MODERNISATION, MECHANISATION AND INDUSTRIALISATION OF CONCRETE STRUCTURES
MODERNISATION, MECHANISATION
AND INDUSTRIALISATION
OF CONCRETE STRUCTURES

Edited by

Kim S. Elliott
Precast Consultant, Derbyshire, UK

Zuhairi Abd. Hamid
Construction Research Institute of Malaysia (CREAM), Kuala Lumpur, Malaysia

WILEY Blackwell
Contents

About the Editors ... xi
Notes on Contributors ... xiii
Preface .. xvii

Part 1 Modernisation of Precast Concrete Structures

1 Historical and Chronological Development of Precast Concrete Structures

Kim S. Elliott

1.1 The five periods of development and optimisation .. 3
1.2 Developing years and the standardisation period ... 26
1.3 Optimisation and the lightweight period .. 34
1.3.1 Minimising beam and slab depths and structural zones 34
1.3.2 Orientation rule ... 38
1.3.3 Composite and continuous floor slabs ... 38
1.3.4 Composite and continuous internal beams ... 43
1.4 The thermal mass period ... 46
1.4.1 Background to fabric energy storage in precast framed and wall structures ... 46
1.4.2 Admittance and cooling capacity .. 48
1.4.3 Thermal resistance and U-values for precast ground and suspended floors ... 51
1.4.4 Conclusion to FES, cooling and thermal transmission 58
References .. 59

2 Industrial Building Systems (IBS) Project Implementation

Kim S. Elliott

2.1 Introduction ... 61
2.1.1 Definition of IBS ... 63
2.1.2 Advantages of IBS .. 64
2.1.3 Sustainability of IBS .. 67
2.1.4 Drawbacks of IBS ... 68
2.2 Routes to IBS procurement ... 69
2.2.1 Definitions ... 69
2.2.2 Preliminaries ... 70
2.2.3 Project design stages ... 71
2.2.4 Design and detailing practice 79
2.2.5 Structural design calculations and project drawings 80
2.2.6 Component schedules and the engineer’s instructions to factory and site 87
2.3 Precast concrete IBS solution to seven-storey skeletal frame 89
2.4 Manufacture of precast concrete components and ancillaries 93
2.4.1 Requirements and potential for automation 93
2.4.2 Floor slabs by slip-forming and extrusion techniques 93
2.4.3 Comparisons of slip-forming and extrusion techniques, and r.c. slabs 102
2.4.4 Hydraulic extruder 102
2.4.5 Reinforced hollow core slabs 103
2.4.6 Automated embedment machines for mesh and fabrics in double-tee slabs 106
2.4.7 Optimised automation 109
2.4.8 Table top wall panels 110
2.4.9 Production of precast concrete wall panels using vertical circulation system 115
2.4.10 Control of compaction of concrete 118
2.4.11 Automation of rebar bending and wire-welded cages 118
2.5 Minimum project sizes and component efficiency for IBS 120
2.6 Design implications in construction matters 120
2.7 Conclusions 122
References 124

3 Best Practice and Lessons Learned in IBS Design, Detailing and Construction 125
Kim S. Elliott
3.1 Increasing off-site fabrication 125
3.2 Standardisation 133
3.3 Self-compacting concrete for precast components 137
3.4 Recycled precast concrete 142
3.5 Building services 144
3.6 Conclusions 147
References 147

4 Research and Development Towards the Optimisation of Precast Concrete Structures 149
Kim S. Elliott and Zuhairi Abd. Hamid
4.1 The research effort on precast concrete framed structures 149
4.1.1 Main themes of innovation, optimisation and implementation 149
4.1.2 Structural frame action and the role of connections 151
4.1.3 Advancement and optimisation of precast elements 156
4.1.4 Shear reduction of hcu on flexible supports 157
4.1.5 Continuity of bending moments at interior supports 159
4.1.6 Horizontal diaphragm action in hollow core floors without structural toppings 160
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Precast frame connections</td>
<td>vii</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Background to the recent improvements in frame behaviour</td>
<td>162</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Moment-rotation of beam to column connections</td>
<td>162</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Research and development of precast beam-to-column connections</td>
<td>167</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Column effective length factors in semi-rigid frames</td>
<td>170</td>
</tr>
<tr>
<td>4.3</td>
<td>Studies on structural integrity of precast frames and connections</td>
<td>170</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Derivation of catenary tie forces</td>
<td>170</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>173</td>
</tr>
</tbody>
</table>

