Total Survey Error in Practice

Editors:
Paul P. Biemer, Edith de Leeuw, Stephanie Eckman, Brad Edwards, Frauke Kreuter, Lars E. Lyberg, N. Clyde Tucker, and Brady T. West
Total Survey Error in Practice
Total Survey Error in Practice

Edited by

Paul P. Biemer
RTI International and University of North Carolina

Edith de Leeuw
Utrecht University

Stephanie Eckman
RTI International

Brad Edwards
Westat

Frauke Kreuter
Joint Program in Survey Methodology, University of Mannheim, Institute for Employment Research (Germany)

Lars E. Lyberg
Inizio

N. Clyde Tucker
American Institutes for Research

Brady T. West
University of Michigan and Joint Program in Survey Methodology
Contents

Notes on Contributors xix
Preface xxv

Section 1 The Concept of TSE and the TSE Paradigm 1

1 The Roots and Evolution of the Total Survey Error Concept 3
Lars E. Lyberg and Diana Maria Stukel
1.1 Introduction and Historical Backdrop 3
1.2 Specific Error Sources and Their Control or Evaluation 5
1.3 Survey Models and Total Survey Design 10
1.4 The Advent of More Systematic Approaches Toward Survey Quality 12
1.5 What the Future Will Bring 16
References 18

2 Total Twitter Error: Decomposing Public Opinion Measurement on Twitter from a Total Survey Error Perspective 23
Yuli Patrick Hsieh and Joe Murphy
2.1 Introduction 23
2.1.1 Social Media: A Potential Alternative to Surveys? 23
2.1.2 TSE as a Launching Point for Evaluating Social Media Error 24
2.2 Social Media: An Evolving Online Public Sphere 25
2.2.1 Nature, Norms, and Usage Behaviors of Twitter 25
2.2.2 Research on Public Opinion on Twitter 26
2.3 Components of Twitter Error 27
2.3.1 Coverage Error 28
2.3.2 Query Error 28
2.3.3 Interpretation Error 29
2.3.4 The Deviation of Unstructured Data Errors from TSE 30
2.4 Studying Public Opinion on the Twittersphere and the Potential Error Sources of Twitter Data: Two Case Studies 31
2.4.1 Research Questions and Methodology of Twitter Data Analysis 32
2.4.2 Potential Coverage Error in Twitter Examples 33
2.4.3 Potential Query Error in Twitter Examples 36
2.4.3.1 Implications of Including or Excluding RTs for Error 36
2.4.3.2 Implications of Query Iterations for Error 37
3 Big Data: A Survey Research Perspective 47
Reg Baker
3.1 Introduction 47
3.2 Definitions 48
3.2.1 Sources 49
3.2.2 Attributes 49
3.2.2.1 Volume 50
3.2.2.2 Variety 50
3.2.2.3 Velocity 50
3.2.2.4 Veracity 50
3.2.2.5 Variability 52
3.2.2.6 Value 52
3.2.2.7 Visualization 52
3.2.3 The Making of Big Data 52
3.3 The Analytic Challenge: From Database Marketing to Big Data and Data Science 56
3.4 Assessing Data Quality 58
3.4.1 Validity 58
3.4.2 Missingness 59
3.4.3 Representation 59
3.5 Applications in Market, Opinion, and Social Research 59
3.5.1 Adding Value through Linkage 60
3.5.2 Combining Big Data and Surveys in Market Research 61
3.6 The Ethics of Research Using Big Data 62
3.7 The Future of Surveys in a Data-Rich Environment 62
References 65

4 The Role of Statistical Disclosure Limitation in Total Survey Error 71
Alan F. Karr
4.1 Introduction 71
4.2 Primer on SDL 72
4.3 TSE-Aware SDL 75
4.3.1 Additive Noise 75
4.3.2 Data Swapping 78
4.4 Edit-Respecting SDL 79
4.4.1 Simulation Experiment 80
4.4.2 A Deeper Issue 82
4.5 SDL-Aware TSE 83
4.6 Full Unification of Edit, Imputation, and SDL 84
4.7 “Big Data” Issues 87
Section 2 Implications for Survey Design 95

5 The Undercoverage–Nonresponse Tradeoff 97
Stephanie Eckman and Frauke Kreuter
5.1 Introduction 97
5.2 Examples of the Tradeoff 98
5.3 Simple Demonstration of the Tradeoff 99
5.4 Coverage and Response Propensities and Bias 100
5.5 Simulation Study of Rates and Bias 102
5.5.1 Simulation Setup 102
5.5.2 Results for Coverage and Response Rates 105
5.5.3 Results for Undercoverage and Nonresponse Bias 106
5.5.3.1 Scenario 1 107
5.5.3.2 Scenario 2 108
5.5.3.3 Scenario 3 108
5.5.3.4 Scenario 4 109
5.5.3.5 Scenario 7 109
5.5.4 Summary of Simulation Results 110
5.6 Costs 110
5.7 Lessons for Survey Practice 111
References 112

