Handbook of Composites from Renewable Materials
Handbook of Composites from Renewable Materials
Edited by Vijay Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler

Volume 1: Structure and Chemistry

Volume 2: Design and Manufacturing
ISBN: 978-1-119-22365-8

Volume 3: Physico-Chemical and Mechanical Characterization

Volume 4: Functionalization

Volume 5: Biodegradable Materials

Volume 6: Polymeric Composites
ISBN: 978-1-119-22380-1

Volume 7: Nanocomposites: Science and Fundamentals
ISBN: 978-1-119-22381-8

Volume 8: Nanocomposites: Advanced Applications

8-volume set
Handbook of Composites from Renewable Materials

Volume 6
Polymeric Composites

Edited by
Vijay Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler
To my parents and teachers who helped me become what I am today.

Vijay Kumar Thakur
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Keratin as Renewable Material to Develop Polymer Composites:</td>
<td>1</td>
</tr>
<tr>
<td>Natural and Synthetic Matrices</td>
<td></td>
</tr>
<tr>
<td>Flores-Hernandez C.G., Murillo-Segovia B.,</td>
<td></td>
</tr>
<tr>
<td>Martinez-Hernandez A.L. and Velasco-Santos C</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Keratin</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Feathers</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 Hair and Wool</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Horn</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Natural Fibers to Reinforce Composite Materials</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Keratin, an Environmental Friendly Reinforcement for Composite</td>
<td>11</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Synthetic Matrices</td>
<td>11</td>
</tr>
<tr>
<td>1.4.1.1 Petroleum-Based Polymers Reinforced with Chicken Feathers</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1.2 Synthetic Matrices Reinforced with Hair or Wool</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1.3 Synthetic Matrices Reinforced with Horn</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2 Natural Matrices</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2.1 Natural Matrices Reinforced with Chicken Feathers</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2.2 Natural Matrices Reinforced with Hair or Wool</td>
<td>24</td>
</tr>
<tr>
<td>1.5 Conclusions</td>
<td>25</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
</tbody>
</table>

2 Determination of Properties in Composites of Agave Fiber | 31 |
with LDPE and PP Applied Molecular Simulation | |
Norma-Aurea Rangel-Vazquez and Ricardo Rangel | |
2.1 Introduction | 31 |
2.1.1 Lignocellulosic Materials | 31 |
2.1.1.1 Fibers | 32 |
2.1.1.2 Agave | 33 |
2.1.1.3 Chemical Treatment of Fibers | 34 |
2.1.2 Composites | 35 |
2.1.3 Polymers
 2.1.3.1 Polyethylene
 2.1.3.2 Polypropylene (PP)

2.1.4 Molecular Modelation
 2.1.4.1 Classification
 2.1.4.2 Properties

2.2 Materials and Methods
 2.2.1 Geometry Optimization
 2.2.2 Structural Parameters
 2.2.3 FTIR
 2.2.4 Molecular Electrostatic Potential Map

2.3 Results and Discussions
 2.3.1 Geometry Optimization
 2.3.2 Deacetylation of Agave Fiber
 2.3.3 Structural Parameters
 2.3.4 FTIR
 2.3.5 Molecular Electrostatic Potential Map (MESP)

2.4 Conclusions

References

3 Hydrogels in Tissue Engineering
 Luminita Ioana Buruiana and Silvia Ioan
 3.1 Introduction
 3.2 Classification of Hydrogels
 3.3 Methods of Hydrogels Preparation
 3.4 Hydrogels Characterization
 3.4.1 Mechanical Properties
 3.4.2 Chemical-Physical Analysis
 3.4.3 Morphological Characterization
 3.4.4 Swelling Behavior
 3.4.5 Rheology Measurements
 3.5 Hydrogels Applications in Biology and Medicine
 3.5.1 Hydrogel Scaffolds in Tissue Engineering
 3.5.2 Hydrogels in Drug Delivery Systems
 3.6 Concluding Remarks

