Preparative Chromatography
for Separation of Proteins
Wiley Series in Biotechnology and Bioengineering

Significant advancements in the fields of biology, chemistry, and related disciplines have led to a barrage of major accomplishments in the field of biotechnology. Wiley Series in Biotechnology and Bioengineering focuses on showcasing these advances in the form of timely, cutting-edge textbooks and reference books that provide a thorough treatment of each respective topic.

Topics of interest to this series include, but are not limited to, protein expression and processing; nanotechnology; molecular engineering and computational biology; environmental sciences; food biotechnology, genomics, proteomics and metabolomics; large-scale manufacturing and commercialization of human therapeutics; biomaterials and biosensors; and regenerative medicine. We expect these publications to be of significant interest to the practitioners both in academia and industry. Authors and editors were carefully selected for their recognized expertise and their contributions to the various and far-reaching fields of biotechnology.

Preparative Chromatography for Separation of Proteins
by Arne Staby, Anurag S. Rathore, Satinder (Sut) Ahuja

Vaccine Development and Manufacturing
by Emily P. Wen (Editor), Ronald Ellis (Editor), Narahari S. Pujar (Editor)

Risk Management Applications in Pharmaceutical and Biopharmaceutical Manufacturing
by Hamid Mollah (Editor), Harold Baseman (Editor), Mike Long (Editor)

Emerging Cancer Therapy: Microbial Approaches and Biotechnological Tools
by Arsenio Fialho (Editor), Ananda Chakrabarty (Editor)

Quality by Design for Biopharmaceuticals: Principles and Case Studies
by Anurag S. Rathore (Editor), Rohin Mhatre (Editor)
Preparative Chromatography for Separation of Proteins

Edited by
Arne Staby, Anurag S. Rathore, and Satinder Ahuja
Contents

List of Contributors xiv
Series Preface xvii
Preface xviii

1 Model-Based Preparative Chromatography Process
Development in the QbD Paradigm 1
Arne Staby, Satinder Ahuja, and Anurag S. Rathore
1.1 Motivation 1
1.2 Regulatory Context of Preparative Chromatography and
Process Understanding 1
1.3 Application of Mathematical Modeling to Preparative Chromatography 6
Acknowledgements 8
References 8

2 Adsorption Isotherms: Fundamentals and Modeling Aspects 11
Jørgen M. Mollerup
2.1 Introduction 11
2.2 Definitions 12
2.3 The Solute Velocity Model 14
2.4 Introduction to the Theory of Equilibrium 17
2.4.1 Phase Equilibria 17
2.4.2 Reversible Chemical Reaction 18
2.4.3 Adsorption of a Single Component 18
2.5 Association Equilibria 21
2.5.1 The Asymmetric Reference Potential 22
2.6 The Classical Adsorption Isotherm 24
2.6.1 Protein Association to Immobilized Ligands 24
2.7 The Classical Ion Exchange Adsorption Isotherm 26
2.7.1 The Adsorption Isotherm of a GLP-1 Derivative 28
2.7.1.1 The Adsorption Isotherm and the Wave Velocities 28
2.7.1.2 Simulations 31
2.7.1.3 How the Wave Velocities Shape the Elution Profiles 33
2.7.1.4 Modeling the Trailing Edge of a Peak at High Load 36
Contents

2.8 Hydrophobic Adsorbents, HIC and RPC 38
2.8.1 The Adsorption of Lysozyme 40
2.8.2 The Retention of Three Insulin Components on Two HIC Adsorbents 43
2.8.3 Concluding Remarks 47
2.9 Protein–Protein Association and Adsorption Isotherms 47
2.9.1 Protein–Protein Association in the Fluid Phase 48
2.9.2 Protein Association to Immobilized Protein 50
2.9.3 The Equivalence Between the Models in 2.9.1 and 2.9.2 51
2.10 The Adsorption Isotherm of a GLP-1 Analogue 51
2.10.1 The Adsorption Isotherm and the Wave Velocities 51
2.10.2 Simulations 54
2.10.3 How the Wave Velocities Shape the Elution Profiles 56
2.10.4 Calculation of Second Derivatives from Simulated Elution Profiles 58
2.11 Concluding Remarks 59
Appendix 2.A Classical Thermodynamics 60
References 77

3 Simulation of Process Chromatography 81
Bernt Nilsson and Niklas Andersson
3.1 Introduction 81
3.2 Simulation-Based Prediction of Chromatographic Processes 82
3.2.1 Size Exclusion Chromatography 83
3.2.2 Ion Exchange Chromatography 84
3.2.3 Hydrophobicity-Based Chromatography 89
3.2.4 Affinity-Based Chromatography 90
3.3 Numerical Methods for Chromatography Simulation 94
3.4 Simulation-Based Model Calibration and Parameter Estimation 96
3.5 Simulation-Based Parametric Analysis of Chromatography 97
3.6 Simulation-Based Optimization of Process Chromatography 101
3.7 Summary 106
Acknowledgement 107
References 108

4 Simplified Methods Based on Mechanistic Models for Understanding and Designing Chromatography Processes for Proteins and Other Biological Products-Yamamoto Models and Yamamoto Approach 111
Noriko Yoshimoto and Shuichi Yamamoto
4.1 Introduction 111
4.1.1 Operation Mode of Chromatography and Zone Movement in the Column 112
4.2 HETP and Related Variables in Isocratic Elution 114
4.2.1 Resolution R_s in Isocratic Elution 119
4.3 Linear Gradient Elution (LGE) 120
4.3.1 Retention in Linear Gradient Elution (LGE) 121
4.3.2 Peak Width, HETP, and R_s in Linear Gradient Elution 124
4.3.3 Iso-Resolution Curve in Linear Gradient Elution (LGE) 126
Contents vii