Part 2 Mechanisation and Automation of the Production of Concrete Elements

5 Building Information Modelling (BIM) and Software for the Design and Detailing of Precast Structures

Thomas Leopoldseder and Susanne Schachinger

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Building information modelling (BIM)</td>
<td>179</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>5.1.2</td>
<td>History and ideas</td>
<td>180</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Types of BIM</td>
<td>183</td>
</tr>
<tr>
<td>5.1.4</td>
<td>BIM around the world</td>
<td>185</td>
</tr>
<tr>
<td>5.1.5</td>
<td>BIM and precast structures</td>
<td>187</td>
</tr>
<tr>
<td>5.2</td>
<td>Technologies</td>
<td>188</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Industry foundation classes (IFC)</td>
<td>188</td>
</tr>
<tr>
<td>5.2.2</td>
<td>IFC data file formats and data exchange technologies</td>
<td>192</td>
</tr>
<tr>
<td>5.2.3</td>
<td>BIM model software</td>
<td>195</td>
</tr>
<tr>
<td>5.3</td>
<td>BIM in precast construction</td>
<td>198</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Project pricing for precast structures based on 3D models</td>
<td>198</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Technical engineering</td>
<td>198</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Production data and status management</td>
<td>202</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Logistics, mounting, and quality management</td>
<td>206</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>207</td>
</tr>
</tbody>
</table>

6 Mechanisation and Automation in Concrete Production

Robert Neubauer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Development of industrialization and automation in the concrete prefabrication industry</td>
<td>210</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Stationary flexible forms, tables and formwork in a prefabrication plant</td>
<td>211</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Long-bed production</td>
<td>213</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Pallet circulation plant</td>
<td>217</td>
</tr>
<tr>
<td>6.1.4</td>
<td>CAD-CAM: the path to automation</td>
<td>221</td>
</tr>
<tr>
<td>6.2</td>
<td>CAD-CAM BIM from Industry 2.0 to 4.0</td>
<td>224</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Production of non-variable parts versus production in lot size one</td>
<td>224</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.2.2</td>
<td>IBS – suitable prefabricated products for mechanization and automation</td>
<td>227</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Just-in-time planning and production using ERP systems</td>
<td>234</td>
</tr>
<tr>
<td>6.2.4</td>
<td>MES systems for mechanization and automation</td>
<td>238</td>
</tr>
<tr>
<td>6.3</td>
<td>Automation methods</td>
<td>242</td>
</tr>
<tr>
<td>6.3.1</td>
<td>From simple to the highly sophisticated</td>
<td>243</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Automation methods</td>
<td>243</td>
</tr>
<tr>
<td>6.4</td>
<td>Integrated and automated prefabricated production process</td>
<td>286</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Structures</td>
<td>287</td>
</tr>
<tr>
<td>6.4.2</td>
<td>ERP, CAD, MES, PROD machines, HMI</td>
<td>289</td>
</tr>
<tr>
<td>6.4.3</td>
<td>HMI – integrating staff into the process</td>
<td>289</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Smart factory, industry 4.0 – integration into BIM</td>
<td>291</td>
</tr>
<tr>
<td>6.4.5</td>
<td>QM included</td>
<td>293</td>
</tr>
<tr>
<td>6.5</td>
<td>Limits of automation</td>
<td>298</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Labour cost versus automation</td>
<td>298</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Costs, necessary skills and ROI</td>
<td>298</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary and outlook</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Part 3 Industrialisation of Concrete Structures</td>
<td>301</td>
</tr>
<tr>
<td>7</td>
<td>Lean Construction – Industrialisation of On-site Production Processes</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Gerhard Girmscheid</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Work process planning (WPP)</td>
<td>304</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Construction production planning process – introduction</td>
<td>304</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Construction production process – principles and sequence</td>
<td>310</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Systematic basic production process planning – steps</td>
<td>311</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Continuous construction process management</td>
<td>313</td>
</tr>
<tr>
<td>7.2</td>
<td>Construction production process planning procedure</td>
<td>314</td>
</tr>
<tr>
<td>7.3</td>
<td>Work process planning (WPP) – work execution estimation</td>
<td>322</td>
</tr>
<tr>
<td>7.4</td>
<td>Work process planning (WPP) – planning the processes and construction methods</td>
<td>329</td>
</tr>
<tr>
<td>7.5</td>
<td>Planning the execution process</td>
<td>332</td>
</tr>
<tr>
<td>7.6</td>
<td>Procedure for selecting construction methods and processes</td>
<td>336</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Objectives when comparing construction methods</td>
<td>336</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Methodological approach to comparing construction methods</td>
<td>338</td>
</tr>
<tr>
<td>7.7</td>
<td>Conclusions to Chapter 7</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>344</td>
</tr>
<tr>
<td>8</td>
<td>Lean Construction – Industrialisation of On-site Production Processes</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>Gerhard Girmscheid</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction – top-down / bottom-up work planning scheduling and resource planning</td>
<td>347</td>
</tr>
</tbody>
</table>
8.2 Scheduling and resource planning
8.3 Site Logistics
8.3.1 Logistics planning
8.3.2 Transport logistics
8.3.3 Delivery, storage and turnaround logistics
8.3.4 Planning storage areas – storage space management
8.3.5 Disposal logistics
8.4 Weekly work plans
8.4.1 Lean construction – weekly work program
8.4.2 Equipment and material call-up
8.4.3 Organizing the construction workflow, construction methods, and health and safety
8.5 Construction site controlling process
8.5.1 Performance specifications
8.5.2 Controlling weekly work performance
8.6 CIP – the continuous improvement process
8.7 Conclusions
References