References

4 Smart Hydrogels: Application in Bioethanol Production
 Lucinda Mulko, Edith Yslas, Silvestre Bongiovanni Abel,
 Claudia Rivarola, Cesar Barbero and Diego Acevedo
 4.1 Hydrogels
 4.2 History of Hydrogels
 4.3 The Water in Hydrogels
 4.4 Classifications of Hydrogels
 4.5 Synthesis
 4.6 Hydrogels Synthesized by Free Radical Polymerization
4.7 Monomers	84
4.8 Initiators	84
4.9 Cross-Linkers	84
4.10 Hydrogel Properties	85
4.11 Mechanical Properties	87
4.12 Biocompatible Properties	87
4.13 Hydrogels: Biomedical Applications	88
4.14 Techniques and Supports for Immobilization	89
4.15 Entrapment	89
4.16 Covalent Binding	90
4.17 Cross-Linking	91
4.18 Adsorption	91
4.19 Hydrogel Applications in Bioethanol Production	92
4.20 Classification of Biofuels	92
4.21 Ethanol Properties	93
4.22 Ethanol Production	95
4.23 Feedstock Pretreatment	95
4.24 Liquefaction and Saccharification Reactions	97
4.25 Fermentation Process	97
4.26 Continuous or Discontinuous Process?	98
4.27 Simultaneous Saccharification and Fermentation (SSF) Processes	98
4.28 Yeast and Enzymes Immobilized	99
References	100

5 *Principle Renewable Biopolymers and Their Biomedical Applications* 107

İlayda Duru, Öznur Demir Oğuz, Hayriye Öztatlı, Duygu Ceren Arıkfidan, Hatice Kaya, Elif Dönmez and Duygu Ege

5.1 Collagen 107
5.2 Elastin 111
5.3 Silk Fibroin 114
5.4 Chitosan 116
5.5 Chondroitin Sulfate 119
5.6 Cellulose 121
5.7 Hyaluronic Acid 123
5.8 Poly(L-lysine) 126
References 128

6 *Application of Hydrogel Biocomposites for Multiple Drug Delivery* 139

6.1 Introduction 140
6.2 Sustained Drug Release Systems 142
6.3 Controlled Release Systems 143
 6.3.1 Half-Life of the Drug Formulation 143
6.3.2 Absorption 143
6.3.3 Metabolism 143
6.3.4 Dosage Size 144
6.3.5 pH Stability and Aqueous Stability of the Drug Formulation 144
6.3.6 Barrier Co-Efficient 144
6.3.7 Stability 144
6.4 Polymeric Drug Delivery Devices 146
6.5 Multiple Drug Delivery Systems 147
 6.5.1 Supramolecules and In Situ-Forming Hydrogels 149
 6.5.2 Layer-By-Layer Assembly 150
 6.5.3 Interpenetrating Polymer Networks (IPNs) 150
 6.5.4 Application of Hydrogels for Multiple Drug Delivery 151
 6.5.5 Cancer Treatments 151
 6.5.6 Diabetes Treatments 152
6.6 Tissue Engineering 153
 6.6.1 Self-Healing 154
 6.6.2 Molecular Sensing 155
6.7 Conclusion 155
References 155

7 Non-Toxic Holographic Materials (Holograms in Sweeteners) 167
 Arturo Olivares-Pérez 167
 7.1 Introduction 167
 7.2 Sugars as Holographic Recording Medium 168
 7.2.1 Classification and Nomenclature 168
 7.2.2 Monosaccharides/Glucose and Fructose 169
 7.2.2.1 Glucose 169
 7.2.2.2 Fructose 171
 7.2.2.3 Disaccharides Sucrose 171
 7.2.2.4 Polysaccharides, Pectins 174
 7.2.2.5 Sweeteners Corn Syrup 175
 7.3 Photosensitizers 176
 7.3.1 Dyes 177
 7.3.2 Dyes as Sensitizers 177
 7.4 Sucrose Preparation and Film Generation 179
 7.4.1 UV-Visible Spectral Analysis 180
 7.4.2 Replication of Holographic Gratings is Sucrose 181
 7.4.2.1 Holographic Code 181
 7.4.2.2 Soft Mask 181
 7.4.2.3 Thermosensitive Properties Through Mask 181
 7.4.2.4 Replication 182
 7.4.2.5 Diffraction Efficiency 183
 7.4.3 Sucrose With Dyes 185
 7.4.3.1 Sugar UV-Visible Spectral Analysis 185
 7.4.3.2 Holographic Replicas 186
 7.4.3.3 DE Sugar Tartrazine and Erioglaucine Dye 187
 7.5 Corn Syrup 188
 7.5.1 Holographic Replicas of Low and High Frequency 189
 7.5.2 DE Corn Syrup 191
7.6 Hydrophobic Materials
 7.6.1 Hydrophobic Mixture of Pectin Sucrose and Vanilla 192
 7.6.2 UV-Visible Spectral Analysis 192
 7.6.3 Holographic Replicas 192
 7.6.4 DE Hydrophobic Films PSV 193
7.7 PSV with Dyes 194
 7.7.1 UV-Visible Spectral Analysis 194
 7.7.2 DE Films PSV and Erioglaucine 194
7.8 Pineapple Juice as Holographic Recording Material 195
 7.8.1 Characterization of Pineapple Juice 196
 7.8.2 Generation of Pineapple Films 196
 7.8.3 Replication Technique 196
 7.8.4 DE Pineapple Film 196
7.9 Holograms Made with Milk 198
 7.9.1 Low-Fat Milk Tests 198
 7.9.2 DE Milk Gratings 198
 7.9.2.1 Gravity Technique 198
 7.9.2.2 Spinner Technical 199
7.10 Conclusions 200
Acknowledgements 200
References 200

