacy and Allied Health Sciences
Durgapur
India

Yasushi Ohizumi
Department of Medical Biochemistry
School of Pharmaceutical Sciences
University of Shizuoka
Suruga-ku, Shizuoka
and
Kansei Fukushi Research Institute
Tohoku Fukushi University
Sendai
Japan

Mohammad Shamsul Ola
Department of Biochemistry
College of Science
King Saud University
Riyadh
KSA
Wei-Yi Ong
Department of Anatomy and Neurobiology and Ageing Research Programme
National University of Singapore
Singapore

Edison Osorio
Bioactive Substances Research Group Faculty of Pharmaceutical and Food Science
University of Antioquia Medellín Colombia

Prasad R. Padala
Geriatric Research, Education and Clinical Center Central Arkansas Veterans Healthcare System Little Rock, AR USA and Donald W. Reynolds Department of Geriatrics and Department of Psychiatry University of Arkansas for Medical Sciences Little Rock, AR USA

Mahadeb Pal
Division of Molecular Medicine Bose Institute Kolkata India

Kanti Bhooshan Pandey
Marine Biotechnology and Ecology Division CSIR – Central Salt & Marine Chemicals Research Institute Bhavnagar India

Cristina Panisi
Department of Brain and Behavioral Sciences University of Pavia Pavia Italy

Chris Paxos
Department of Psychiatry College of Medicine and Department of Pharmacy Practice College of Pharmacy Northeast Ohio Medical University Rootstown, OH USA

Regino Perez-Polo
Department of Biochemistry and Molecular Biology University of Texas Medical Branch Galveston, TX USA

Pierluigi Politi
Department of Brain and Behavioral Sciences University of Pavia Pavia Italy

Hisham Qosa
Department of Basic Pharmaceutical Sciences School of Pharmacy University of Louisiana at Monroe Monroe, LA USA

Justine Renaud
Department of Medical Biology and Cellular Signalling Research Group University of Quebec Trois-Rivières, QC Canada
Jason R. Richardson
Department of Pharmaceutical Sciences
College of Pharmacy
Neurodegenerative Diseases and Aging Focus Group
Northeast Ohio Medical University
Rootstown, OH
USA

Bibekananda Sarkar
Centre for Animal Sciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda
India

Rituparna Ghosh
Dr. B.C. Roy College of Pharmacy and Allied Health Sciences
Durgapur
India

Sunil Kumar Sharma
Department of Biochemistry
Panjab University
Chandigarh
India

Syed Ibrahim Rizvi
Department of Biochemistry
University of Allahabad
Allahabad
India

Yasir Hasan Siddique
Drosophila Transgenic Laboratory
Section of Genetics
Department of Zoology
Faculty of Life Sciences
Aligarh Muslim University
Aligarh
India

Angélica Maria Sabogal-Guáqueta
Cellular and Molecular Neurobiology Area
Neuroscience Group of Antioquia
School of Medicine
SIU
University of Antioquia
Medellín
Colombia

Subhash C. Mandal
Pharmacognosy and Phytotherapy Laboratory
Division of Pharmacognosy
Department of Pharmaceutical Technology
Jadavpur University
Kolkata
India

Prabodh Sadana
Department of Pharmaceutical Sciences
College of Pharmacy
Neurodegenerative Diseases and Aging Focus Group
Northeast Ohio Medical University
Rootstown, OH
USA

Aditya Sunkaria
Department of Biochemistry
Panjab University
Chandigarh
India

Rajat Sandhir
Department of Biochemistry
Panjab University
Chandigarh
India

Ameema Tariq
Atta-ur-Rahman School of Applied Biosciences
National University of Sciences and Technology
Islamabad
Pakistan
Clara Tinarelli
Institute of Gerontology and Geriatrics
Department of Medicine
University of Perugia
Perugia
Italy

David Vauzour
Norwich Medical School
Faculty of Medicine and Health Sciences
University of East Anglia
Norwich
UK