9 New Cooperative Business Model – Industrialization of Off-Site Production
Julia Selberherr
9.1 Introduction
9.2 Objectives of the new business model
9.3 Modelling
9.3.1 Formal structuring
9.3.2 Contextual configuration of the outside view: development of the new service offer
9.3.3 Contextual configuration of the inside view: Realization of the value creation process
9.3.4 Overview
9.4 Conclusion
References

10 Retrospective View and Future Initiatives in Industrialised Building Systems (IBS) and Modernisation, Mechanisation and Industrialisation (MMI)
Zuhairi Abd. Hamid, Foo Chee Hung, and Ahmad Hazim Abdul Rahim
10.1 Industrialisation of the construction industry
10.2 Overview on global housing prefabrication
10.3 Housing prefabrication in Malaysia – the industrialisation building system (IBS)
10.3.1 Chronology of IBS development in Malaysia
10.3.2 IBS roadmap
10.3.3 IBS adoption level in Malaysia
10.4 Social acceptability of IBS in relation to housing
10.5 IBS in future – opportunity for wider IBS adoption 443
 10.5.1 Greater Kuala Lumpur 444
 10.5.2 Affordable housing 446
10.6 Conclusion 450
References 450

11 Affordable and Quality Housing Through Mechanization, Modernization and Mass Customisation 453
Zuhairi Abd. Hamid, Foo Chee Hung, and Gan Hock Beng
11.1 Introduction 453
11.2 Design for flexibility – insight from the vernacular architecture 457
11.3 Scope of flexibility in residential housing 459
11.4 Divergent Dwelling Design (D3) – proposed mass housing system for today and tomorrow 461
11.5 Design principles of D3 464
 11.5.1 The design of the unit plan 465
 11.5.2 Unit configurations design 466
 11.5.3 Sustainable strategies design 467
 11.5.4 Structure and construction design 468
11.6 Conclusion 472
References 473

Index 475
About the Editors

Kim Stephen Elliott, Precast Consultant, Derbyshire, UK

Kim Stephen Elliott is a consultant to the precast industry in the UK and Malaysia. He was Senior Lecturer in the School of Civil Engineering at Nottingham University, UK from 1987–2010 and was formerly at Trent Concrete Structures Ltd. UK. He is a member of fib Commission 6 on Prefabrication where he has made contributions to six manuals and technical bulletins, and is the author of Multi-Storey Precast Concrete Frame Structures (1996, 2013) and Precast Concrete Structures (2002, 2016) and co-authored The Concrete Centre’s Economic Concrete Frames Manual (2009). He was Chairman of the European research project COST C1 on Semi-Rigid Connection in Precast Structures (1992–1999). He has lectured on precast concrete structures 45 times in 16 countries worldwide (including Malaysia, Singapore, Korea, Brazil, South Africa, Barbados Austria, Poland, Portugal, Spain, Scandinavia and Australia) and at 30 UK universities.