8 Bioplasiticizer Epoxidized Vegetable Oils–Based Poly(Lactic Acid)
 Blends and Nanocomposites 205
 Buong Woei Chieng, Nor Azowa Ibrahim and Yuet Ying Loo
8.1 Introduction 205
8.2 Vegetable Oils 207
8.3 Expoxidation of Vegetable Oils 209
8.4 Poly(lactic acid) 211
8.5 Poly(lactic acid)/Epoxidized Vegetable Oil Blends 213
 8.5.1 Poly(lactic acid)/Epoxidized Palm Oil Blend 213
 8.5.2 Poly(lactic acid)/Epoxidized Soybean Oil Blend 217
 8.5.3 Poly(lactic acid)/Epoxidized Sunflower Oil Blend 219
 8.5.4 Poly(lactic acid)/Epoxidized Jatropha Oil Blend 220
8.6 Polymer/Epoxidized Vegetable Oil Nanocomposites 223
8.7 Summary 227
References 227

9 Preparation, Characterization, and Adsorption Properties of
 Poly(DMAEA) – Cross-Linked Starch Gel Copolymer in Wastewater 233
 Sudhir Kumar Saw
9.1 Introduction 233
9.2 Experimental Procedure 237
 9.2.1 Materials 237
 9.2.2 Instrumentation 237
 9.2.3 Preparation of Cross-Linked Starch Gel 238
9.2.4 Preparation of Poly(DMAEA) – Cross-Linked Starch Gel Graft Copolymer 238
9.2.5 Determination of Nitrogen 239
9.2.6 Experimental Process of Removal of Heavy Metal Ions 239
9.2.7 Removal of Dyes 240
9.2.8 Recovery of the Prepared Copolymer 240

9.3 Results and Discussion 240
9.3.1 Effect of pH 240
9.3.2 Effect of Extent of Grafting on Metal Removal 242
9.3.3 Effect of Adsorbent Dose Used 243
9.3.4 Effect of Treatment Time on the Metal Removal 243
9.3.5 Effect of Agitation Speed 244
9.3.6 Effect of Temperature 245
9.3.7 Recovery of Starch 247
9.3.8 Removal of Dyes 247
9.3.9 Adsorption Kinetics 248
9.3.10 Adsorption Isotherm 249

9.4 Conclusions 250
Acknowledgement 251
References 251

10 Study of Chitosan Cross-Linking Genipin Hydrogels for Absorption of Antifungal Drugs Using Molecular Modeling 255
Norma Aurea Rangel–Vazquez

10.1 Introduction 255
10.1.1 Polymers 255
 10.1.1.1 Properties 256
10.1.2 Natural Polymers 257
 10.1.2.1 Chitosan 258
10.1.3 Hydrogels 260
 10.1.3.1 Applications 261
10.1.4 Antifungals 261
 10.1.4.1 Classification 261
 10.1.4.2 Fluconazole 262
 10.1.4.3 Voriconazole 263
 10.1.4.4 Ketoconazole 263
10.1.5 Molecular Modeling 264

10.2 Methodology 265
10.2.1 Geometry Optimization (∆G) 265
10.2.2 Bond Lengths 265
10.2.3 FTIR 267
10.2.4 MESP 269

10.3 Results and Discussions 269
10.3.1 Gibbs Free Energy 269
10.3.2 Bond Lengths 270
10.3.3 FTIR 271
10.3.4 MESP 274
10.3.5 HOMO/LUMO Orbitals 275
10.5.4 Conclusions 281
References 282