4.4 Applications of the Model 130
4.4.1 Stepwise Elution (SE) Process Design Based on Linear Gradient Elution (LGE) Data 130
4.4.2 Flow-Through Chromatography 135
4.4.3 Process Understanding and Analysis 136
4.4.4 High-Throughput Data Acquisition Method 139
4.4.5 Characterization of Chromatography Stationary Properties and Binding of (Modified) Proteins or DNAs onto the Stationary Phase 141
4.5 Summary 145
Appendix 4.A Mechanistic Models for Chromatography 149
Appendix 4.B Distribution Coefficient and Binding Sites [20] 149
References 152

5 Development of Continuous Capture Steps in Bioprocess Applications 159
Frank Riske and Tom Ransohoff
5.1 Introduction 159
5.2 Economic Rationale for Continuous Processing 160
5.3 Developing a Continuous Capture Step 162
5.4 The Operation of MCC Systems 165
5.5 Modeling MCC Operation 167
5.6 Processing Bioreactor Feeds on a Capture MCC 169
5.7 The Future of MCC 171
References 172

6 Computational Modeling in Bioprocess Development 177
Francis Insaidoo, Suvrajit Banerjee, David Roush, and Steven Cramer
6.1 Linkage of Chromatographic Thermodynamics (Affinity, Kinetics, and Capacity) 177
6.2 Binding Maps and Coarse-Grained Modeling 180
6.2.1 Protein–Surface Interaction Maps 182
6.2.2.1 Binding Maps and Preferred Binding Orientations 182
6.2.2.2 Comparison with Chromatography Experiments 182
6.2.2.3 Effects of Salt and Inclusion of the Hydrophobic Effect 184
6.2.2 Characterization of Chemical Heterogeneities on Protein Surfaces 184
6.2.2.1 Electrostatic Patches 185
6.2.2.2 Hydrophobic Patches 185
6.2.2.3 Using Protein Surface Characterization Techniques to Explain Protein–Ligand Binding in NMR Spectroscopy 186
6.3 QSPR for Either Classification or Quantification Prediction 188
6.3.1 QSPR Models for Ion Exchange Chromatography 189
6.3.2 QSPR Models for Hydrophobic Interaction Chromatography (HIC) 190
6.3.3 QSPR Models for Hydroxyapatite Chromatography 191
6.3.4 QSPR Models for Multimodal Chromatography 191
6.4 All Atoms MD Simulations for Free Solution Studies and Surfaces 192
6.4.1 Fundamentals about Molecular Dynamics Simulation 193
6.4.2 Protein Dynamics and Time Scale of Molecular Motion 194
6.4.3 Representations of Proteins and Ligands 196
6.4.4 Effect of Protein Amino Acid Mutation and Dynamics on Affinity Ligand Binding 196
6.4.5 Protein–Ligand Docking and Molecular Dynamics Simulation 197
6.4.6 Free Ligand Simulations 198
6.4.7 Analysis Techniques for Free Ligand Simulations 200
6.4.7.1 Cutoff‐Based Probability of Binding 200
6.4.7.2 Spherical Harmonics Expansion Approach to Quantify Distribution of Ligands 200
6.4.8 Comparisons of Free Ligand Simulations with Experiments 203
6.4.9 Surface Simulations 204
6.5 Ensemble Average and Comparison of Binding of Different Proteins in Chromatographic Systems 204
6.6 Antibody Homology Modeling and Bioprocess Development 205
6.6.1 Molecular Modeling of Antibody Structures 207
6.6.2 Antibody Modeling and Bioprocess Development 209
6.7 Summary of Gaps and Future State 209
Acknowledgment 212
References 212

7 Chromatographic Scale-Up on a Volume Basis 227
Ernst B. Hansen
7.1 Introduction 227
7.1.1 The Rigidity of Linear Scale-Up 227
7.1.2 Increasing the Flexibility 228
7.2 Theoretical Background 229
7.2.1 Separation Performance: The Lower Limit 229
7.2.2 Pressure Restriction: The Upper Limit 230
7.2.3 Design Window 231
7.2.4 General Theory 231
7.3 Proof of Concept Examples 233
7.4 Design Applications: How to Scale up from Development Data 237
7.4.1 Industrial Cases 237
7.4.2 Process Design: Multiple Steps 237
7.5 Discussion 241
7.6 Recommendations 243
7.6.1 How to Scale up from Development Data 243
7.6.2 The Real Challenges of Scale-Up 244
References 245

8 Scaling Up Industrial Protein Chromatography: Where Modeling Can Help 247
Chris Antoniou, Justin McCue, Venkatesh Natarajan, Jörg Thömmes, and Qing Sarah Yuan
8.1 Introduction 247
8.2 Packing Quality: Why and How to Ensure Column Packing Quality Across Scales 248
8.2.1 Impact of Packing Quality on Separations 248
10.3.3 Effect of Fractionation and Number of Fractions 304
10.3.3.1 In Silico Fractionation Method 304
10.3.3.2 Effect of Peak Fitting 307
10.3.3.3 Effect of Fraction Number: General Trends 310
10.3.3.4 Accuracy of Retention Times 310
10.3.3.5 Effect of Volume Errors 311
10.3.3.6 Effect of Concentration Errors 312
10.3.3.7 Effect of Dilution Errors 312
10.3.4 Influence of Flow Regime 313
10.3.5 Gradient Elution Experiments 316
10.3.5.1 Salt Step Height 317
10.3.5.2 Salt Steps and Flow Interruptions 318
10.3.5.3 Comparability of Simulation, HTCC, and Laboratory LC Results 325
10.4 Summary and Conclusion 328
Acknowledgements 329
References 329