Aarti Yadav
Department of Biochemistry
Panjab University
Chandigarh
India

Kiyofumi Yamada
Department of Neuropsychopharmacology and Hospital Pharmacy
Graduate School of Medicine
Nagoya University
Showa-ku, Nagoya
Japan
The medicinal properties and health benefits of plant products (seeds, fruits, leaves, stems, and roots) are attributed to their non-nutritive bioactive components, known as “phytochemicals,” which are classified into primary and secondary metabolites. Primary metabolites (carbohydrates, lipids, amino acids, and proteins) are necessary for the growth and basic metabolism of all plants. Secondary metabolites (phytochemicals), on the other hand, are not essential, but they provide vegetables, fruits, and herbs with their flavor and color. They not only play crucial roles in the well being of plants by interacting with their ecosystems, but also protect them from pathogens and absorb ultraviolet (UV), preventing DNA and photosynthetic apparatus damage. Consumption of phytochemicals by animals produces antioxidant, anti-inflammatory, antimicrobial, antitumor, analgesic, neuroprotective, and antiplatelet effects. In addition, they induce antiaging effects and improve poor blood circulation. These effects are mediated through the regulation of various receptors, transcription factors, growth factors, inflammatory cytokines, protein kinases, protein phosphatases, and other enzymes (phospholipases and cyclooxygenases). In brain, receptors, transcription factors, growth factors, and enzymes modulate the signal-transduction pathways critical in controlling synaptic plasticity and inducing neurogenesis in the hippocampus. The ability of many phytochemicals to activate the extracellular signal-regulated kinase (ERK)1/2 and protein kinase B (PKB/Akt) signaling pathways is associated with the activation of the cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), a transcription factor that plays an important role in memory formation. In recent years, the amount of research into phytochemicals has increased all over the world, and new terms such as “functional food” and “nutraceutical” have been introduced. There are several issues related to the use of phytochemicals, including concern about their dosage and activity and about the presence of contaminants.

Epidemiological studies have shown that incidences of neurological disorders among people living in Asia are lower than in the Western world. This may be due to the regular consumption of phytochemicals in the form of spices. Extensive research over the last 10 years has indicated that phytochemicals derived from various spices and oils (turmeric, black pepper, licorice, clove, ginger, garlic, green tea, and olive and flaxseed oils) target inflammatory and oxidative stress pathways and retard or delay the onset of neurological diseases. More than 7000 phytochemicals have been identified, which possess antiproliferative, anti-inflammatory, antioxidant, antiviral, and hypcholesterolemic properties. Unlike vitamins and minerals, phytochemicals are not necessary for...
the maintenance of cell viability, but they play a vital role in protecting neural cells from
the inflammation and oxidative stress associated with normal aging and brain diseases.
Although many phytochemicals present in plant foods are poorly absorbed and undergo
rapid excretion, they exert anti-inflammatory, antioxidant, and anticarcinogenic effects
at realistic doses. Consumption of phytochemicals may also mediate neurohormetic
response through the modulation of adaptive stress-resistance genes, which are responsi-
ble for encoding protein chaperones that favor resistance to cellular stress and modulate
immune function. Thus, regular consumption of phytochemicals from childhood to
adulthood may reduce the risk of age-related neurological disorders.

The chemical structures of phytochemicals are often used as “privileged structures”
for the creation of synthetic analogues, which have improved pharmacological activities
due to their optimized bioavailability and pharmacokinetic profile. Note that most studies
on phytochemicals have been performed in animal models and cell-culture systems,
and it is difficult to evaluate the significance of their effect in humans.