11 Pharmaceutical Delivery Systems Composed of Chitosan 285
Livia N. Borgheti-Cardoso, Fabiana T.M.C. Vicentini, Marcílio S.S. Cunha Filho and Guilherme M. Gelfuso
11.1 Introduction 285
11.2 Chitosan Micro- and Nanoparticles 286
11.2.1 Oral Applications 287
11.2.2 Topical Formulations 288
11.2.3 Ocular Delivery Systems 289
11.3 Bioadhesive Chitosan Hydrogels 291
11.3.1 Ocular Gel Formulations 292
11.3.2 Topical Formulations 293
11.4 Chitosan Topical/Transdermal Films 295
11.5 Chitosan as Coating Material to Produce Lipid Capsules, Liposomes, Metallic and Magnetic Nanoparticles 296
11.6 Oral Beads Based on Chitosan for Controlled Delivery of Drugs 298
11.7 Conclusion 300
Acknowledgement 300
References 300

12 Eco-Friendly Polymers for Food Packaging 309
Sweetie R. Kanatt, Shobita. R. Muppalla and S.P. Chawla
12.1 Introduction 309
12.2 Sources of Biopolymers 311
12.2.1 Polymers Extracted from Biomass 311
12.2.2 Polysaccharides 312
12.2.2.1 Starch 312
12.2.2.2 Corn Starch 313
12.2.2.3 Cassava Starch 314
12.2.2.4 Potato Starch 314
12.2.2.5 Konjac Glucomannan 314
12.2.2.6 Starch Modifications 314
12.2.3 Cellulose 315
12.2.3.1 Cellulose Derivatives 316
12.2.4 Gums 316
12.2.4.1 Guar Gum 316
12.2.4.2 Locust Bean Gum 317
12.2.4.3 Gum Arabic 318
12.2.4.4 Pectin 318
12.2.4.5 Chitin and Chitosan 319
12.2.5 Proteins 319
12.2.5.1 Zein 320
12.2.5.2 Wheat Gluten 321
12.2.5.3 Soy Protein 321
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.5.4 Whey Protein and Casein</td>
<td>321</td>
</tr>
<tr>
<td>12.2.5.5 Collagen</td>
<td>322</td>
</tr>
<tr>
<td>12.2.6 Lipids</td>
<td>322</td>
</tr>
<tr>
<td>12.2.7 Polymers Obtained from Microbial Sources</td>
<td>323</td>
</tr>
<tr>
<td>12.2.7.1 Agar</td>
<td>323</td>
</tr>
<tr>
<td>12.2.7.2 Alginate</td>
<td>323</td>
</tr>
<tr>
<td>12.2.7.3 Carrageenan</td>
<td>324</td>
</tr>
<tr>
<td>12.2.7.4 Gellan</td>
<td>324</td>
</tr>
<tr>
<td>12.2.7.5 Pullulan</td>
<td>325</td>
</tr>
<tr>
<td>12.2.7.6 Xanthan</td>
<td>325</td>
</tr>
<tr>
<td>12.2.7.7 Bacterial Cellulose</td>
<td>326</td>
</tr>
<tr>
<td>12.2.7.8 Polyhydroxyalkonates (PHA)</td>
<td>326</td>
</tr>
<tr>
<td>12.2.8 Polymers Synthesized from Bio-Derived Monomers</td>
<td>326</td>
</tr>
<tr>
<td>12.2.8.1 Polylactic Acid (PLA)</td>
<td>326</td>
</tr>
<tr>
<td>12.3 Properties of Biopolymer Packaging Films</td>
<td>327</td>
</tr>
<tr>
<td>12.3.1 Physical Properties</td>
<td>327</td>
</tr>
<tr>
<td>12.3.1.1 Permeability</td>
<td>327</td>
</tr>
<tr>
<td>12.3.1.2 Oxygen Transmission Rate (OTR)</td>
<td>328</td>
</tr>
<tr>
<td>12.3.1.3 Water Vapor Transmission Rate (WVTR)</td>
<td>329</td>
</tr>
<tr>
<td>12.3.1.4 Carbon Dioxide Transmission Rate (CO\textsubscript{2}TR)</td>
<td>330</td>
</tr>
<tr>
<td>12.3.2 Mechanical Properties</td>
<td>330</td>
</tr>
<tr>
<td>12.3.3 Thermal Properties</td>
<td>331</td>
</tr>
<tr>
<td>12.3.4 Degradation</td>
<td>332</td>
</tr>
<tr>
<td>12.3.4.1 Biodegradation</td>
<td>332</td>
</tr>
<tr>
<td>12.4 Composite Films</td>
<td>333</td>
</tr>
<tr>
<td>12.5 Bionanocomposites</td>
<td>335</td>
</tr>
<tr>
<td>12.6 Methods for Film Processing</td>
<td>335</td>
</tr>
<tr>
<td>12.6.1 Casting</td>
<td>336</td>
</tr>
<tr>
<td>12.6.2 Extrusion</td>
<td>336</td>
</tr>
<tr>
<td>12.6.3 Injection Molding</td>
<td>336</td>
</tr>
<tr>
<td>12.6.4 Blow Molding</td>
<td>337</td>
</tr>
<tr>
<td>12.6.5 Thermoforming</td>
<td>337</td>
</tr>
<tr>
<td>12.6.6 Foamed Products</td>
<td>337</td>
</tr>
<tr>
<td>12.7 Applications of Biopolymers in Food Packaging</td>
<td>338</td>
</tr>
<tr>
<td>12.7.1 Biodegradable Packaging Material</td>
<td>338</td>
</tr>
<tr>
<td>12.7.2 Active Packaging</td>
<td>338</td>
</tr>
<tr>
<td>12.7.3 Biopolymers as Edible Packaging</td>
<td>339</td>
</tr>
<tr>
<td>12.7.3.1 Edible Coating</td>
<td>339</td>
</tr>
<tr>
<td>12.7.3.2 Fruits and Vegetables</td>
<td>340</td>
</tr>
<tr>
<td>12.7.3.3 Flesh Foods</td>
<td>341</td>
</tr>
<tr>
<td>12.7.3.4 Seafoods</td>
<td>341</td>
</tr>
<tr>
<td>12.7.3.5 Meat and Meat Products</td>
<td>341</td>
</tr>
<tr>
<td>12.7.3.6 Eggs</td>
<td>341</td>
</tr>
<tr>
<td>12.7.3.7 Nuts</td>
<td>342</td>
</tr>
<tr>
<td>12.7.3.8 Dairy Products</td>
<td>342</td>
</tr>
<tr>
<td>12.7.4 Edible Films</td>
<td>343</td>
</tr>
<tr>
<td>12.7.4.1 Fruits and Vegetables</td>
<td>343</td>
</tr>
</tbody>
</table>
13 Influence of Surface Modification on the Thermal Stability and Percentage of Crystallinity of Natural Abaca Fiber