11 Lab-Scale Development of Chromatography Processes 333
Hong Li, Jennifer Pollard, and Nihal Tugcu
11.1 Introduction 333
11.2 Methodology and Proposed Workflow 336
11.2.1 High-Throughput Process Development 339
11.2.1.1 Case 1: Utilizing HTPD for Early Developability Assessment 340
11.2.1.2 Case 2: Polishing Resin Screening with Hydrophobic Interaction Chromatography Using Miniature Columns 341
11.2.1.3 Case 3: Flow-through Chromatography Step Optimization Using Resin Slurry Plates and Miniature Columns 345
11.2.1.4 Case 4: Bind and Elute CEX Polishing Chromatography Step Optimization Using Resin Slurry Plates and Miniature Columns 353
11.2.1.5 Case 5: AEX Chromatography Optimization Utilizing Resin Slurry Plates 355
11.2.2 Column Verification and Final Process Definition 360
11.2.2.1 Verification of Dynamic Binding Capacity 360
11.2.2.2 Verification of Operating Conditions and Ranges 360
11.2.3 Additional Considerations 372
11.2.3.1 Intermediate Stability 372
11.2.3.2 Viral Clearance Studies 375
11.3 Conclusions 377
Acknowledgments 377
References 377

12 Problem Solving by Using Modeling 381
Martin P. Breil, Søren S. Frederiksen, Steffen Kidal, and Thomas B. Hansen
12.1 Introduction 381
12.2 Theory 382
12.2.1 Column Model 382
12.2.2 Gradient Mixer 383
12.3 Materials and Methods 385
12.4 Determination of Model Parameters 385
12.5 Optimization In Silico 388
12.6 Extra-Column Effects 390
Abbreviations 397
References 398

13 Modeling Preparative Cation Exchange Chromatography of Monoclonal Antibodies 399
Stephen Hunt, Trent Larsen, and Robert J. Todd
13.1 Introduction 399
13.2 Theory 401
13.2.1 General Rate Model 401
13.2.2 Steric Mass Action Binding Isotherm 403
13.3 Model Development 403
13.3.1 Model Solution 403
13.3.2 Determination of Transport Parameters 404
13.3.3 Determination of SMA Parameters 407
13.3.4 Model Qualification 412
13.4 Model Application 413
13.4.1 Resin Selection and Process Optimization 414
13.4.2 Process Robustness and Control Strategy 419
13.4.3 Raw Material Variability 422
13.5 Conclusions 424
13.6 Acknowledgments 425
Nomenclature 425
Greek letters 425
References 426

14 Model-Based Process Development in the Biopharmaceutical Industry 429
Lars Sejergaard, Haleh Ahmadian, Thomas B. Hansen, Arne Staby, and Ernst B. Hansen
14.1 Introduction 429
14.2 Molecule—FVIII 430
14.3 Overall Process Design 431
14.4 Use of Mathematical Models to Ensure Process Robustness 432
14.5 Experimental Design of Verification Experiments 435
14.6 Discussion 438
14.7 Conclusion 439
Acknowledgements 439
Appendix 14.A Practical MATLAB Guideline to SEC 439
Appendix 14.B Derivation of Models Used for Column Simulations 449
References 455
15 Dynamic Simulations as a Predictive Model for a Multicolumn Chromatography Separation

Marc Bisschops and Mark Brower

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>457</td>
</tr>
<tr>
<td>15.2 BioSMB Technology</td>
<td>459</td>
</tr>
<tr>
<td>15.3 Protein A Model Description</td>
<td>460</td>
</tr>
<tr>
<td>15.4 Fitting the Model Parameters</td>
<td>463</td>
</tr>
<tr>
<td>15.5 Case Studies</td>
<td>464</td>
</tr>
<tr>
<td>15.6 Results for Continuous Chromatography</td>
<td>469</td>
</tr>
<tr>
<td>15.7 Conclusions</td>
<td>475</td>
</tr>
</tbody>
</table>

References 476

16 Chemometrics Applications in Process Chromatography

Anurag S. Rathore and Sumit K. Singh

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>479</td>
</tr>
<tr>
<td>16.2 Data Types</td>
<td>480</td>
</tr>
<tr>
<td>16.2.1 Basic Structure of Chromatographic Data</td>
<td>481</td>
</tr>
<tr>
<td>16.3 Data Preprocessing</td>
<td>481</td>
</tr>
<tr>
<td>16.3.1 Scaling</td>
<td>482</td>
</tr>
<tr>
<td>16.3.2 Mean Centering</td>
<td>483</td>
</tr>
<tr>
<td>16.3.3 Transformation</td>
<td>483</td>
</tr>
<tr>
<td>16.3.4 Trimming and Winsorizing</td>
<td>484</td>
</tr>
<tr>
<td>16.3.5 Data Preprocessing of Chromatographic Data</td>
<td>484</td>
</tr>
<tr>
<td>16.4 Modeling Approaches</td>
<td>485</td>
</tr>
<tr>
<td>16.4.1 Principal Component Analysis</td>
<td>486</td>
</tr>
<tr>
<td>16.4.2 Partial Least Squares Regression</td>
<td>487</td>
</tr>
<tr>
<td>16.4.3 PLS-Discriminant Analysis (PLSDA)</td>
<td>490</td>
</tr>
<tr>
<td>16.5 Case Studies of Use of Chemometrics in Process Chromatography</td>
<td>490</td>
</tr>
<tr>
<td>16.6 Guidance on Performing MVDA</td>
<td>495</td>
</tr>
</tbody>
</table>