6 Mixing Modes: Tradeoffs Among Coverage, Nonresponse, and Measurement Error 115
Roger Tourangeau
6.1 Introduction 115
6.2 The Effect of Offering a Choice of Modes 118
6.3 Getting People to Respond Online 119
6.4 Sequencing Different Modes of Data Collection 120
6.5 Separating the Effects of Mode on Selection and Reporting 122
6.5.1 Conceptualizing Mode Effects 122
6.5.2 Separating Observation from Nonobservation Error 123
6.5.2.1 Direct Assessment of Measurement Errors 123
6.5.2.2 Statistical Adjustments 124
6.5.2.3 Modeling Measurement Error 126
6.6 Maximizing Comparability Versus Minimizing Error 127
6.7 Conclusions 129
References 130

7 Mobile Web Surveys: A Total Survey Error Perspective 133
Mick P. Couper, Christopher Antoun, and Aigul Mavletova
7.1 Introduction 133
7.2 Coverage 135
7.3 Nonresponse 137
7.3.1 Unit Nonresponse 137
7.3.2 Breakoffs 139
7.3.3 Completion Times 140
7.3.4 Compliance with Special Requests 141
7.4 Measurement Error 142
7.4.1 Grouping of Questions 143
7.4.1.1 Question-Order Effects 143
7.4.1.2 Number of Items on a Page 143
7.4.1.3 Grids versus Item-By-Item 143
7.4.2 Effects of Question Type 145
7.4.2.1 Socially Undesirable Questions 145
7.4.2.2 Open-Ended Questions 146
7.4.3 Response and Scale Effects 146
7.4.3.1 Primacy Effects 146
7.4.3.2 Slider Bars and Drop-Down Questions 147
7.4.3.3 Scale Orientation 147
7.4.4 Item Missing Data 148
7.5 Links Between Different Error Sources 148
7.6 The Future of Mobile Web Surveys 149
References 150

8 The Effects of a Mid-Data Collection Change in Financial Incentives on Total Survey Error in the National Survey of Family Growth: Results from a Randomized Experiment 155
James Wagner, Brady T. West, Heidi Guyer, Paul Burton, Jennifer Kelley, Mick P. Couper, and William D. Mosher
8.1 Introduction 155
8.2 Literature Review: Incentives in Face-to-Face Surveys 156
8.2.1 Nonresponse Rates 156
8.2.2 Nonresponse Bias 157
8.2.3 Measurement Error 158
8.2.4 Survey Costs 159
8.2.5 Summary 159
8.3 Data and Methods 159
8.3.1 NSFG Design: Overview 159
8.3.2 Design of Incentive Experiment 161
8.3.3 Variables 161
8.3.4 Statistical Analysis 162
8.4 Results 163
8.4.1 Nonresponse Error 163
8.4.2 Sampling Error and Costs 166
8.4.3 Measurement Error 170
8.5 Conclusion 173
8.5.1 Summary 173
8.5.2 Recommendations for Practice 174
References 175
9 A Total Survey Error Perspective on Surveys in Multinational, Multiregional, and Multicultural Contexts 179
Beth-Ellen Pennell, Kristen Cibelli Hibben, Lars E. Lyberg, Peter Ph. Mohler, and Gelaye Worku

9.1 Introduction 179
9.2 TSE in Multinational, Multiregional, and Multicultural Surveys 180
9.3 Challenges Related to Representation and Measurement Error Components in Comparative Surveys 184
9.3.1 Representation Error 184
9.3.1.1 Coverage Error 184
9.3.1.2 Sampling Error 185
9.3.1.3 Unit Nonresponse Error 186
9.3.1.4 Adjustment Error 187
9.3.2 Measurement Error 187
9.3.2.1 Validity 188
9.3.2.2 Measurement Error – The Response Process 188
9.3.2.3 Processing Error 191
9.4 QA and QC in 3MC Surveys 192
9.4.1 The Importance of a Solid Infrastructure 192
9.4.2 Examples of QA and QC Approaches Practiced by Some 3MC Surveys 193
9.4.3 QA/QC Recommendations 195

References 196

10 Smartphone Participation in Web Surveys: Choosing Between the Potential for Coverage, Nonresponse, and Measurement Error 203
Gregg Peterson, Jamie Griffin, John LaFrance, and JiaoJiao Li