Zuhairi Abd Hamid, Construction Research Institute of Malaysia (CREAM), Kuala Lumpur, Malaysia

Zuhairi Abd. Hamid has more than 32 years of experience in the construction industry. His expertise lies in structural dynamics, industrialised building systems, strategic IT in construction and Facilities Management. He is active in engineering education and research and has been appointed by universities in various capacities; from Adjunct Professor, Research Fellow and member of the industry Advisory Panel. He is the Regional Director of South East Asia and Guest Member for the UN support International Council for Research and Innovation in Building and Construction (CIB). Currently, as the Executive Director at CREAM, he actively engages in construction research for industrial publications in Malaysia.
Notes on Contributors

Ahmad Hazim Abdul Rahim, Construction Research Institute of Malaysia (CREAM), Kuala Lumpur, Malaysia

Ahmad Hazim Abdul Rahim is currently the Manager at Construction Research Institute of Malaysia. He has been involved in research and development (R&D) fields in construction and civil engineering for more than 15 years. He currently heads the structural engineering laboratory at CREAM, an ISO/IEC 17025 accredited laboratory and in charge of the technical and quality aspect of the day to day operational of the laboratory. He holds a B. Eng (Hons) in Civil Engineering and completed his Masters in Engineering Science in 2007. His area of interests is conformity assessment of structural component, full-scale structural test and construction materials testing and evaluation. He has published various publications ranging from books to peer-reviewed journals, technical papers, proceedings and articles.

Foo Chee Hung, Construction Research Institute of Malaysia (CREAM), Kuala Lumpur, Malaysia

Foo Chee Hung is a researcher from the Construction Research Institute of Malaysia (CREAM) – a research arm under the Construction Industry Development Board Malaysia (CIDB). He is currently the Head of Consultancy and Technical Opinion Unit.

He obtained both his first (Environmental Engineering) and master (SHE Engineering) degree at the University of Malaya. He then further pursued his PhD (Urban Engineering) in the University of Tokyo. His research interest is in sustainability, affordable housing, green building, building quality assessment, Industrialized Building System (IBS), and urban ecosystem.

He is a member of the Institution of Engineers Malaysia (IEM), and the GreenRE manager.
Gan Hock Beng, G&A Architect

Gan Hock Beng is the Founder of G&A Architect. He is currently engaged in a number of residential and commercial projects in Georgetown, Penang. The projects he has worked on include landmarks like Times Square, Moonlight Bay, University Place, The View, etc. He has been the invited speaker at conferences organized by the Singapore Ministry of Housing, and the South Korea Ministry of Housing. He was given the award of “Most Innovative Design” in a competition organized by the Ministry of Housing Malaysia.

Susanne Schachinger, Precast Software Engineering, Wals-Siezenheim, Austria

Susanne Schachinger is an International Sales Representative at Precast Software Engineering. As a co-author she brings in expertise from her daily work with precast companies in various countries. University studies in Graz (Austria), Volgograd (Russia) and Prague (Czech Republic) led her to the consumer goods industry before she joined Precast Software Engineering in 2011. She represents the company at IPHA (International Prestressed Hollowcore Association).

Thomas Leopoldseder, Precast Software Engineering, Wals-Siezenheim, Austria

Thomas Leopoldseder works as an international BIM Consultant and Product Manager of TIM (Technical Information Manager) at Precast Software Engineering in Austria (Part of Nemetschek Group) which is developing high-end CAD and BIM solutions for the precast industry. After studying at the Vienna University of Economics and Business, he first worked as an IT consultant and then at various levels (CFO, General Manager) in the precast industry. He is now one of the leading experts in BIM solutions concerning the precast industry.

