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xvii

This book was written to solve a problem. The people who I interview for data 
science jobs have sterling mathematical pedigrees, but most of them are unable 
to write a simple script that computes Fibonacci numbers (in case you aren’t 
familiar with Fibonacci numbers, this takes about five lines of code). On the 
other side, employers tend to view data scientists as either mysterious wizards 
or used‐car salesmen (and when data scientists can’t be trusted to write a basic 
script, the latter impression has some merit!). These problems reflect a funda
mental misunderstanding, by all parties, of what data science is (and isn’t) and 
what skills its practitioners need.

When I first got into data science, I was part of that problem. Years of doing 
academic physics had trained me to solve problems in a way that was long on 
abstract theory but short on common sense or flexibility. Mercifully, I also 
knew how to code (thanks, Google™ internships!), and this let me limp along 
while I picked up the skills and mindsets that actually mattered.

Since leaving academia, I have done data science consulting for companies of 
every stripe. This includes web traffic analysis for tiny start‐ups, manufac
turing optimizations for Fortune 100 giants, and everything in between. The 
problems to solve are always unique, but the skills required to solve them are 
strikingly universal. They are an eclectic mix of computer programming, 
mathematics, and business savvy. They are rarely found together in one per
son, but in truth they can be learned by anybody.

A few interviews I have given stand out in my mind. The candidate was smart 
and knowledgeable, but the interview made it painfully clear that they were 
unprepared for the daily work of a data scientist. What do you do as an inter
viewer when the candidate starts apologizing for wasting your time? We ended 
up filling the hour with a crash course on what they were missing and how they 
could go out and fill the gaps in their knowledge. They went out, learned what 
they needed to, and are now successful data scientists.

I wrote this book in an attempt to help people like that out, by condensing 
data science’s various skill sets into a single, coherent volume. It is hands‐on 
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and to the point: ideal for somebody who needs to come up to speed quickly or 
solve a problem on a tight deadline. The educational system has not yet caught 
up to the demands of this new and exciting field, and my hope is that this book 
will help you bridge the gap.

Field Cady
September 2016

Redmond, Washington
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1

“Data science” is a very popular term these days, and it gets applied to so many 
things that its meaning has become very vague. So I’d like to start this book by 
giving you the definition that I use. I’ve found that this one gets right to the 
heart of what sets it apart from other disciplines. Here goes:

Data science means doing analytics work that, for one reason or another, 
requires a substantial amount of software engineering skills.

Sometimes, the final deliverable is the kind of thing a statistician or business 
analyst might provide, but achieving that goal demands software skills that 
your typical analyst simply doesn’t have. For example, a dataset might be so 
large that you need to use distributed computing to analyze it or so convoluted 
in its format that many lines of code are required to parse it. In many cases, 
data scientists also have to write big chunks of production software that imple-
ment their analytics ideas in real time. In practice, there are usually other dif-
ferences as well. For example, data scientists usually have to extract features 
from raw data, which means that they tackle very open‐ended problems such 
as how to quantify the “spamminess” of an e‐mail.

It’s very hard to find people who can construct good statistical models, hack 
quality software, and relate this all in a meaningful way to business problems. 
It’s a lot of hats to wear! These individuals are so rare that recruiters often call 
them “unicorns.”

The message of this book is that it is not only possible but also relatively 
straightforward to become a “unicorn.” It’s just a question of acquiring the par-
ticular balance of skills required. Very few educational programs teach all of 
those skills, which is why unicorns are rare, but that’s mostly a historical acci-
dent. It is perfectly reasonable for a single person to have the whole palette of 
abilities, provided they’re willing to ignore the traditional boundaries between 
different disciplines.

This book aims to teach you everything you’ll need to know to be a compe-
tent data scientist. My guess is that you’re either a computer programmer 

Introduction: Becoming a Unicorn



1 Introduction: Becoming a Unicorn2

looking to learn about analytics or more of a mathematician trying to bone up 
on their coding. You might also be a businessperson who needs the technical 
skills to answer your business questions or simply an interested layman. 
Whoever you are though, this book will teach you the concepts you need.

This book is not comprehensive. Data science is too big an area for any per-
son or book to cover all of it. Besides, the field is changing so fast that any 
“comprehensive” book would be out‐of‐date before it came off the presses. 
Instead, I have aimed for two goals. First, I want to give a solid grounding in the 
big picture of what data science is, how to go about doing it, and the founda-
tional concepts that will stand the test of time. Second, I want to give a “com-
plete” skill set, in the sense that you have the nuts‐and‐bolts knowledge to go 
out and do data science work (you can code in Python, you know the libraries 
to use, most of the big machine learning models, etc.), even if particular pro-
jects or companies might require that you pick up a new skill set from some-
where else.