References 497

17 Mid-UV Protein Absorption Spectra and Partial Least Squares Regression as Screening and PAT Tool

Sigrid Hansen, Nina Brestrich, Arne Staby, and Jürgen Hubbuch

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>501</td>
</tr>
<tr>
<td>17.2 Mid-UV Protein Absorption Spectra and Partial Least Squares Regression</td>
<td>503</td>
</tr>
<tr>
<td>17.2.1 Intrinsic Protein Mid-UV Absorption</td>
<td>503</td>
</tr>
<tr>
<td>17.2.2 Partial Least Squares Regression (PLS)</td>
<td>507</td>
</tr>
<tr>
<td>17.2.3 Application of PLS and Mid-UV Protein Absorption Spectra for Selective Protein Quantification</td>
<td>508</td>
</tr>
<tr>
<td>17.2.3.1 PLS Model Calibration</td>
<td>509</td>
</tr>
<tr>
<td>17.2.3.2 PLS Model Validation</td>
<td>510</td>
</tr>
<tr>
<td>17.2.3.3 Prediction of Unknown Samples</td>
<td>511</td>
</tr>
<tr>
<td>Section</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>17.3 Spectral Similarity and Prediction Precision</td>
<td>511</td>
</tr>
<tr>
<td>17.3.1 Overview of Protein Spectra</td>
<td>511</td>
</tr>
<tr>
<td>17.3.2 Spectral Similarity and Prediction Precision</td>
<td>514</td>
</tr>
<tr>
<td>17.4 Application as a Screening Tool: Analytics for High-Throughput Experiments</td>
<td>516</td>
</tr>
<tr>
<td>17.5 Application as a PAT Tool: Selective In-line Quantification and Real-Time Pooling</td>
<td>518</td>
</tr>
<tr>
<td>17.5.1 PAT Tool Setup</td>
<td>520</td>
</tr>
<tr>
<td>17.5.2 Selective In-line Protein Quantification</td>
<td>521</td>
</tr>
<tr>
<td>17.5.3 Real-Time Pooling Decisions</td>
<td>521</td>
</tr>
<tr>
<td>17.6 Case Studies</td>
<td>523</td>
</tr>
<tr>
<td>17.6.1 mAb Monomer, Aggregates, and Fragments</td>
<td>525</td>
</tr>
<tr>
<td>17.6.2 Serum Proteins</td>
<td>528</td>
</tr>
<tr>
<td>17.6.3 Selective Quantification of Deamidated Insulin Aspart</td>
<td>530</td>
</tr>
<tr>
<td>17.7 Conclusion and Outlook</td>
<td>532</td>
</tr>
<tr>
<td>References</td>
<td>532</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Recent Progress Toward More Sustainable Biomanufacturing: Practical Considerations for Use in the Downstream Processing of Protein Products</td>
</tr>
<tr>
<td>Milton T. W. Hearn</td>
</tr>
<tr>
<td>18.1 Introduction</td>
</tr>
<tr>
<td>18.2 The Impact of Individualized Unit Operations versus Integrated Platform Technologies on Sustainable Manufacturing</td>
</tr>
<tr>
<td>18.3 Implications of Recycling and Reuse in Downstream Processing of Protein Products Generated by Biotechnological Processes: General Considerations</td>
</tr>
<tr>
<td>18.4 Metrics and Valorization Methods to Assess Process Sustainability</td>
</tr>
<tr>
<td>18.5 Conclusions and Perspectives</td>
</tr>
<tr>
<td>Acknowledgment</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>583</td>
</tr>
</tbody>
</table>
List of Contributors

Haleh Ahmadian
Protein Purification Technology,
Novo Nordisk A/S, Måløv, Denmark

Satinder Ahuja
Ahuja Consulting, Calabash, NC, USA

Niklas Andersson
Chemical Engineering, Lund
University, Lund, Sweden

Chris Antoniou
Biogen, Cambridge, MA, USA

Suvrajit Banerjee
Department of Chemical and
Biological Engineering, Rensselaer
Polytechnic Institute, Troy, NY, USA

Marc Bisschops
Pall Corporation, Medemblik, the Netherlands

Martin P. Breil
DAPI Modelling & Optimization,
Novo Nordisk A/S, Bagsværd, Denmark

Nina Brestrich
Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany

Mark Brower
Merck & Co., Inc., Kenilworth, NJ, USA

Steven Cramer
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

Patrick Diederich
Peptide & Protein Purification,
Novo Nordisk A/S, Bagsværd, Denmark

Søren S. Frederiksen
Mathematical Modelling, Novo Nordisk A/S, Bagsværd, Denmark

Ernst B. Hansen
Mathematical Modelling, Novo Nordisk A/S, Bagsværd, Denmark
Thomas B. Hansen
Mathematical Modelling, Novo Nordisk A/S, Bagsværd, Denmark

Sigrid Hansen
Protein Purification Development, Novo Nordisk A/S, Gentofte, Denmark