Robert Neubauer, SAA Software Engineering GmbH, Austria

Neubauer has been a Managing Partner at SAA Software Engineering in Vienna, Austria since 1999, leading the development of CAM and Control-Software for the precast concrete manufacturing industry. In 1986 he was engaged in automation in the construction industry, realizing the first control- and master-computer-software for the first automated precast concrete plant. After graduating in mechanical engineering at the Technical University of Vienna in 1993 he was previously at Ainedter Industry Automation and at Sommer Automatisierungstechnik (Austria).

During the past 30 years, Mr Neubauer has been working on automation in the prefabrication industry for construction, developing and conducting development for new solutions, collaborating with different vendors for plants and machinery and leading committees. At the end of 2015, SAA merged with RIB Software AG/Germany,
and as Managing Partner, he is accompanying RIB SAA Software Engineering GmbH into a BIM-5D integrated future for smart production of construction systems.

Gerhard Girmscheid, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland

Gerhard Girmscheid, studied construction engineering in Darmstadt (Germany), occupying management posts at German and American construction enterprises, involving assignments abroad that included major construction sites in Egypt and Thailand, as well as the fourth tunnel tube under the River Elbe in Hamburg. Since 1996, he has been Professor of Construction Business Management and Construction Process Engineering at ETH Zurich (Switzerland). He was recently awarded emeritus status.

In research and teaching, Professor Girmscheid focuses on construction processes, and strategic and operational construction enterprise management. His SysBau® research targets improved, more efficient, and new sustainable life cycle-oriented construction processes and portfolios aimed at strengthening the innovative and competitive abilities of construction industry providers. His research activities have produced numerous dissertations and research reports, together with more than 100 peer-reviewed specialist publications. He has written several books on construction enterprise and process management.

He sits on the Board of Directors of general contracting and property company Priora AG, and prefabrication specialists Müller-Stein AG. He also manages CTT-Consulting in Lenzburg (Switzerland), advising companies and training staff on improving bidding and execution processes, managing claims, and implementation.

Julia Selberherr, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland

Julia Selberherr received her Civil Engineering diploma from the Vienna University of Technology in 2009 as well as her Business Management diploma from the Vienna University of Economics and Business in 2010. She then conducted a research project focused on the provision of sustainable life-cycle offers in the building industry at the Institute of Construction and Infrastructure Management at the Swiss Federal Institute of Technology. Her research is dedicated to the optimization of operational and strategic processes across a building's life cycle through the integrated cooperation of the key stakeholder using customizable industrial production technologies. She has contributed several international journal papers and conference publications establishing innovative approaches to a life-cycle service provision in the building industry. Dr. Selberherr completed the project with the development of a new business model in her PhD thesis in 2014. As a renowned expert in the field of organization and process design for sustainable building, she is currently working as a senior consultant in the real estate industry in Zurich.
The modernisation and industrialisation of concrete structures, through the means of prefabrication of concrete elements together with the computerization of design, detailing and scheduling, is taking an awful long time to come to fruition. The once aspired paperless journey from the architect’s concept to the factory floor and beyond is gradually closing in. Critics may cite the post WW2 boom in the construction of high-rise apartment buildings in part of northern and eastern Europe as 70-year-old industrialisation, but it was nothing more than concrete construction on such a large scale that it was thought to be “industrialisation” - the linear and manual processes of design, detailing, scheduling and manufacture were no more advanced than early twentieth-century construction.

There was little automation in the concrete industry until the combined technologies of long line pretensioning of steel wires and the extrusion of semi-dry concrete lead to such elements as prefabricated hollow core floor slabs in the 1950s. Except for a number of step-change advancements such as (i) the hydraulic extruder, (ii) the “carousel” method of casting and moving beds, and (iii) higher performance/strength concrete, hollow core units are still made in much the same way. Changes came in the 1970s after the Japanese taught the Europeans and Americans how they made cars – with forward/sideways/up/down production of the individual components leading to the whole. We now see such automotive methods used in the carousel table-top production of concrete wall panels and façade units, and together with CAD/CAM, Auto-CAD systems, TIM scheduling, and the automated supply of drawings and component schedules to the factories, the age of modernisation, mechanisation and industrialization (MMI) of concrete structures has finally arrived.