10.1 Introduction 203
10.1.1 Focus on Smartphones 204
10.1.2 Smartphone Participation: Web-Survey Design Decision Tree 204
10.1.3 Chapter Outline 205
10.2 Prevalence of Smartphone Participation in Web Surveys 206
10.3 Smartphone Participation Choices 209
10.3.1 Disallowing Smartphone Participation 209
10.3.2 Discouraging Smartphone Participation 211
10.4 Instrument Design Choices 212
10.4.1 Doing Nothing 213
10.4.2 Optimizing for Smartphones 213
10.5 Device and Design Treatment Choices 216
10.5.1 PC/Legacy versus Smartphone Designs 216
10.5.2 PC/Legacy versus PC/New 216
10.5.3 Smartphone/Legacy versus Smartphone/New 217
10.5.4 Device and Design Treatment Options 217
10.6 Conclusion 218
10.7 Future Challenges and Research Needs 219
Appendix 10.A: Data Sources 220
Appendix 10.B: Smartphone Prevalence in Web Surveys 221
Appendix 10.C: Screen Captures from Peterson et al. (2013) Experiment 225
11 Survey Research and the Quality of Survey Data Among Ethnic Minorities 235
Joost Kappelhof
11.1 Introduction 235
11.2 On the Use of the Terms Ethnicity and Ethnic Minorities 236
11.3 On the Representation of Ethnic Minorities in Surveys 237
11.3.1 Coverage of Ethnic Minorities 238
11.3.2 Factors Affecting Nonresponse Among Ethnic Minorities 239
11.3.3 Postsurvey Adjustment Issues Related to Surveys Among Ethnic Minorities 241
11.4 Measurement Issues 242
11.4.1 The Tradeoff When Using Response-Enhancing Measures 243
11.5 Comparability, Timeliness, and Cost Concerns 244
11.5.1 Comparability 245
11.5.2 Timeliness and Cost Considerations 246
11.6 Conclusion 247
References 248

Section 3 Data Collection and Data Processing Applications 253

12 Measurement Error in Survey Operations Management: Detection, Quantification, Visualization, and Reduction 255
Brad Edwards, Aaron Maitland, and Sue Connor
12.1 TSE Background on Survey Operations 256
12.2 Better and Better: Using Behavior Coding (CARIcode) and Paradata to Evaluate and Improve Question (Specification) Error and Interviewer Error 257
12.2.1 CARI Coding at Westat 259
12.2.2 CARI Experiments 260
12.3 Field-Centered Design: Mobile App for Rapid Reporting and Management 261
12.3.1 Mobile App Case Study 262
12.3.2 Paradata Quality 264
12.4 Faster and Cheaper: Detecting Falsification With GIS Tools 265
12.5 Putting It All Together: Field Supervisor Dashboards 268
12.5.1 Dashboards in Operations 268
12.5.2 Survey Research Dashboards 269
12.5.2.1 Dashboards and Paradata 269
12.5.2.2 Relationship to TSE 269
12.5.3 The Stovepipe Problem 270
12.5.4 The Dashboard Solution 270
12.5.5 Case Study 270
12.5.5.1 Single Sign-On 270
12.5.5.2 Alerts 271
12.5.5.3 General Dashboard Design 271
12.6 Discussion 273
References 275
13 Total Survey Error for Longitudinal Surveys 279
Peter Lynn and Peter J. Lugtig
13.1 Introduction 279
13.2 Distinctive Aspects of Longitudinal Surveys 280
13.3 TSE Components in Longitudinal Surveys 281
13.4 Design of Longitudinal Surveys from a TSE Perspective 285
13.4.1 Is the Panel Study Fixed-Time or Open-Ended? 286
13.4.2 Who To Follow Over Time? 286
13.4.3 Should the Survey Use Interviewers or Be Self-Administered? 287
13.4.4 How Long Should Between-Wave Intervals Be? 288
13.4.5 How Should Longitudinal Instruments Be Designed? 289
13.5 Examples of Tradeoffs in Three Longitudinal Surveys 290
13.5.1 Tradeoff between Coverage, Sampling and Nonresponse Error in LISS Panel 290
13.5.2 Tradeoff between Nonresponse and Measurement Error in BHPS 292
13.5.3 Tradeoff between Specification and Measurement Error in SIPP 293
13.6 Discussion 294
References 295

14 Text Interviews on Mobile Devices 299
Frederick G. Conrad, Michael F. Schober, Christopher Antoun, Andrew L. Hupp, and H. Yanna Yan
14.1 Texting as a Way of Interacting 300
14.1.1 Properties and Affordances 300
14.1.1.1 Stable Properties 300
14.1.1.2 Properties That Vary across Devices and Networks 301
14.2 Contacting and Inviting Potential Respondents through Text 303
14.3 Texting as an Interview Mode 303
14.3.1 Coverage and Sampling Error 304
14.3.2 Nonresponse Error 307
14.3.3 Measurement Error: Conscientious Responding and Disclosure in Texting Interviews 308
14.3.4 Measurement Error: Interface Design for Texting Interviews 310
14.4 Costs and Efficiency of Text Interviewing 312
14.5 Discussion 314
References 315

15 Quantifying Measurement Errors in Partially Edited Business Survey Data 319
Thomas Laitila, Karin Lindgren, Anders Norberg, and Can Tongur
15.1 Introduction 319
15.2 Selective Editing 320
15.2.1 Editing and Measurement Error 320
15.2.2 Definition and the General Idea of Selective Editing 321
15.2.3 SELEKT 322
15.2.4 Experiences from Implementations of SELEKT 323
15.3 Effects of Errors Remaining After SE 325
15.3.1 Sampling Below the Threshold: The Two-Step Procedure 326
15.3.2 Randomness of Measurement Errors 326
15.3.3 Modeling and Estimation of Measurement Errors 327
15.3.4 Output Editing 328
15.4 Case Study: Foreign Trade in Goods Within the European Union 328
15.4.1 Sampling Below the Cutoff Threshold for Editing 330
15.4.2 Results 330
15.4.3 Comments on Results 332
15.5 Editing Big Data 334
15.6 Conclusions 335
References 335