Milton T. W. Hearn
Victorian Centre for Sustainable Chemical Manufacturing, Monash University, Melbourne, Australia

Jürgen Hubbuch
Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany

Stephen Hunt
KBI Biopharma, Boulder, CO, USA

Francis Insaidoo
Biologics and Vaccines, Process Development and Engineering, Merck Research Labs, Kenilworth, NJ, USA

Steffen Kidal
Mathematical Modelling, Novo Nordisk A/S, Bagsværd, Denmark

Trent Larsen
KBI Biopharma, Boulder, CO, USA

Hong Li
Process Development and Engineering, Merck, Kenilworth, NJ, USA

Justin McCue
Biogen, Cambridge, MA, USA

Jørgen M. Mollerup
PrepChrom, Klampenborg, Denmark

Venkatesh Natarajan
Biogen, Cambridge, MA, USA

Bernt Nilsson
Chemical Engineering, Lund University, Lund, Sweden

Marcel Ottens
Department of Biotechnology, Delft University of Technology, Delft, the Netherlands

Silvia M. Pirrung
Department of Biotechnology, Delft University of Technology, Delft, the Netherlands

Jennifer Pollard
Process Development and Engineering, Merck, Kenilworth, NJ, USA

Tom Ransohoff
BioProcess Technology Consultants, Woburn, MA, USA

Anurag S. Rathore
Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India

Frank Riske
BioProcess Technology Consultants, Woburn, MA, USA
David Roush
Biologics and Vaccines, Process Development and Engineering, Merck Research Labs, Kenilworth, NJ, USA

Lars Sejergaard
Mathematical Modelling, Novo Nordisk A/S, Bagsværd, Denmark

Sumit K. Singh
Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India

Arne Staby
CMC Project Planning & Management, Novo Nordisk A/S, Bagsværd, Denmark

Jörg Thömmes
Biogen, Cambridge, MA, USA

Robert J. Todd
KBI Biopharma, Boulder, CO, USA

Nihal Tugcu
Process Development and Engineering, Merck, Kenilworth, NJ, USA

Shuichi Yamamoto
Bio-Process Engineering Laboratory, Graduate School of Medicine and School of Engineering, Biomedical Engineering Center (YUBEC), Yamaguchi University, Ube, Japan

Noriko Yoshimoto
Bio-Process Engineering Laboratory, Graduate School of Medicine and School of Engineering, Biomedical Engineering Center (YUBEC), Yamaguchi University, Ube, Japan

Qing Sarah Yuan
Biogen, Cambridge, MA, USA
Series Preface

The upcoming volumes will attest to the importance and quality of books in this series. I would like to acknowledge the fellow coeditors and authors of these books for their agreement to participate in this endeavor. Lastly, I would like to thank Ms. Anita Lekhwani, Senior Acquisitions Editor at John Wiley and Sons, Inc., for approaching me to develop such a series. Together, we are confident that these books will be useful additions to the literature that will not only serve the biotechnology community with sound scientific knowledge but also inspire as they further chart the course of this exciting field.

Anurag S. Rathore
Department of Chemical Engineering
Indian Institute of Technology
New Delhi, India
Preface

This book covers various aspects of preparative chromatography, with a unique combination of academic research and industrial applications. We expect it to appeal to those in academia and industry who are involved in process development and the production of peptides and proteins, an area where the industry is typically reluctant to publicly share their knowledge because of trade secret considerations. Most of these major developments have either not been disclosed at all or exist only as oral conference contributions. This book aims to alleviate some of these gaps as we aim to supplement the academic contributions with industrial contributions. This aspect makes the treatment quite novel and unique when compared with other texts on the topic.

The book is divided into two parts: basic modeling and reviews and industrial separations/case studies. The basic modeling section aims to describe the recent developments in chromatographic theory and general approaches to research to provide increased understanding of the fundamentals behind chromatographic separation and behavior of proteins in these environments. The aim of this section is to provide a solid background in the theory of chromatography to the readers and to better prepare them for industrial case studies. Topics covered comprise the application of various approaches of modeling including computer simulations and mechanistic modeling. Chapter 1, by the editors, is designated to the general background for use of the various modeling tools and approaches.

The first section of the book contains fundamental contributions, general overviews, and reviews. Chapter 2, by Mollerup, provides a general and thorough overview of the thermodynamic tools and isotherm description necessary to model process chromatography in a double chapter. The author proposes approaches for acquiring accurate experimental data from which the model parameters in the adsorption isotherms can be estimated, in order to facilitate the use of simulation tools to the design and optimization of a chromatographic separation process.

Simulation of the performance of chromatographic separation of proteins is a powerful tool, and Chapter 3, by Nilsson and Andersson, presents a summary of the many methodologies applied to various chromatographic techniques
including ion exchange, affinity, and multimodal chromatography. Predictions of chromatographic behavior have been presented for a set of different separation problems, illustrating that a large number of common protein separation problems can be simulated quite easily with today’s technology.

Chapter 4, by Yoshimoto and Yamamoto, describes simplified methods for understanding and designing chromatography processes for proteins and other biological products, with a focus on modeling of gradient elution chromatography. Simplified models based on the mechanistic model for linear gradient elution chromatography of proteins and other large molecule biological products are presented, together with several applications of the models to process design and process understanding and for bio-recognition.