Basavaraju Bennehalli, Srinivasa Chikkol Venkateshappa, Rama Devi Punyamurthy, Dhanalakshmi Sampathkumar and Raghu Patel Gowdru Rangana Gowda

13.1 Introduction 353
13.2 Materials and Methods 355
13.2.1 Materials 355
13.2.2 Alkali Treatment of Abaca Fiber 355
13.2.3 Acrylic Acid Treatment of Abaca Fiber 356
13.2.4 Acetylation of Abaca Fiber 356
13.2.5 Benzoylation of Abaca Fiber 356
13.2.6 Permanganate Treatment of Abaca Fiber 356
13.2.7 Fourier Transform Infrared Spectroscopy (FTIR) 356
13.2.8 Thermogravimetric Analysis (TGA) 356
13.2.9 X-Ray Diffraction Analysis (XRD) 357
13.3 Results and Discussion 357
13.3.1 Chemical Treatment of Fibers 357
13.3.2 IR Spectra of Fibers 358
13.3.3 Thermogravimetric Analysis (TGA) 361
13.3.4 X-Ray Diffraction Analysis (XRD) 369
13.4 Conclusions 373

14 Influence of the Use of Natural Fibers in Composite Materials Assessed on a Life Cycle Perspective

Hugo Carvalho, Ana Raposo, Inês Ribeiro, Paulo Peças, Arlindo Silva and Elsa Henriques