Section 4 Evaluation and Improvement 339

16 Estimating Error Rates in an Administrative Register and Survey Questions Using a Latent Class Model 341
Daniel L. Oberski
16.1 Introduction 341
16.2 Administrative and Survey Measures of Neighborhood 342
16.3 A Latent Class Model for Neighborhood of Residence 345
16.4 Results 348
16.4.1 Model Fit 348
16.4.2 Error Rate Estimates 350
16.5 Discussion and Conclusion 354
Appendix 16.A: Program Input and Data 355
Acknowledgments 357
References 357

17 ASPIRE: An Approach for Evaluating and Reducing the Total Error in Statistical Products with Application to Registers and the National Accounts 359
Paul P. Biemer, Dennis Trewin, Heather Bergdahl, and Yingfu Xie
17.1 Introduction and Background 359
17.2 Overview of ASPIRE 360
17.3 The ASPIRE Model 362
17.3.1 Decomposition of the TSE into Component Error Sources 362
17.3.2 Risk Classification 364
17.3.3 Criteria for Assessing Quality 364
17.3.4 Ratings System 365
17.4 Evaluation of Registers 367
17.4.1 Types of Registers 367
17.4.2 Error Sources Associated with Registers 368
17.4.3 Application of ASPIRE to the TPR 370
17.5 National Accounts 371
17.5.1 Error Sources Associated with the NA 372
17.5.2 Application of ASPIRE to the Quarterly Swedish NA 374
17.6 A Sensitivity Analysis of GDP Error Sources 376
17.6.1 Analysis of Computer Programming, Consultancy, and Related Services 376
17.6.2 Analysis of Product Motor Vehicles 378
17.6.3 Limitations of the Sensitivity Analysis 379
18 Classification Error in Crime Victimization Surveys: A Markov Latent Class Analysis 387
Marcus E. Berzofsky and Paul P. Biemer
18.1 Introduction 387
18.2 Background 389
18.2.1 Surveys of Crime Victimization 389
18.2.2 Error Evaluation Studies 390
18.3 Analytic Approach 392
18.3.1 The NCVS and Its Relevant Attributes 392
18.3.2 Description of Analysis Data Set, Victimization Indicators, and Covariates 392
18.3.3 Technical Description of the MLC Model and Its Assumptions 394
18.4 Model Selection 396
18.4.1 Model Selection Process 396
18.4.2 Model Selection Results 398
18.5 Results 399
18.5.1 Estimates of Misclassification 399
18.5.2 Estimates of Classification Error Among Demographic Groups 399
18.6 Discussion and Summary of Findings 404
18.6.1 High False-Negative Rates in the NCVS 404
18.6.2 Decreasing Prevalence Rates Over Time 405
18.6.3 Classification Error among Demographic Groups 405
18.6.4 Recommendations for Analysts 406
18.6.5 Limitations 406
18.7 Conclusions 407
Appendix 18.A: Derivation of the Composite False-Negative Rate 407
Appendix 18.B: Derivation of the Lower Bound for False-Negative Rates from a Composite Measure 408
Appendix 18.C: Examples of Latent GOLD Syntax 408
References 410

19 Using Doorstep Concerns Data to Evaluate and Correct for Nonresponse Error in a Longitudinal Survey 413
Ting Yan
19.1 Introduction 413
19.2 Data and Methods 416
19.2.1 Data 416
19.2.2 Analytic Use of Doorstep Concerns Data 416
19.3 Results 418
19.3.1 Unit Response Rates in Later Waves and Average Number of Don't Know and Refused Answers 418
19.3.2 Total Nonresponse Bias and Nonresponse Bias Components 421
19.3.3 Adjusting for Nonresponse 421
19.4 Discussion 428
Acknowledgment 430
References 430

20 Total Survey Error Assessment for Sociodemographic Subgroups in the 2012 U.S. National Immunization Survey 433
Kirk M. Wolter, Vicki J. Pineau, Benjamin Skalland, Wei Zeng, James A. Singleton, Meena Khare, Zhen Zhao, David Yankey, and Philip J. Smith

20.1 Introduction 433
20.2 TSE Model Framework 434
20.3 Overview of the National Immunization Survey 437
20.4 National Immunization Survey: Inputs for TSE Model 440
20.4.1 Stage 1: Sample-Frame Coverage Error 441
20.4.2 Stage 2: Nonresponse Error 443
20.4.3 Stage 3: Measurement Error 444
20.5 National Immunization Survey TSE Analysis 445
20.5.1 TSE Analysis for the Overall Age-Eligible Population 445
20.5.2 TSE Analysis by Sociodemographic Subgroups 448
20.6 Summary 452
References 453

21 Establishing Infrastructure for the Use of Big Data to Understand Total Survey Error: Examples from Four Survey Research Organizations