Architects and consulting engineers are still wary of the term “building systems”, with images of shoe-box designs typified by the 1960s national building frames, carelessly exploiting modularization and standardisation possible in precast concrete. Today fully bespoke and individually tailored precast concrete elements can be designed and erected into many diverse forms to cover the huge spectrum of building architecture – all of which are industrialised by MMI. The term IBS (Industrialised Building Systems) can now be used with architectural and engineering freedom, for example, Sydney Opera House’s torus-shaped prestressed beams and tiled facades. During a precast concrete workshop in Singapore in the mid 2000s an architect asked (something like) “what are the major features that distinguish precast concrete
buildings from cast *insitu*. The reply, given by one of the authors of this book, was that “precast is used when the client or architect sees concrete as something special – both structurally of aesthetically, and maximises the operations that you can only carry out in the controlled environment of a factory”, and so on.

The move to increased automation in the factory has coincided with the automation of spatial design – the use of three-dimensional co-ordinate orthogonal geometry, well known to school boys, to build 3D models from rectilinear 2D building plans and elevations, now known as BIM (Building Information Modelling) and the accompanying software for the design and detailing of precast (and steel, timber, etc.) structures. Professor C. J. Anumba of Pennsylvania State University addressed a Seminar & Workshop on the Developments and Future Directions in BIM (Kuala Lumpur, 2012) thus *Developments in BIM have resulted in significant industry interest and uptake. Most new building projects are dependent on BIM for resolving coordination, schedule, integration, estimating and other functions. Advances in information and communication technologies are continuing to open up new opportunities and applications. As such, more needs to be done to fully exploit the potential of these technologies and to meet the requirements of increasingly complex projects.*

Against this background of MMI and BIM the aims and objectives of this book were, as conceived by Dr Zuhairi, from CREAM (Construction Research Institute of Malaysia), to provide a concise text to show how the modernisation, mechanisation and industrialisation of prefabricated concrete structures can be achieved through the knowledge of best practice, information modelling, and the procedures and management of factory engineered concrete products and systems. The main objectives were to:

i. show how previous R&D and present design and manufacturing techniques can be best exploited for the construction of modern precast concrete structures,
ii. show how the IBS ethos can control the supply chain from the client to sub-contractors, and can best utilise BIM methods and design/detailing software,
iii. introduce the best concepts of automation and robotics in concrete production, and
iv. exploit the industrialisation of off-site production and on-site processes, including low cost housing in south east Asia.

The authors were selected from the UK, Germany, Switzerland, Austria and Malaysia, each having expertise and a (fairly) long history in items (i) to (iv). Of significance was Mr Robert Neubauer of SAA Software Engineering, a production/structural engineer able to harmonise the requirements of prefabrication in design with automated production; Mr Thomas Leopoldseder and Ms Suzanna Schachinger, of Precast Software, with abilities to exploit BIM and related software to the full advantage of precast solutions; Prof Gerhard Girmsheid and Dr Julia Selberherr, of ETH (Swiss Federal Institute of Technology, Zurich) specialising in the respective roles of industrialisation of off-site and on-site construction; CREAM consultants Dr Zuhairi, Mr Gan Hock Beng, Foo Chee Hung and Ahmad Hazim Abdul Rahim responsible for the technical advancements of IBS for low-cost housing; and Dr Kim S Elliott, precast consultant, summarising the modernisation and optimization of precast and prestressed elements and structures.
This book is divided into three key themes, as reflected in its title:

Part 1: MODERNISATION

Chapter 1: Historical and Chronological Development of Precast Concrete Structures
Chapter 2: Industrial Building Systems (IBS) Project Implementation
Chapter 3: Best Practice and Lessons Learned in IBS Design, Detailing and Construction

Part 2: MECHANISATION AND AUTOMATION

Chapter 4: Research and Development Towards the Optimisation of Precast Concrete Structures
Chapter 5: Building Information Modelling (BIM) and Software for the Design and Detailing of Precast Structures
Chapter 6: Mechanisation, Automation and Robotics in Concrete Production