14.1 Introduction 377
14.2 Composite Materials: An Overview 379
14.2.1 Composites Design 380
14.2.2 Fiber-Reinforced Composites and Natural Fibers 380
14.2.3 World Production of Natural Fibers 381
14.3 Methodology 382
14.4 Case Study: Bonnet Component 383
14.4.1 Boundary Conditions and Loading 384
14.4.2 Materials 384
14.4.3 Technical Requirements 385
14.4.4 Design Specifications 387
14.5 Life Cycle Stages 389
14.5.1 Raw Material Acquisition 389
14.5.2 Transport 389
14.5.3 Manufacturing Phase 390
14.5.4 Use Phase 391
14.5.5 End of Life Phase 391
14.6 Results 391
14.6.1 Economic Dimension Evaluation 391
14.6.2 Environmental Dimension Evaluation 392
14.6.3 Technical Results 392
14.6.4 Global Evaluation 394
14.6.4.1 Sensitivity Analysis to the Life Cycle Stages 394
14.7 Conclusion 395
References 396

15 Plant Polysaccharides Blended Ionotropically Gelled Alginate
Multiple Unit Systems for Sustained Drug Release 399
Dilipkumar Pal and Amit Kumar Nayak
15.1 Introduction 399
15.2 Plant Polysaccharide in Sustained Release Drug Delivery 401
15.3 Alginates and Their Ionotropic Gelation 402
15.4 Various Plant Polysaccharides-Blended Ionotropically-Gelled Alginate Microparticles/Beads 406
15.4.1 Locust Bean Bum-Alginate Blends 406
15.4.2 Gum Arabic-Alginate Blends 411
15.4.3 Tamarind Seed Polysaccharide-Alginate Blends 412
15.4.4 Okra Gum-Alginate Blends 417
15.4.5 Fenugreek Seed Mucilage-Alginate Blends 421
15.4.6 Ispaghula Husk Mucilage-Alginate Blends 423
15.4.7 Aloe Vera Gel-Alginate Blends 424
15.4.8 Sterculia Gum-Alginate Blends 425
15.4.9 Jackfruit Seed Starch-Alginate Blends 428
15.4.10 Potato Starch-Alginate Blends 430
15.5 Conclusion 431
References 431

16 Vegetable Oil-Based Polymer Composites: Synthesis, Properties and Their Applications 441
Shubhalakshmi Sengupta and Dipa Ray
16.1 Introduction 441
16.2 Vegetable Oils 442
16.2.1 Composition and Structure of Vegetable Oils 442
16.2.2 Properties of Vegetable Oils 443
16.3 Vegetable Oils Used for Polymers and Composites 444
16.3.1 Synthesis of Polymeric Materials from Vegetable Oils 444
16.3.2 Modification of Vegetable Oils and Their Use in Composites 447
16.3.2.1 Epoxidized Vegetable Oils and Their Composites 447
16.3.2.2 Maleated Vegetable Oils and Their Composites 454
16.3.3 Cationic Polymerization of Vegetable Oils and Their Composites 460
16.4 Free Radical Polymerization of Vegetable Oils and Their Composites

Page 465

16.5 Application Possibilities and Future Directions

Page 465

References Page 466

17 Applications of Chitosan Derivatives in Wastewater Treatment

17.1 Introduction Page 471

17.2 Chitin and Chitosan

- 17.2.1 Sources of Chitin and Chitosan Page 474
- 17.2.2 Extraction of Chitosan Page 474
- 17.2.3 Properties of Chitosan Page 475
 - 17.2.3.1 Degradation Page 477
 - 17.2.3.2 Molecular Weight Page 477
 - 17.2.3.3 Solvent Properties Page 477
 - 17.2.3.4 Mechanical Properties Page 477
 - 17.2.3.5 Adsorption Page 478
 - 17.2.3.6 Cross-Linking Properties of Chitosan Page 478
 - 17.2.3.7 Antioxidant Properties Page 479
- 17.2.4 Applications of Chitosan Page 480