Overview 457
Brady T. West

Part 1 Big Data Infrastructure at the Institute for Employment Research (IAB) 458
Antje Kirchner, Daniela Hochfellner, Stefan Bender

21.1.1 Dissemination of Big Data for Survey Research at the Institute for Employment Research 458
21.1.2 Big Data Linkages at the IAB and Total Survey Error 459
21.1.2.1 Individual-Level Data: Linked Panel “Labour Market and Social Security” Survey Data and Administrative Data (PASS-ADIAB) 459
21.1.2.2 Establishment Data: The IAB Establishment Panel and Administrative Registers as Sampling Frames 461
21.1.3 Outlook 463
Acknowledgments 464
References 464

Part 2 Using Administrative Records Data at the U.S. Census Bureau: Lessons Learned from Two Research Projects Evaluating Survey Data 467
Elizabeth M. Nichols, Mary H. Mulry, and Jennifer Hunter Childs

21.2.1 Census Bureau Research and Programs 467
21.2.2 Using Administrative Data to Estimate Measurement Error in Survey Reports 468
21.2.2.1 Address and Person Matching Challenges 469
21.2.2.2 Event Matching Challenges 470
21.2.2.3 Weighting Challenges 471
21.2.2.4 Record Update Challenges 471
21.2.2.5 Authority and Confidentiality Challenges 472
21.2.3 Summary 472
Acknowledgments and Disclaimers 472
References 472
Part 3 Statistics New Zealand's Approach to Making Use of Alternative Data Sources in a New Era of Integrated Data 474
Anders Holmberg and Christine Bycroft

21.3.1 Data Availability and Development of Data Infrastructure in New Zealand 475
21.3.2 Quality Assessment and Different Types of Errors 476
21.3.3 Integration of Infrastructure Components and Developmental Streams 477
References 478

Part 4 Big Data Serving Survey Research: Experiences at the University of Michigan Survey Research Center 478
Grant Benson and Frost Hubbard

21.4.1 Introduction 478
21.4.2 Marketing Systems Group (MSG) 479
21.4.2.1 Using MSG Age Information to Increase Sampling Efficiency 480
21.4.3 MCH Strategic Data (MCH) 481
21.4.3.1 Assessing MCH’s Teacher Frame with Manual Listing Procedures 482
21.4.4 Conclusion 484
Acknowledgments and Disclaimers 484
References 484

Section 5 Estimation and Analysis 487

22 Analytic Error as an Important Component of Total Survey Error: Results from a Meta-Analysis 489
Brady T. West, Joseph W. Sakshaug, and Yumi Kim

22.1 Overview 489
22.2 Analytic Error as a Component of TSE 490
22.3 Appropriate Analytic Methods for Survey Data 492
22.4 Methods 495
22.4.1 Coding of Published Articles 495
22.4.2 Statistical Analyses 495
22.5 Results 497
22.5.1 Descriptive Statistics 497
22.5.2 Bivariate Analyses 499
22.5.3 Trends in Error Rates Over Time 502
22.6 Discussion 505
22.6.1 Summary of Findings 505
22.6.2 Suggestions for Practice 506
22.6.3 Limitations 506
22.6.4 Directions for Future Research 507
Acknowledgments 508
References 508

23 Mixed-Mode Research: Issues in Design and Analysis 511
Joop Hox, Edith de Leeuw, and Thomas Klausch

23.1 Introduction 511
23.2 Designing Mixed-Mode Surveys 512
23.3 Literature Overview 514
23.4 Diagnosing Sources of Error in Mixed-Mode Surveys 516
23.4.1 Distinguishing Between Selection and Measurement Effects: The Multigroup Approach 516
23.4.1.1 Multigroup Latent Variable Approach 516
23.4.1.2 Multigroup Observed Variable Approach 520
23.4.2 Distinguishing Between Selection and Measurement Effects:
 The Counterfactual or Potential Outcome Approach 521
23.4.3 Distinguishing Between Selection and Measurement Effects:
 The Reference Survey Approach 522
23.5 Adjusting for Mode Measurement Effects 523
23.5.1 The Multigroup Approach to Adjust for Mode Measurement Effects 523
23.5.1.1 Multigroup Latent Variable Approach 523
23.5.1.2 Multigroup Observed Variable Approach 525
23.5.2 The Counterfactual (Potential Outcomes) Approach to Adjust for Mode
 Measurement Effects 525
23.5.3 The Reference Survey Approach to Adjust for Mode Measurement Effects 526
23.6 Conclusion 527
References 528