Information on the effects of phytochemicals on human health is scattered throughout
the literature in the form of original papers and reviews, but few edited books. In this
book, we provide the reader with a comprehensive and cutting-edge description of the
metabolism of the molecular mechanism associated with the beneficial effects of
phytochemicals in age-related neurological disorders, in a manner that is useful not
only to students and teachers but also to researchers and physicians. The book has
29 chapters. Chapter 1 provides an introduction to the role of phytochemicals in
protecting against neuroinflammation, which is typically associated with neurodegen-
erative diseases. Chapter 2 deals with the protective role of flavonoids in transgenic
Alzheimer’s disease (AD) mouse models. Chapters 3–15 describe the beneficial effects
of phytochemicals (rich in flavonoids and polyphenols) against neurological disorders
in model systems. Chapter 16 discusses the use of bee products (apitherapy) for the
treatment of neurological disorders. Chapter 17 elegantly describes the mechanisms
underlying the beneficial actions of polyunsaturated fatty acids (PUFAs) in brain diseases.
Chapters 18–20 deal with the anti-inflammatory effects of resveratrol. Chapter 21
focuses on nobiletin, a flavonoid (an O-methylated flavone) that has the ability to rescue
cognitive impairment in animal models. Chapters 22–25 discuss the potential neuro-
protective effects of curcumin against brain diseases. Chapter 26 discusses polyphenols
and protein misfolding. Chapter 27 describes the molecular mechanisms involved in
the neuroprotective action of phytochemicals. Chapter 28 focuses on nutraceuticals
(a food or a part of a food that provides health benefits, including the prevention or
treatment of a disease) and their effect on cognitive dysfunction. Finally, Chapter 29
provides a perspective on the importance of phytochemicals in diet and on the direc-
tion for future research in phytotherapeutics. These topics fall in a fast-paced research
area related to cell death in neurological disorders, which provides opportunities for
target-based therapeutic intervention using phytochemicals. This book can be used as
a supplemental text for a range of phytotherapeutics courses. Clinicians and pharma-
cologists will find it useful in understanding the molecular aspects of phytochemicals in
chronic human diseases.

We have tried to ensure uniformity of presentation, as well as a logical progression of
subject from one topic to another, and our authors have provided extensive bibliogra-
phies. For the sake of simplicity and consistency, a large number of figures showing the
chemical structures of phytochemicals used for the treatment of chronic diseases and
signal-transduction pathways are also included. We hope that our attempt to integrate and consolidate the current knowledge on the molecular aspects of phytochemicals will provide the basis for more dramatic advances and developments in the area of the molecular mechanisms associated with the beneficial effects of phytochemicals in age-related neurological disorders.

Tahira Farooqui
Akhaq A. Farooqui
We thank all the authors who shared their expertise by contributing chapters of a high standard, thus making our editorial task much easier. We are grateful to Justin Jeffryes, Editorial Director at Wiley-Blackwell, Health and Life Sciences, for his advice, cooperation, and understanding during compilation of this book. We are also thankful to Sumathi Elangovan, Project Editor and Jerusha Govindakrishnan, Production Editor at Wiley-Blackwell, for handling the production process in a most efficient and cooperative manner.

Tahira Farooqui

Akhtar A. Farooqui
1

Use of Phytochemicals against Neuroinflammation

Wei-Yi Ong,1,2 Tahira Farooqui,3 Christabel Fung-Yih Ho,1 Yee-Kong Ng,1 and Akhlaq A. Farooqui4

1 Department of Anatomy, National University of Singapore, Singapore
2 Neurobiology and Ageing Research Programme, National University of Singapore, Singapore
3 Department of Entomology, Ohio State University, Columbus, OH, USA
4 Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA

1.1 Introduction

Neuroinflammation and oxidative stress are closely associated with the pathogenesis of neurotraumatic and neurodegenerative diseases, such as stroke and Alzheimer’s disease (AD). During the inflammatory reaction, secretion of proinflammatory cytokines and chemokines amplifies and maintains inflammatory responses. It involves the enzymatic activity of cytosolic phospholipase A2 (cPLA2) and secretory phospholipase A2 (sPLA2), which release arachidonic acid from glycerophospholipids, and of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX), which oxidize arachidonic acid to proinflammatory eicosanoids. This is followed by the formation of the prostaglandin D2 (PGD2) and of docosahexaenoic acid (DHA)-derived resolvins and protectins, which facilitate the resolution of inflammation. Acute neuroinflammation is a protective process that isolates the injured brain tissue from uninjured areas, destroys injured cells, and rebuilds the extracellular matrix. Without it, brain tissue would rapidly be damaged by the effects of injury and infections, including those of microbial, viral, and prion origin. Acute neuroinflammation involves the recruitment of lymphocytes, monocytes, and macrophages of the hematopoietic system and glial cells of the central nervous system (CNS). Microglia are recruited to the site of injury to protect and repair the injured tissue via the secretion of cytokines, chemokines, and lipid mediators such as resolvins and neuroprotectins, while astrocytes react by forming a glial scar. Chronic neuroinflammation, on the other hand, lingers for years, and causes damage to brain tissues. It is closely associated with the activity of microglia and astrocytes and with the assembly and activation of the inflammasome: a multiprotein oligomer consisting of caspase 1, PYCARD, NALP, and sometimes caspase 5 (also known as caspase 11 or ICH-3). Once activated, the inflammasome binds to and appositions together many p45
pro-caspase-1 molecules to induce their autocatalytic cleavage to p20 and p10 subunits. Caspase-1 then assembles into its active form (consisting of two heterodimers with a p20 and p10 subunit each), in order to carry out a variety of processes, including cleavage of pro-interleukin (IL)-1β into IL-1β, cleavage of pro-IL-18 into IL-18 to induce interferon gamma (IFN-γ) secretion, and activation of lipid biosynthesis [1]. Inflammasomes orchestrate the activation of precursors of proinflammatory caspases, which, in turn, cleave precursor forms of IL-1β, IL-18, and IL-33 into their active forms. These lead to further stimulation of PLA2, COX-2, and LOX; generation of eicosanoids, lysophosphatidylcholine (lyso-PtdCho), and platelet-activating factor (PAF); production of reactive oxygen species (ROS), proteinases, and complement proteins; and a potent inflammatory response. Alterations in the expression of inflammasome mediators may lead to neurodegeneration in neurotraumatic, neurodegenerative, and neuropsychiatric diseases. Based on this, it has been suggested that regulation of the inflammasome machinery may be better than suppression of all inflammation for the treatment of inflammatory conditions [1,2].

An emerging approach to the alleviation of neuroinflammation involves the use of medicinal plants and herbs. Epidemiological studies have indicated that the incidence of neurological disorders among people living in Asia is lower than that in the Western world. This may be due to the regular consumption of phytochemicals in the form of spices. Extensive research over the last 10 years has indicated that phytochemicals derived from various spices e.g., turmeric, red pepper, black pepper, licorice, clove, ginger, garlic, coriander, cinnamon, target inflammatory and oxidative stress pathways and retard or delay the onset of neurological diseases. More than 7000 phytochemicals, which possess antiproliferative, anti-inflammatory, antiviral, and hypocholesterolemic properties, have been identified (Figure 1.1). Unlike vitamins and minerals, phytochemicals are not required for the maintenance of cell viability, but play a vital role in protecting neural cells from neuroinflammation and oxidative stress associated with aging and brain diseases. Roots, stems, leaves, fruits, and seeds contain phytochemicals such as terpenoids, phenolic compounds, glucosinolates, betalains, and chlorophylls. Although many phytochemicals in plant foods are poorly absorbed and undergo rapid excretion, they exert anti-inflammatory, antioxidant, and anticarcinogenic effects at realistic doses. The effects of phytochemicals are mediated by their ability to counteract, reduce, and repair damage resulting from oxidative stress and

![Figure 1.1 Effect of phytochemicals on various cellular activities.](image-url)
neuroinflammation – processes that are modulated by the transcription factor, nuclear factor kappa B (NF-κB). Phytochemicals also stimulate the synthesis of adaptive enzymes and proteins that favor resistance to cellular stress [3].