Continuous processing, including chromatography, has gained much attention the last decade, and Chapter 5, by Riske and Ransohoff, presents industrial application of such multicolumn chromatography (MCC) systems for general capture. The authors suggest that the appropriateness and use of MCC in capture steps and in other parts of the downstream process depend on a number of factors, including the molecular characteristics and stability of the target molecule, the feed titer and product amount required, and the facility design and intention (multipurpose or dedicated). As industry gains more experience with MCC and other forms of continuous processing, the authors foresee that MCC is likely to be more commonly used throughout industry.

Molecular dynamics (MD) is another area that is getting much attention in recent years, and this approach will undoubtedly be key to better understanding of interactions on the molecular level and will ultimately result in better mechanistic models. This topic is described with case studies in Chapter 6, by Insaidoo, Banerjee, Roush, and Cramer. The authors summarize the current state of computational biophysics for determination of individual contributions of key interactions at an atomistic level. They conclude that there remains a significant gap in the linkage of experimental techniques (typically macroscopic) to biophysical modeling and that it is essential that these gaps be closed in order to realize the potential for rational process design.

Chapter 7, by Hansen, teaches the upscaling technique based on volumetric flow rate, which is founded in well-known chromatographic theory and equations, and the approach provides high process design flexibility. The chapter presents an overview of the underlying theory and also provides several examples of successful scale-ups on ion exchange and reversed-phase chromatography. A couple of industrial case studies related to these scale-ups are also presented. Finally, a step-by-step guide for scale-up is presented together with recommendations and a discussion of the challenges that a practitioner is likely to face.

The industrial separations section presents new and existing chromatographic unit operations and discusses how mechanistic and empirical modeling approaches are used to optimize equipment and methodologies. Equipment includes column
hardware, scale-down equipment, continuous operation mode, etc., as well as tools for monitoring and control; for example, on-, in-, and at-line equipment for improved process development and manufacturing methods. Improved methodologies comprise scaling approaches, the use of models for validation, uncertainty and robustness evaluations, and process design. A mix of industrial, equipment vendor, and academic authors contributed to this section.

Chapter 8, by Antoniou, McCue, Natarajan, Thömmes, and Yuan, provides a number of examples where modeling may help in scale-up of chromatography in industry and how computational fluid dynamics (CFD) has been applied. The authors explore why column packing is such an important criterion that has to be consistent across scales, and they discuss how models can be utilized to predict column packing across scales and to perform packing consistently in an industrial environment.

Chapters 9, 10, and 11 (by Pirrung and Ottens; Diederich and Hubbuch; and Li, Pollard, and Tugcu, respectively) present industrial applications of process development, optimization, and small-scale practice. Chapter 9, among others, demonstrates the use of the high-throughput process development (HTPD) setup to generate mechanistic model parameters for process development, optimization, and design. The authors have discussed the pros and cons of the various experimental approaches, including the one-factor-at-a-time (OFAT), design of experiments (DOE), mechanistic modeling, and hybrid approaches. Chapter 10 provides guidance to process development using robot systems, including modeling/simulation of peak shapes for mechanistic modeling and validation. Factors that have been examined include the influence of pipetting precision, absorption measurements in microtiter plates, peak fractionation, flow patterns, and salt step heights in gradient elution experiments. Separate and combined effects have been qualitatively and quantitatively investigated using both experiments and simulations based on a mechanistic model. The authors demonstrate that with a sufficient number of fractions collected per peak, a significant improvement in precision can be obtained despite low analytical precision. Finally, Chapter 11, focuses on DOE and OFAT in an HTPD setup and presents the state-of-the-art experimental process development approach. A methodology for lab-scale chromatography process development utilizing high-throughput tools in conjunction with traditional column-based methodologies has been presented. The proposed experimental plan for process development relies heavily on a DOE approach supplemented with OFAT experiments. It fully utilizes HTPD and transitions into lab-scale column experiments where additional confirmation is required for defining parameter ranges and scale-up.

Chapters 12, 13, and 14 (by Breil, Frederiksen, Kidal, and Hansen; Hunt, Larsen, and Todd; and Sejergaard, Ahmadian, T.B. Hansen, Staby, and E.B. Hansen, respectively,) present three industrial case studies of mechanistic modeling for use in-process development, optimization, challenge, and
identification of critical process parameters, troubleshooting, deviation handling, control strategy setup, and establishing a design space for chromatographic purification. Also included are equation systems and computer coding that may help new applicants in setting up models. Chapter 13 presents an example where the general rate model has been used to describe transport behavior in the column and in the beads and the steric mass action binding model to describe protein binding to the resin matrix. This approach has been used successfully to describe the primary mechanisms involved in cation exchange chromatography of proteins. An open-source chromatography solver was used to estimate model parameters and evaluate the impact of operating parameters on process performance. Model parameters were estimated by performing a set of specific model calibration experiments. Pulse injection experiments were used to estimate the general rate model transport parameters, while steric mass action binding parameters were estimated by backfitting the model to a set of fractionated gradient elution runs. Chapter 14 discusses a specific application involving the use of a size-exclusion chromatography step for reducing aggregated product forms for the commercial production of turoctocog alfa. It has been illustrated how the different quality by design (QbD) elements of risk assessment and process knowledge can be linked through identification of key critical quality attributes (CQAs), which may be affected by the step and the different process parameters responsible for such influence on the CQAs.