24 The Effect of Nonresponse and Measurement Error on Wage Regression
 across Survey Modes: A Validation Study 531
 Antje Kirchner and Barbara Felderer
24.1 Introduction 531
24.2 Nonresponse and Response Bias in Survey Statistics 532
24.2.1 Bias in Regression Coefficients 532
24.2.2 Research Questions 533
24.3 Data and Methods 534
24.3.1 Survey Data 534
24.3.1.1 Sampling and Experimental Design 534
24.3.1.2 Data Collection 535
24.3.2 Administrative Data 536
24.3.2.1 General Information 536
24.3.2.2 Variable Selection 537
24.3.2.3 Limitations 537
24.3.2.4 Combined Data 537
24.3.3 Bias in Univariate Statistics 538
24.3.3.1 Bias: The Dependent Variable 538
24.3.3.2 Bias: The Independent Variables 538
24.3.4 Analytic Approach 539
24.4 Results 541
24.4.1 The Effect of Nonresponse and Measurement Error on Regression Coefficients 541
24.4.2 Nonresponse Adjustments 543
24.5 Summary and Conclusion 546
 Acknowledgments 547
 Appendix 24.A 548
 Appendix 24.B 549
 References 554

25 Errors in Linking Survey and Administrative Data 557
 Joseph W. Sakshaug and Manfred Antoni
25.1 Introduction 557
25.2 Conceptual Framework of Linkage and Error Sources 559
25.3 Errors Due to Linkage Consent
25.3.1 Evidence of Linkage Consent Bias
25.3.2 Optimizing Linkage Consent Rates
25.3.2.1 Placement of the Linkage Consent Request
25.3.2.2 Wording of the Linkage Consent Request
25.3.2.3 Active Versus Passive Consent
25.3.2.4 Obtaining Linkage Consent in Longitudinal Surveys
25.4 Erroneous Linkage with Unique Identifiers
25.5 Erroneous Linkage with Nonunique Identifiers
25.5.1 Common Nonunique Identifiers When Linking Data on People
25.5.2 Common Nonunique Identifiers When Linking Data on Establishments
25.6 Applications and Practical Guidance
25.6.1 Applications
25.6.2 Practical Guidance
25.6.2.1 Initial Data Quality
25.6.2.2 Preprocessing
25.7 Conclusions and Take-Home Points
References
Index
Notes on Contributors

Manfred Antoni
Research Data Centre (FDZ)
Institute for Employment Research (IAB)
Nuremberg
Germany

Christopher Antoun
Center for Survey Measurement
U.S. Census Bureau
Suitland, MD
USA

Reg Baker
Marketing Research Institute International
Ann Arbor, MI
USA

Stefan Bender
Research Data and Service Centre
Deutsche Bundesbank
Frankfurt am Main
Germany

Grant Benson
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Heather Bergdahl
Process Department
Statistics Sweden
Stockholm
Sweden

Marcus E. Berzofsky
Division for Statistics and Data Science
RTI International
Research Triangle Park, NC
USA

Paul P. Biemer
Social, Statistical, and Environmental Sciences
RTI International
Research Triangle Park, NC
Odum Institute for Research in Social Science
University of North Carolina
Chapel Hill, NC
USA

Paul Burton
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Christine Bycroft
Statistics New Zealand
Wellington
New Zealand

Jennifer Hunter Childs
Research and Methodology Directorate
U.S. Census Bureau
Washington, DC
USA

Sue Connor
Westat
Rockville, MD
USA
Notes on Contributors

Frederick G. Conrad
Survey Research Center
University of Michigan
Ann Arbor, MI
Joint Program in Survey Methodology
University of Maryland
College Park, MD
USA

Mick P. Couper
Survey Research Center
University of Michigan
Ann Arbor, MI
Joint Program in Survey Methodology
University of Maryland
College Park, MD
USA

Edith de Leeuw
Department of Methodology and Statistics
Utrecht University
Utrecht
The Netherlands

Stephanie Eckman
Survey Research Division
RTI International
Washington, DC
USA

Brad Edwards
Westat
Rockville, MD
USA

Barbara Felderer
Collaborative Research Center SBF 884
“Political Economy of Reforms”
University of Mannheim
Mannheim
Germany

Jamie Griffin
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Heidi Guyer
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Kristen Cibelli Hibben
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Daniela Hochfellner
Center for Urban Science and Progress
New York University
New York, NY
USA

Anders Holmberg
Statistics Norway
Oslo
Norway

Joop Hox
Department of Methodology and Statistics
Utrecht University
Utrecht
The Netherlands

Yuli Patrick Hsieh
Survey Research Division
RTI International
Chicago, IL
USA

Frost Hubbard
Survey Solutions Division
IMPAQ International
Columbia, MD
USA

Andrew L. Hupp
Survey Research Center
University of Michigan
Ann Arbor, MI
USA
Joost Kappelhof
Department of Education, Minorities, and Methodology
Institute for Social Research/SCP
The Hague
The Netherlands

Alan F. Karr
Center of Excellence for Complex Data Analysis
RTI International
Research Triangle Park, NC
USA

Jennifer Kelley
Institute for Social and Economic Research
University of Essex
Colchester
UK

Meena Khare
National Center for Health Statistics
Centers for Disease Control and Prevention
Hyattsville, MD
USA

Yumi Kim
Department of Research Methods
Market Strategies International
Livonia, MI
USA

Antje Kirchner
Department of Sociology
University of Nebraska-Lincoln
Lincoln, NE
Survey Research Division
RTI International
Research Triangle Park, NC
USA