1.1  Aren’t Data Scientists Just Overpaid 
Statisticians?

Nate Silver, a statistician famous for accurate forecasting of US elections, once 
famously said: “I think data scientist is a sexed‐up term for statistician.” He has 
a point, but what he said is only partly true. The discipline of statistics deals 
mostly with rigorous mathematical methods for solving well‐defined prob-
lems. Data scientists spend most of their time getting data into a form where 
statistical methods could even be applied. This involves making sure that the 
analytics problem is a good match to business objectives, extracting meaning-
ful features from the raw data and coping with any pathologies of the data or 
weird edge cases. Once that heavy lifting is done, you can apply statistical tools 
to get the final results, although, in practice, you often don’t even need them. 
Professional statisticians need to do a certain amount of preprocessing them-
selves, but there is a massive difference in degree.

Historically, data science emerged as a field independently from statistics. 
Most of the first data scientists were computer programmers or machine learn-
ing experts who were working on Big Data problems. They were analyzing 
datasets of the kind that statisticians don’t touch: HTML pages, image files, 
e‐mails, raw output logs of web servers, and so on. These datasets don’t fit the 
mold of relational databases or statistical tools, so for decades, they were just 
piling up without being analyzed. Data science came into being as a way to 
finally milk them for insights.

In 20 years, I suspect that statistics, data science, and machine learning will 
blur into a single discipline. The differences between them are, after all, really 
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just a matter of degree and/or historical accident. But in practical terms, for the 
time being, solving data science problems requires skills that a normal statisti-
cian does not have. In fact, these skills, which include extensive software engi-
neering and domain‐specific feature extraction, constitute the overwhelming 
majority of the work that needs to be done. In the daily work of a data scientist, 
statistics plays second fiddle.

1.2  How Is This Book Organized?

This book is organized into three sections. The first, The Stuff You’ll Always 
Use, covers topics that, in my experience, you will end up using in almost any 
data science project. They are core skills, which are absolutely indispensable 
for data science at any level.

The first section was also written with an eye toward people who need data 
science to answer a specific question but do not aspire to become full‐fledged 
data scientists. If you are in this camp, then there is a good chance that Part I 
of the book will give you everything you need.

The second section, Stuff You Still Need to Know, covers additional core 
skills for a data scientist. Some of these, such as clustering, are so common that 
they almost made it into the first section, and they could easily play a role in 
any project. Others, such as natural language processing, are somewhat spe-
cialized subjects that are critical in certain domains but superfluous in others. 
In my judgment, a data scientist should be conversant in all of these subjects, 
even if they don’t always use them all.

The final section, Stuff That’s Good to Know, covers a variety of topics that 
are optional. Some of these chapters are just expansions on topics from the first 
two sections, but they give more theoretical background and discuss some 
additional topics. Others are entirely new material, which does come up in data 
science, but which you could go through a career without ever running into.

1.3  How to Use This Book?

This book was written with three use cases in mind:

1) You can read it cover‐to‐cover. If you do that, it should give you a self‐con-
tained course in data science that will leave you ready to tackle real prob-
lems. If you have a strong background in computer programming, or in 
mathematics, then some of it will be review.

2) You can use it to come quickly up to speed on a specific subject. I have tried 
to make the different chapters pretty self‐contained, especially the chapters 
after the first section.
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3) The book contains a lot of sample codes, in pieces that are large enough to 
use as a starting point for your own projects.

1.4  Why Is It All in Python™, Anyway?

The example code in this book is all in Python, except for a few domain‐ specific 
languages such as SQL. My goal isn’t to push you to use Python; there are lots 
of good tools out there, and you can use whichever ones you want.

However, I wanted to use one language for all of my examples. This keeps the 
book readable, and it also lets readers follow the whole book while only know-
ing one language. Of the various languages available, there are two reasons why 
I chose Python:

1) Python is the most popular language for data scientists. R is its only major 
competitor, at least when it comes to free tools. I have used both exten-
sively, and I think that Python is flat‐out better (except for some obscure 
statistics packages that have been written in R and that are rarely needed 
anyway).

2) I like to say that for any task, Python is the second‐best language. It’s a jack‐
of‐all‐trades. If you only need to worry about statistics, or numerical com-
putation, or web parsing, then there are better options out there. But if you 
need to do all of these things within a single project, then Python is your 
best option. Since data science is so inherently multidisciplinary, this makes 
it a perfect fit.