17.3 Chitosan Derivatives in Wastewater Treatment

- 17.3.1 Carboxymethyl-Chitosan (CMC) Page 481
- 17.3.2 Ethylenediaminetetraacetic acid (EDTA) and Diethyleneetriaminepentaacetic Acid (DTPA) Modified Chitosan Page 483
- 17.3.3 Triethylene-Tetramine Grafted Magnetic Chitosan (Fe₃O₄-TETA-CMCS) Page 484
- 17.3.4 Carboxymethyl-Polyamine Chitosan (DETA-CMCHS) Page 486
- 17.3.5 Tetraethylenepentamine (TEPA) Modified Chitosan (TEPA-CS) Page 487
- 17.3.6 Ethylenediamine Modified Chitosan (EDA-CS) Page 488
- 17.3.7 Epichlorohydrin Cross-Linked Succinyl Chitosan (SCCS) Page 489
- 17.3.8 N-(2-Hydroxy-3 Mercaptopropyl)-Chitosan Page 490
- 17.3.9 Epichlorohydrin Cross-Linked Chitosan (ECH-Chitosan) Page 490
- 17.3.10 Quaternary Chitosan Salt (QCS) Page 492
- 17.3.11 Magnetic Chitosan-Isatin Schiff’s Base Resin (CSIS) Page 492
- 17.3.12 Chitosan-Fe(III) Hydrogel Page 493

17.4 Adsorption of Heavy Metals on Chitosan Composites from Wastewater

- 17.4.1 α-Fe₂O₃ impregnated Chitosan Beads With As(III) as Imprinted Ions Page 493
- 17.4.2 Chitosan/Cellulose Composites Page 494
- 17.4.3 Chitosan/Clinoptilolite Composite Page 495
- 17.4.4 Chitosan/Sand Composite Page 496
- 17.4.5 Chitosan/Bentonite Composite Page 496
- 17.4.6 Chitosan/Cotton Fiber Page 497
17.4.7 Magnetic Thiourea-Chitosan Imprinted Ag+ 498
17.4.8 Nano-Hydroxyapatite Chitin/Chitosan Hybrid Biocomposites 498
17.5 Adsorption of Dyes on Chitosan Composites from Wastewater 499
17.5.1 Fe₂O₃/Cross-Linked Chitosan Adsorbent 499
17.5.2 Chitosan-Lignin Composite 500
17.5.3 Chitosan–Polyaniline/ZnO Hybrid Composite 501
17.5.4 Coalesced Chitosan Activated Carbon Composite 502
17.5.5 Chitosan/Clay Composite 502
17.6 Conclusion 504
References 504

18 Novel Lignin-Based Materials as Products for Various Applications 519
Łukasz Klapiszewski and Teofil Jesionowski
18.1 Lignin – A General Overview 519
18.1.1 A Short History 519
18.1.2 Synthesis and Structural Aspects 521
18.1.3 Types of Lignin 523
18.1.4 Applications of Lignin 528
18.2 Lignin/Silica-Based Hybrid Materials 531
18.3 Combining of Lignin and Chitin 535
18.4 Lignin-Based Products as Functional Materials 540
References 543

19 Biopolymers from Renewable Resources and Thermoplastic Starch Matrix as Polymer Units of Multi–Component Polymer Systems for Advanced Applications 555
Carmen–Alice Teacă and Ruxanda Bodîrlău
19.1 Introduction 555
19.2 Thermoplastic Starch Matrix and its Application for Advanced Composite Materials 557
19.3 Biopolymers from Sustainable Renewable Sources 558
19.3.1 Chitin 558
19.3.2 Wheat Straw 559
19.3.3 Spruce Bleached Kraft Pulp 559
19.4 Thermoplastic Starch as Polymer Matrix and Biopolymers from Renewable Resources for Composite Materials 560
19.4.1 Obtainment 560
19.4.1.1 Materials 561
19.4.1.2 Preparation of Composites Based on Plasticized Starch and Biopolymers with Addition of Vegetal Fillers 561
19.4.2 Investigation Methods and Properties 562
19.4.2.1 FTIR Spectroscopy Analysis 562
19.4.2.2 Water Uptake Measurements 563
19.4.2.3 Optical Properties 567
19.4.2.4 Evaluation of the Fillers’ Particle Size 570
20 Chitosan Composites: Preparation and Applications in Removing Water Pollutants
Mohammad Reza Ganjali, Morteza Rezapour, Farnoush Faridbod and Parviz Norouzi

20.1 Introduction to Chitosan
20.1.1 Other Derivatives of Chitin
20.1.2 Properties of Chitosan
20.1.3 Modification and Derivatization of Chitosan