Thomas Klausch
Department for Epidemiology and Biostatistics
VU University Medical Center
Amsterdam
The Netherlands

Frauke Kreuter
Joint Program in Survey Methodology
University of Maryland
College Park, MD
USA
Department of Sociology
University of Mannheim
Mannheim
Statistical Methods Group
Institute for Employment Research (IAB)
Nuremberg
Germany

John LaFrance
Market Strategies International
Livonia, MI
USA

Thomas Laitila
Department of Research and Development Statistics Sweden
Department of Statistics
Örebro University School of Business
Örebro
Sweden

JiaoJiao Li
Market Strategies International
Livonia, MI
USA

Karin Lindgren
Process Department Statistics Sweden
Stockholm
Sweden

Peter J. Lugtig
Institute for Social and Economic Research
University of Essex
Colchester
UK
Department of Methodology and Statistics
Utrecht University
Utrecht
The Netherlands
Notes on Contributors

Lars E. Lyberg
Inizio
Stockholm
Sweden

Peter Lynn
Institute for Social and Economic Research
University of Essex
Colchester
UK

Aaron Maitland
Westat
Rockville, MD
USA

Aigul Mavletova
Department of Sociology
National Research University Higher School of Economics
Moscow
Russia

Peter Ph. Mohler
University of Mannheim
Mannheim
Germany

William D. Mosher
Bloomberg School of Public Health
Johns Hopkins University
Baltimore, MD
USA

Mary H. Mulry
Research and Methodology Directorate
U.S. Census Bureau
Washington, DC
USA

Joe Murphy
Survey Research Division
RTI International
Chicago, IL
USA

Elizabeth M. Nichols
Research and Methodology Directorate
U.S. Census Bureau
Washington, DC
USA

Anders Norberg
Process Department
Statistics Sweden
Stockholm
Sweden

Daniel L. Oberski
Department of Methodology and Statistics
Utrecht University
Utrecht
The Netherlands

Beth-Ellen Pennell
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Gregg Peterson
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Vicki J. Pineau
NORC at the University of Chicago
Chicago, IL
USA

Joseph W. Sakshaug
Cathie Marsh Institute for Social Research
University of Manchester
Manchester
UK

Department of Statistical Methods
Institute for Employment Research (IAB)
Nuremberg
Germany
Michael F. Schober
Department of Psychology
New School for Social Research
New York, NY
USA

James A. Singleton
National Center for Immunization and Respiratory Diseases
Centers for Disease Control and Prevention
Atlanta, GA
USA

Benjamin Skalland
NORC at the University of Chicago
Chicago, IL
USA

Philip J. Smith
National Center for Immunization and Respiratory Diseases
Centers for Disease Control and Prevention
Atlanta, GA
USA

Diana Maria Stukel
FHI 360
Washington, DC
USA

Can Tongur
Process Department
Statistics Sweden
Stockholm
Sweden

Roger Tourangeau
Westat
Rockville, MD
USA

Dennis Trewin
Former Australian Statistician
Australian Bureau of Statistics
Canberra
Australia

James Wagner
Survey Research Center
University of Michigan
Ann Arbor, MI
Joint Program in Survey Methodology
University of Maryland
College Park, MD
USA

Brady T. West
Survey Research Center
University of Michigan
Ann Arbor, MI
Joint Program in Survey Methodology
University of Maryland
College Park, MD
USA

Kirk M. Wolter
NORC at the University of Chicago
Chicago, IL
USA

Gelaye Worku
Department of Statistics
Stockholm University
Stockholm
Sweden

Yingfu Xie
Process Department
Statistics Sweden
Stockholm
Sweden

H. Yanna Yan
Survey Research Center
University of Michigan
Ann Arbor, MI
USA

Ting Yan
Methodology Unit
Westat
Rockville, MD
USA
Notes on Contributors

David Yankey
National Center for Immunization and Respiratory Diseases
Centers for Disease Control and Prevention
Atlanta, GA
USA

Wei Zeng
NORC at the University of Chicago
Chicago, IL
USA

Zhen Zhao
National Center for Immunization and Respiratory Diseases
Centers for Disease Control and Prevention
Atlanta, GA
USA
Preface

Total survey error (TSE) refers to the accumulation of all errors that may arise in the design, collection, processing, and analysis of survey data. In this context, a survey error can be defined as any error contributing to the deviation of an estimate from its true parameter value. Survey errors arise from misspecification of concepts, sample frame deficiencies, sampling, questionnaire design, mode of administration, interviewers, respondents, data capture, missing data, coding, and editing. Each of these error sources can diminish the accuracy of inferences derived from the survey data. A survey estimate will be more accurate when bias and variance are minimized, which occurs only if the influence of TSE on the estimate is also minimized. In addition, if major error sources are not taken into account, various measures of margins of error are understated, which is a major problem for the survey industry and the users of survey data.