Part 3: INDUSTRIALISATION

Chapter 7: Lean Construction, Part 1 – Industrialisation of On-Site Production Processes
Chapter 8: Lean Construction, Part 2 – Planning and Execution of Construction Processes
Chapter 9: New Cooperative Business Model - Industrialisation of Off-Site Production
Chapter 10: Retrospective View and Future Initiatives in IBS and MMI
Chapter 11: Affordable and Quality Housing Through Mechanization, Modernization and Mass Customization

A number of chapters address the issues of modern housing. Concrete has great potential to offer building and housing construction works towards improving the function, value, and whole life performance, especially in the era where quick, efficient, and inexpensive construction and delivery are becoming the necessity and desires of the societies. Precast concrete construction is a technology that possesses the potential to eliminate building site inconveniences, reducing the lapsed time and cost of construction, and contributing to an end product that conforms to the required standards and codes.

However, buildings and houses produced with such technology have a rigid structure, an interlocking plan, and predetermined functions, where very few of them are sufficiently open plan to enable retrofitting and reconfigurations to be made quickly, economically, and repeatedly. Moreover, various negative perceptions, opinions, and images spring to mind when considering the concept of prefabrication and standardisation in housing, as a result of a number of buildings constructed in the past making use of prefabrication were judged to be of poor quality. This book will provide insight to builders of the potential for building and housing design system that makes use of the prefabrication construction to produce a variety of housing design options that meet possible user requirements not yet identified at the design stage, while retaining principal uniformity to facilitate the execution of simple but accurate construction with a minimal initial cost.
It is believed that only by having combined design and construction systems that take advantage of mass production and mass customisation, the efficient design of offices, parking structures, shopping and residential buildings, coupled with housing affordability and liveability can be achieved. A home that can be altered with minimum effort and expense at a time of change in the lives of its owners is a home that evolves with the lifecycles of its household rather than becoming rigidly obsolete in the conventional manner. As such, the affordable housing needs to be designed in such a way that it is economically and easily adjustable, as well as adheres to the context of contemporary technology, climate adaptation, and cultural responses.
Part 1

Modernisation of Precast Concrete Structures
Chapter 1

Historical and Chronological Development of Precast Concrete Structures

Kim S. Elliott

Precast Consultant, Derbyshire, UK

An overview of the four major phases in the twentieth-century history of precast concrete construction: developing years; mass production and standardisation; lightweight structures and longer spans; thermal mass design, shows how the beneficial issues in each period has lead to the present-day movement towards modernisation, mechanisation and industrialisation (MMI) and the interface with industrialised building systems (IBS). Timelines of market share, building height, span/depth, thermal efficiency, and hybrid and mixed precast construction are drawn through the phases from 1920 to 2010. The benefits of composite and continuous construction for prestressed concrete beams and slabs have decreased the mass of the floor construction by about 30% over the past 25 years. The conclusion shows how MMI serves and suits the demand for prefabrication of concrete-framed structures.

1.1 The five periods of development and optimisation

From a historical background, the prefabrication of concrete and the development of precast concrete structures for residential, commercial and industrial buildings have passed through four major periods:

1. The Developing Years (1920–1940) including the technological breakthrough of prestressed concrete (psc) and the further advancement of reinforced concrete (rc) in terms of improvements in the strength of materials, the optimisation of design and durability and resilience of the resulting elements. Figure 1.1 shows the first use of precast concrete, called ferro-cement at the time, in a multi-storey building.
2. The Mass Production and Standardisation Period (1945–c.1970) involved rebuilding residential post-war Europe, as well as developing south east Asia, using mainly wall panel construction (Figure 1.2), and semi-automated floor slabs such as prestressed long-line extruded or slip-formed hollow core units (hcu), eventually leading to the development of modularised “national building frames”, for example, in Figure 1.3.

3. The Lightweight and Long-span Period (1970–2000), driven by the need to produce leaner structures with greater span-to-depth ratios by using composite, continuous and integrated designs in hybrid (precast with insitu concrete) and mixed materials (e.g., precast with steel, timber and masonry). Figure 1.4 shows total prefabrication of a steel frame supporting prestressed hcu having a span-depth ratio of about 40, and floor area-to-structural depth ratio of nearly 250 m²/m.