Continuous processing including chromatography has gained much attention in the last decade, and Chapter 15, by Bisschops and Brower, presents industrial applications of such MCC systems for dynamic simulations as predictive models for MMC separation. This chapter describes a numerical simulation approach for predicting the performance of continuous chromatographic separations of biopharmaceutical proteins. The numerical simulations are based on the linear driving force model for mass transfer kinetics and a Langmuir isotherm for equilibrium behavior. The numerical simulations have been compared with the experimental capture efficiency of monoclonal antibodies on Protein A media in a continuous MCC system for two different monoclonal antibodies and two different (agarose based) Protein A media. The authors demonstrate the possibility of using simulation models for process characterization, thereby enabling the knowledge space with limited experimentation significantly speeding up the development program.

Chapter 16, by Rathore and Singh, presents the general state of the art of multivariate data analysis and review of current process analytical technology (PAT) methods available to facilitate process chromatography. This chapter presents a review of chemometrics applications in process chromatography. The various data preprocessing methods and modeling approaches have been discussed along with two case studies illustrating the utility of chemometrics in analyzing process chromatographic data.
Preface

Process control and PAT are topics of great interest in the industry, and new tools that may move the analytical release test burden to the unit operation process control are highly desirable. A recent tool exploiting UV spectra for this application is shown in Chapter 17, by Hansen, Brestrich, Staby, and Hubbuch. The proposed tool has a response time of <1 s and allows real-time pooling decisions. Both the screening and the PAT tool have been based on partial least squares (PLS) regression models, correlating mid-UV protein absorption spectra with selective protein concentrations. The fundamentals of intrinsic protein absorption and PLS as well as their application for selective protein quantification have been also addressed.

Finally, Chapter 18, by Hearn, presents the more sustainable and green approach to chromatographic separation and to many practical considerations needed in future manufacturing. This chapter examines recent progress toward the incorporation of the concepts underlying sustainable manufacturing of protein-based products, with emphasis of the downstream aspects of the recovery and purification of value-added protein products derived from biotechnological procedures. Lessons gained from the use of similar approaches developed within the chemical, traditional pharmaceutical, and food ingredient industries have been examined in terms of their applicability to the down-stream processing of protein products derived from genetic engineering, cell culture, and associated biotechnology strategies.

The book may be read for individual contributions; however, all of the book chapters complement each other with state-of-the-art implementation of modeling in the biopharmaceutical industry and academic research within the field. All chapters of the book have been peer reviewed. We would like to thank all authors for their valuable contributions and hope the academic, industrial, and regulatory scientists will benefit from this book.

Arne Staby
Anurag S. Rathore
Satinder Ahuja

20 December 2016
1

Model-Based Preparative Chromatography Process Development in the QbD Paradigm

Arne Staby1, Satinder Ahuja2, and Anurag S. Rathore3

1 CMC Project Planning & Management, Novo Nordisk A/S, Bagsværd, Denmark
2 Ahuja Consulting, Calabash, NC, USA
3 Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India

1.1 Motivation

Preparative chromatography for separation of proteins and peptides continues to be the primary workhorse in purification of biopharmaceuticals. Numerous papers and books exist describing theory and implementation of preparative chromatography; however, this is the first book that combines academic progress in modeling with industrial implementation. Although theory and models have been available for many years, industrial usage of these tools has been scarce due to labor- and material-intensive requirements. However, with the biotech industry moving to implement the expectations underlined in the recent regulatory initiative of quality by design (QbD), interesting and outspread applications of modeling tools for commercial process development and manufacture have emerged.

1.2 Regulatory Context of Preparative Chromatography and Process Understanding

QbD expectations to biopharmaceutical production including preparative chromatography are described in the ICH quality guidelines Q8, Q9, Q10, and Q11 [1–4]. Further, ICH Q8-R2 [1] provides the overall definition of QbD in a regulatory context.
The focus of this book is on the underlined parts of this definition, and the framework of QbD may be outlined as presented in Figure 1.1. In the top part of the figure, the primary focus of biopharmaceuticals is the patient, and the patient needs are defined through the quality target product profile (QTPP), which in turn is affected by chemistry, manufacturing, and controls (CMC) activities. Fulfilling patients' needs places some requirements on the product, and these elements are obtained through linkage of the QTPP to the list of critical quality attributes (CQAs). The CQAs will have acceptable ranges for the manufacturer to comply with, and to obtain product of the desired quality, the process needs to be run within acceptable ranges of process parameters. Proper knowledge of how process parameters affect the product quality may be obtained through process models that may end up in a regulatory, enhanced application for approval of a design space. To control process parameters within defined ranges, process models and/or even a design space will provide some requirements to the GMP facility and linkage to the control strategy, which will include various process monitors, process analytical technology (PAT) tools, process validation, and release tests and specifications. All elements are linked through risk assessment exercises to address the risk-based approach of QbD in a regulatory setting.