Because survey data underlie many public policy and business decisions, a thorough understanding of the effects of TSE on data quality is needed. The TSE framework, the focus of this book, is a valuable tool for understanding and improving survey data quality. The TSE approach summarizes the ways in which a survey estimate may deviate from the corresponding parameter value. Sampling error, measurement error, and nonresponse error are the most recognized sources of survey error, but the TSE framework also encourages researchers not to lose sight of the less commonly studied error sources, such as coverage error, processing error, and specification error. It also highlights the relationships between errors and the ways in which efforts to reduce one type of error can increase another, resulting in an estimate with more total error. For example, efforts to reduce nonresponse error may unintentionally lead to measurement errors, or efforts to increase frame coverage may lead to greater nonresponse.

This book is written to provide a review of the current state of the field in TSE research. It was stimulated by the first international conference on TSE that was held in Baltimore, Maryland, in September 2015 (http://www.TSE15.org). Dubbed TSE15, the conference had as its theme, “Improving Data Quality in the Era of Big Data.” About 140 papers were presented at the conference which was attended by approximately 300 persons. The conference itself was the culmination of a series of annual workshops on TSE called the International TSE Workshops (ITSEWs) which began in 2005 and still continue to this day. This book is an edited volume of 25 invited papers presented at the 2015 conference spanning a wide range of topics in TSE research and applications.

TSE15 was sponsored by a consortium of professional organizations interested in statistical surveys—the American Association of Public Opinion Research (AAPOR), three sections of the American Statistical Association (Survey Research Methods, Social Statistics, and Government Statistics), the European Survey Research Association (ESRA), and the World Association of Public Opinion Research (WAPOR). In addition, a number of organizations offered financial support for the conference and this book. There were four levels of contributions. Gallup,
Inc. and AC Nielsen contributed at the highest level. At the next highest level, the contributors were NORC, RTI International, Westat, and the University of Michigan (Survey Research Center). At the third level were Mathematica Policy Research, the National Institute of Statistical Sciences (NISS), and Iowa State University. Finally, the Council of Professional Associations on Federal Statistics (COPAFS) and ESOMAR World Research offered in-kind support. We are deeply appreciative of the sponsorship and support of these organizations which made the conference and this book possible.

Stephanie Eckman (RTI International) and Brad Edwards (Westat) cochaired the conference and the organizing committee, which included Paul P. Biemer (RTI International), Edith de Leeuw (Utrecht University), Frauke Kreuter (University of Maryland), Lars E. Lyberg (Inizio), N. Clyde Tucker (American Institutes for Research), and Brady T. West (University of Michigan). The organizing committee also did double duty as coeditors of this volume. Paul P. Biemer led the editorial committee.

This book is divided into five sections, each edited, primarily, by three members of the editorial team. These teams worked with the authors over the course of about a year and were primarily responsible for the quality and clarity of the chapters. The sections and their editorial teams were the following.

Section 1: The Concept of TSE and the TSE Paradigm (Editors: Biemer, Edwards, and Lyberg). This section, which includes Chapters 1 through 4, provides conceptual frameworks useful for understanding the TSE approach to design, implementation, evaluation, and analysis and how the framework can be extended to encompass new types of data and their inherent quality challenges.

Section 2: Implications for Survey Design (Editors: De Leeuw, Kreuter, and Eckman). This section includes Chapters 5 through 11 and provides methods and practical applications of the TSE framework to multiple-mode survey designs potentially involving modern data collection technologies and multinational and multicultural survey considerations.

Section 3: Data Collection and Data Processing Applications (Editors: Edwards, Eckman, and de Leeuw). This section includes Chapters 12 through 15 and focuses on issues associated with applying the TSE framework to control costs and errors during data collection activities.

Section 4: Evaluation and Improvement (Editors: West, Biemer, and Tucker). This section includes Chapters 16 through 21 and describes a range of statistical methods and other approaches for simultaneously evaluating multiple error sources in survey data and mitigating their effects.

Section 5: Estimation and Analysis (Editors: Kreuter, Tucker, and West). This section includes Chapters 22 through 25 which deal with issues such as the appropriate analysis of survey data subject to sampling and nonsampling errors, potential differential biases associated with data collected by mixed modes and errors in linking records, and reducing these errors in modeling, estimation, and statistical inferences.

The edited volume is written for survey professionals at all levels, from graduate students in survey methodology to experienced survey practitioners wanting to imbue cutting-edge principles and practices of the TSE paradigm in their work. The book highlights use of the TSE framework to understand and address issues of data quality in official statistics and in social, opinion, and market research. The field of statistics is undergoing a revolution as data sets get bigger (and messier), and understanding the potential for data errors and the various means to control and prevent them is more important than ever. At the same time, survey organizations are challenged to collect data more efficiently without sacrificing quality.

Finally, we, the editors, would like to thank the authors of the chapters herein for their diligence and support of the goal of providing this current overview of a dynamic field of research.
We hope that the significant contributions they have made in these chapters will be multiplied many times over by the contributions of readers and other methodologists as they leverage and expand on their ideas.

Paul P. Biemer
Edith de Leeuw
Stephanie Eckman
Brad Edwards
Frauke Kreuter
Lars E. Lyberg
N. Clyde Tucker
Brady T. West