As a note of advice, it is much better to be proficient in one language, to the 
point where you can reliably churn out code that is of high quality, than to be 
mediocre at several.

1.5  Example Code and Datasets

This book is rich in example code, in fairly long chunks. This was done for two 
reasons:

1) As a data scientist, you need to be able to read longish pieces of code. This 
is a nonoptional skill, and if you aren’t used to it, then this will give you a 
chance to practice.

2) I wanted to make it easier for you to poach the code from this book, if you 
feel so inclined.

You can do whatever you want with the code, with or without attribution. I 
release it into the public domain in the hope that it can give some people a small 
leg up. You can find it on my GitHub page at www.github.com/field-cady.

www.github.com/field-cady


1.6 Parting Words 5

The sample data that I used comes in two forms:

1) Test datasets that are built into Python’s scientific libraries
2) Data that is pulled off the Internet, from sources such as Yahoo and 

Wikipedia. When I do this, the example scripts will include code that pulls 
the data.

1.6  Parting Words

It is my hope that this book not only teaches you how to do nut‐and‐bolts data 
science but also gives you a feel of how exciting this deeply interdisciplinary 
subject is. Please feel free to reach out to me at www.fieldcady.com or field.
cady@gmail.com with comments, errata, or any other feedback.

http://www.fieldcady.com
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Part 1

The Stuff You’ll Always Use

The first section of this book covers core topics that everybody doing data 
science should know. This includes people who are not interested in being 
 professional data scientists, but need to know just enough to solve some spe-
cific problem. These are the subjects that will likely arise in every data science 
 project you do.
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In this chapter, I will give you a high‐level overview of the process of data 
science. I will focus on the different stages of data science work, including com-
mon pain points, key things to get right, and where data science parts ways 
from other disciplines.

The process of solving a data science problem is summarized in the following 
figure, which I called the Data Science Road Map.

The Data Science Road Map

The Data Science
Road Map

Frame
the

problem

Understand
the data

Extract
features

Model
and

analyse

Deploy
code

Present
results

The first step is always to frame the problem: understand the business use 
case and craft a well‐defined analytics problem (or problems) out of it. This is 
followed by an extensive stage of grappling with the data and the real‐world 
things that it describes, so that we can extract meaningful features. Finally, these 
features are plugged into analytical tools that give us hard numerical results.

Before I go into more detail about the different stages of the roadmap, I want 
to point out two things.

The first is that “Model and Analyze” loops back to framing the problem. 
This is one of the key features of data science that differentiate it from tradi-
tional software engineering. Data scientists write code, and they use many of 
the same tools as software engineers. However, there is a tight feedback loop 
between data science work and the real world. Questions are always being 
reframed as new insights become available, and, as a result, data scientists 
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must keep their code base extremely flexible and always have an eye toward the 
real‐world problem they are solving. Ideally, you will follow the loop back many 
times, constantly refining your methods and producing new insights.

The second point is that there are two different (although not mutually exclu-
sive) ways to exit the road map: presenting results and deploying code. My 
friend Michael Li, a data scientist who founded The Data Incubator, likened this 
to having two different types of clients: humans and machines. They require 
distinct skill sets and modifications to every stage of the data science road map.

If your clients are humans, then usually you are trying to use available data 
sources to answer some kind of business problem. Examples would be the 
following:

 ● Identifying leading indicators of spikes in the price of a stock, so that people 
can understand what causes price spikes

 ● Determining whether customers break down into natural subtypes and what 
characteristics each type has

 ● Assessing whether traffic to one website can be used to predict traffic to 
another site.
Typically, the final deliverable for work such as this will be a PowerPoint slide 

deck or a written report. The goal is to give business insights, and often these 
insights will be used for making key decisions. This kind of data science also 
functions as a way to test the waters and see whether some analytics approach 
is worth a larger follow‐up project that may result in production software.

If your clients are machines, then you are doing something that blends into 
software engineering, where the deliverable is a piece of software that performs 
some analytics work. Examples would be the following:

 ● Implementing the algorithm that chooses which ad to show to a customer 
and training it on real data

 ● Writing a batch process that generates daily reports based on company 
records generated that day, using some kind of analytics to point out salient 
patterns
In these cases, your main deliverable is a piece of software. In addition to 

performing a useful task, it had better work well in terms of performance, 
robustness to bad inputs, and so on.

Once you understand who your clients are, the next step is to determine 
what you’ll be doing for them. In the next section, I will show you how to do 
this all‐important step.

2.1  Frame the Problem

The difference between great and mediocre data science is not about math or 
engineering: it is about asking the right question(s). Alternately, if you’re trying 