Figure 1.1 (bottom) displays an example of QbD elements contained in the QbD framework for a preparative chromatography step. A key patient need is of course to get efficient treatment, and one element affecting this is to get a proper dose of the biopharmaceutical. To obtain proper dosing, the purity and among others the bioactivity of the biopharmaceutical needs to be correct. Purity is significantly affected by the peak collection criteria used in preparative chromatography, and a well-known methodology for peak collection is by UV monitoring as part of the control strategy (e.g., see Chapters 12 and 17). A proper understanding and control of the preparative chromatography process may be obtained by a mechanistic or statistical model and their boundary conditions that may define an operational design space. Thus, the idea of this linkage exercise is to obtain a complete overview of the process in a way that will elucidate, for example, how a defect in or removal of a UV monitor in a preparative chromatographic purification step will affect the patient through cascading back in the figure through a series of risk assessments. The focus of this book is to obtain “process understanding and process control based on sound science” as described earlier, and it can be visualized by observing the elements within the red circle in Figure 1.1 (top).
A proper control strategy is achieved through sufficient process understanding. Traditionally, process understanding in the biopharmaceutical industry was obtained through a combination of theoretical knowledge based on the following: (i) education; (ii) experience from other projects and proteins optionally of similar nature, for example, mAbs; (iii) preliminary experimentation of less systematic nature; and (iv) “one parameter at a time” (OPAT) experimentation.
where all variables are kept constant while systematically altering one variable. This concept has worked well for many years, and most legacy products have been developed using this approach. Figure 1.2 presents the general level of knowledge obtained by the different methodologies including more recent concepts. Although some companies have also used multivariate methods for development and documentation of legacy products, the extensive use of more advanced methods for process understanding has been affected by implementation of QbD concepts. The general methodology used in the industry today is based on multivariate statistical analysis such as design of experiments (DoE) often combined with various high-throughput process development (HTPD) techniques (see e.g., Chapter 11). DoE is a very broad and important tool that does not require mechanistic understanding prior to implementation, and it works quite efficiently if the user has prior knowledge of which parameters are significant and if the number of parameters is limited. Today, the most comprehensive application of statistical methods to support QbD and a true enhanced approach filing has been accomplished by Genentech/Roche with its recent regulatory approval of Gazyva. Disadvantages of DoE include less optimal identification of assumptions and the general lack of opportunities for extrapolation outside the experimental area used to set up the statistical models. DoE is used extensively for validation of parameter ranges in preparative chromatography; however for other unit operations
such as fermentation, more advanced statistical methods like principal component analysis (PCA), partial least squares (PLS) methods, etc. are used due to their capability to handle very high number of variables (see also Chapter 16). At the top of the pyramid in Figure 1.2 and at the highest extent of knowledge obtainable are models based on mechanistic principles because full mechanistic process understanding is typically achieved. Depending on assumptions, these mechanistic models are also referred to as first-principle models, and they provide optimal evaluation of assumptions as well as opportunities for extrapolation outside the experimental area of parameter estimation.

An example of the difference in process understanding achieved from application of mechanistic modeling and a DoE approach for a preparative SEC step is presented in Figure 1.3 [5] (see also Chapter 14). The figure shows the effect of the feed concentration of a biopharmaceutical on the content of high molecular weight proteins (HMWP)—a typical CQA in the drug substance addressed by purification. The different experimental values for a given feed concentration (red diamonds) are due to controlled variation of other variables. Predictions based on a mechanistic model and on a statistical model by DoE are shown with full green and light blue colors, respectively. It is noticed that the model based on DoE cannot predict the worst-case conditions at a feed concentration of 0.75 g/L (indicated by the green, dashed circle) and instead the DoE-based model predicts the lowest concentration of 0.5 g/L as the worst-case conditions (indicated by the light blue, dashed circle). Further, the prediction error increases if extrapolation is performed outside the experimental area. The problem is partly caused by the general setup of

![Figure 1.3](image-url)

Figure 1.3 HMWP content after purification on SEC for a biopharmaceutical as a function of feed concentration. ○, experimental results; —, model prediction by mechanistic model; and —, model prediction by statistical model based on DoE. (See insert for color representation of the figure.)
experiments supporting DoE where center points and parameter range limits are often applied (in the current case ~2 g/L and 0.5 and 4 g/L, respectively). DoE-based models are good in capturing monotonous functions, but they have problems capturing functions containing inflection points, and it would require a very comprehensive experimental setup for DoE-based models to capture functions with inflection points—far more than what is used in general in the industry. The experimental setup to obtain mechanistic models is typically not more comprehensive, but it is different. This example illustrates some of the pitfalls of applying DoE the way it is usually performed in the biopharmaceutical industry and how a mechanistic model may provide more process understanding.

1.3 Application of Mathematical Modeling to Preparative Chromatography

Mathematical models and modeling tools have been available for decades in academia, for example, Van Deemter [6], Giddings [7], Guiochon et al. [8], Melander and Horváth [9], Brooks and Cramer [10], Yamamoto et al. [11], Hearn et al. [12], Lenhoff [13], Carta and Jungbauer [14], Frech et al. [15], Łącki et al. [16], Hansen and Mollerup [17], Ottens et al. [18], Bracewell et al. [19] and many, many more, and the tools have been applied to academic problems such as separation of standard proteins like BSA, lysozyme, etc. and occasionally to more industry-relevant proteins. The experimental burden required and essential access to large amounts of pure experimental material made it very difficult and in fact too cumbersome for the biopharmaceutical industry to implement the methodology for many years. Motivation and requirements have, however, changed over the last years. The regulatory environment as described earlier [1–4] access to HTPD techniques [20, 21] facilitating fast experimentation and low demands of experimental material, and, in the specific case of polishing chromatography, proper assumptions and approaches to minimize the experimental task of generating preparative modeling parameters [22]. These aspects have aided the industry into initiating application of mechanistic modeling, and this book also presents numerous examples of such implementation for preparative chromatography.

Another aspect challenging the biopharmaceutical industry in implementation of mechanistic modeling tools is access to skilled personnel that can master modeling and computer coding at an expert level as well as to have comprehensive insight into preparative chromatography at manufacturing scales. Many implementation attempts in industry have failed due to lack of management support and critical mass of skilled personnel. In contrast, statistical modeling based on DoE or similar methods are much more easily implemented. An approach to initiation of implementation of mechanistic modeling is collaboration between