4. The Thermal Mass Period (2000 to date) responding to the demand for the sustainable and environmentally advantageous used of factory engineered concrete and off-site construction philosophies, energy storage, improving admittance of the building fabric and lowering transmittance (U-values) requirements. Figures 1.5 and 1.6 show the use of so-called “FES”, active fabric energy storage in the precast concrete elements.

There is now a new era, although some would argue this is already established in many countries, taking in the beneficial aspects of the latter day periods towards the increasingly popular trend for automated manufacture and off-site prefabrication:
Figure 1.2 Wall panel and hollow core floor slabs used in residential buildings of the 1950s being demolished in 2002.

Figure 1.3 Example of the National Building Frame, comprising modular spandrel beams, columns and slabs.
Figure 1.4 The Big Apple retail and car park near Helsinki, Finland. Sixteen m long \times 400 mm deep prestressed hollow core floors are supported on prefabricated inverted-tee steel beams, minimizing the structural depth.

Figure 1.5 Fabric energy storage at the Jubilee Library, Brighton (courtesy of Bennetts Associates Architects, London).
5. The Automated Period involving the modernisation, mechanisation and industrialisation (MMI) for the design, detailing and manufacture of concrete structures. On top of this we may add in building information management (BIM), the co-ordinated control of the building services, the structure, scheduling and construction, giving us the full spectrum of MMI.

This chapter aims to show how the (first) four major periods in the evolution, development and optimisation of precast structures has shaped the course of architectural and structural design, culminating with the types of buildings shown in Figures 1.6 and 1.7. This fifth major period will be introduced as the focus of this book develops in the subsequent chapters.

The objectives of this chapter are to analyse and criticise some of the key aspects of each period, and to show how the present has benefited from the advancements made against a background of mistakes made in the past. There are no better examples than the wall panel and framed structures shown in Figures 1.2 and 1.3, already reaching the end of their service lives after around 40 years. Taking examples from the Europe, North and South America (mainly the USA and Brazil) and south east Asia (mainly Singapore and Malaysia), lessons have been learned from the excesses of post-WW2 Europe to the streamlined buildings of twenty-first century design.

The focus of this book is on the three main types of precast concrete structures, and their compounded elements, such as columns, walls, beams, rafters, slabs and staircases. These are:

1. Skeletal frames – a beam and column framework supporting slabs and stairs, which may, depending on height, need to be stabilised by walls and/or cores. The classical skeletal frame is shown in Figure 1.7, comprising long-span psc hcu with a span-depth ratio of about 35 (for office loading), supported by psc internal beams acting compositely with the floor slab to minimise the downstand, or L-spandrel beams at the perimeter. Columns, made from high-strength concrete (up to $f_{ck} = 100 \text{ N/mm}^2$ compressive cylinder strength at 28 days) are the minimum possible width to avoid slenderness, because the framework is stabilised by only a few precast concrete shear walls or cores. The specific volume of precast concrete (mass to the whole) is less than 4%. Figure 1.8 shows how it is possible to take advantage of frame action by using the partial stiffness, known as “semi-rigid” of the beam-to-column connection, in this case for a 10-storey building with a large number of internal columns and connections.

2. Wall frames – a wall and slab structure, inherently soundproofed and stabilised by walls in one or both directions. A popular use is shown in Figures 1.9 and 1.10 for student accommodation, but also for hotels, and some hospital and college buildings. The bathroom “pod” is often totally precast. The specific volume in these buildings is around 7%.

3. Portal frames – columns and rafters making large open spaces for industrial warehouses or factories, with or without additional cross-bracing (typically steel rods of small sections) and secondary beams for internal offices. Figure 1.11 shows long-span prestressed I-shape rafters, simply supported onto stabilising deep columns, which act as vertical cantilevers from the foundation. Other options include sway frames with moment resisting eaves connections.
Figure 1.6 Modular design of the predalles enabled rapid manufacture at the Jubilee Library, Brighton (courtesy of Bennetts Associates Architects, London).

Figure 1.7 Precast skeletal frame comprising of long-span lightweight floors, beams with hidden connections, and narrow columns braced using precast shear walls.