1.2 Mechanism of Action of Phytochemicals

Plants and phytochemicals produce their beneficial effects not only through modulation of enzyme activities and regulation of gene expression, but also via the stimulation of adaptive cellular stress response pathways that protect cells against a variety of adverse conditions. Phytochemicals bind to neuronal cell-membrane or nuclear receptors as elective ligands and have signaling effects at concentrations much lower than is required for effective antioxidant activity [4]. They act on the NF-κB pathway to inhibit inflammation. NF-κB is predominantly localized in the cytoplasm in a complexed form that is inactive, but during oxidative stress it is released from the NF-κB–IκBα complex and migrates to the nucleus, where it initiates the transcription of a number of proinflammatory enzymes, including sPLA2, COX-2, NADPH oxidase and inducible nitric oxide synthase (iNOS), as well as proinflammatory cytokines (tumor necrosis factor alpha (TNF-α), IL-1β, and IL-6). The latter stimulate the activities of PLA2 and sphingomyelinases through a feedback loop involving cytokine-mediated phosphorylation. Other potential mechanisms through which NF-κB induces neuronal death include the induction of death proteins and an aborted attempt to re-enter the cell cycle. Phytochemicals such as curcumin, resveratrol, Ginkgo biloba (GB) retard inflammation by preventing the migration of NF-κB into the nucleus. In addition, many phytochemicals block the activation of NF-κB by inhibiting a protein kinase. In vitro studies indicate that phytochemicals inhibit both serine/threonine protein kinase and protein tyrosine kinase, supporting the view that phytochemicals may inhibit IκB kinase (IKK) in the cytoplasm and nucleus, leading to a reduction in NF-κB activity. Phytochemicals have also been reported to modulate age-related decline in memory by upregulating signaling pathways that control synaptic plasticity. They activate both the extracellular signal-regulated kinase (ERK) 1/2 and protein kinase B (PKB)/Akt signaling pathways and cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), a transcription factor that upregulates the expression of several neurotrophins that facilitate memory formation [5,6].

An important cellular antioxidant response that underlies the action of many phytochemicals is induction of antioxidative and anti-inflammatory enzymes through the cytoplasmic oxidative stress system (nuclear factor erythroid 2-related factor 2 (Nrf2)–kelch-like erythroid Cap’n’Collar homologue-associated protein 1 (Keap1)) (Figure 1.2) [7]. Under physiological conditions, Keap1 keeps the Nrf2 transcription factor in the cytoplasm, allowing it to be ubiquitinated and degraded by proteasomes, thus maintaining Nrf2 at low levels. This prevents Nrf2 from mediating the constitutive expression of its downstream genes. When cells are exposed to oxidative stress, a signal involving phosphorylation and/or redox modification of critical cysteine residues in Keap1 blocks the enzymatic activity of the Keap1–Cul3–Rbx1 E3 ubiquitin ligase complex, leading to a decrease in Nrf2 ubiquitination and degradation. As a result, free Nrf2 translocates into the nucleus, where it – along with other transcription factors (e.g., sMaf, ATF4, JunD, PMF-1) – transactivates the antioxidant response elements (AREs)
Figure 1.2 Hypothetical diagram showing the effects of phytochemicals on signal transduction processes in the brain. AA, arachidonic acid; COX-2, cyclooxygenase 2; cPLA₂, cytosolic phospholipase A₂; HO-1, hemeoxygenase 1; HSP, heat-shock protein; IL-1β, interleukin 1β; IL-6, interleukin 6; iNOS, inducible nitric oxide synthase; Keap1, kelch-like erythroid Cap’n’Collar homologue-associated protein 1; LOX, lipoygenase; lyso-PtdCho, lyso-phosphatidylcholine; NF-κB, nuclear factor kappa B; Nrf2, nuclear factor erythroid 2-related factor 2; PAF, platelet-activating factor; PM, plasma membrane; PtdCho, phosphatidylcholine; QR, quinine oxidoreductase; ROS, reactive oxygen species; SOD, superoxide dismutase; sPLA₂, secretory phospholipase A₂; TNF-α, tumor necrosis factor alpha; γ-GCL, gamma glutamylcystein ligase. (See insert for color representation of the figure.)