20.2 Chitosan Composites
20.2.1 Activated Clay-Chitosan (ACC) Composites
20.2.1.1 Attapulgite Clay-Nanocomposite
20.2.1.2 Composites of Bentonite, Montmorillonite, and Other Types of Clay
20.2.2 Alginate-Chitosan (AC) Composites
20.2.3 Cellulose-Chitosan (CC) Composites
20.2.3.1 Cotton Fiber-Chitosan Composites
20.2.4 Ceramic Alumina-Chitosan Composites
20.2.5 Hydroxyapatite-Chitosan Composites

20.3 Palm Oil Ash-Chitosan Composites
20.4 Perlite-Chitosan Composites

20.5 Polymer-Chitosan Composites
20.5.1 Polyurethane-Chitosan Composites
20.5.2 Polyvinyl Alcohol-Chitosan Composites
20.5.3 Polyacrylamide-Chitosan Composites
20.5.4 Polymethylmethacrylate-Chitosan Composites
20.5.5 Poly(methacrylic acid)-Chitosan Composites
20.5.6 Polyvinyl Chloride-Chitosan Composites
20.5.7 Molecular Imprinted-Chitosan Composites

20.6 Sand-Chitosan Composites
20.7 Magnetic Nano-Adsorbents or Micro-Adsorbent
20.7.1 Chitosan-Based Magnetic Particles
20.7.2 Modified-Chitosan or Chitosan-Polymer Based Magnetic Composites
20.7.3 Magnetic Chitosan-Carbon Composites
20.7.4 Magnetic Composites of Chitosan with Inorganic Compounds

References
The concept of green chemistry and sustainable development policy impose on industry and technology to switch raw material base from the petroleum to renewable resources. Remarkable attention has been paid to the environmental friendly, green and sustainable materials for a number of applications during the last few years. Indeed the rapidly diminishing global petroleum resources, along with awareness of global environmental problems, have promoted the way to switch towards renewable resources based materials. In this regards, bio-based renewable materials can form the basis for variety of eco-efficient, sustainable products that can capture and compete markets presently dominated by products based solely on petroleum based raw materials. The nature provides a wide range of the raw materials that can be converted into a polymeric matrix/ adhesive/ reinforcement applicable in composites formulation. Different kinds of polymers (renewable/nonrenewable) and polymer composite materials have been emerging rapidly as the prospective substitute to the ceramic or metal materials, due to their advantages over conventional materials. In brief, polymers are macromolecular groups collectively recognized as polymers due to the presence of repeating blocks of covalently linked atomic arrangement in the formation of these molecules. The repetitive atomic arrangements forming the macromolecules by forming covalent links are the building block or constituent monomers. As the covalent bond formation between monomer units is the essence of polymer formation, polymers are organic or carbon compounds of either biological or synthetic origin. The phenomenon or process of polymerization enables to create diverse forms of macromolecules with varied structural and functional properties and applications. On the other hand, composite materials, or composites, are one of the main improvements in material technology in recent years. In the materials science field, a composite is a multi-phase material consisting of two or more physically distinct components, a matrix (or a continuous phase) and at least one dispersed (filler or reinforcement) phase. The dispersed phase, responsible for enhancing one or more properties of matrix, can be categorized according to particle dimensions that comprise platelet, ellipsoids, spheres and fibers. These particles can be inorganic or organic origin and possess rigid or flexible properties.

The most important resources for renewable raw materials originate from nature such as wood, starch, proteins and oils from plants. Therefore, renewable raw materials lead to the benefit of processing in industries owing to the short period of replenishment cycle resulting in the continuous flow production. Moreover, the production cost can be reduced by using natural raw materials instead of chemical raw materials. The waste and residues from agriculture and industry have been also used as an alternative renewable resources for producing energy and raw materials such as chemicals, cellulose, carbon and silica. For polymer composites applications, an intensifying focus
has been directed toward the use of renewable materials. Bio-based polymers are one of the most attractive candidates in renewable raw materials for use as organic reinforcing fillers such as flex, hemp, pine needles, coir, jute, kenaf, sisal, rice husk, ramie, palm and banana fibres which exhibited excellent enhancement in mechanical and thermal properties. For green polymer composites composed of inorganic reinforcing fillers, renewable resources based polymers have been used as matrix materials.

Significant research efforts all around the globe are continuing to explore and improve the properties of renewable polymers based materials. Researchers are collectively focusing their efforts to use the inherent advantages of renewable polymers for miscellaneous applications. To ensure a sustainable future, the use of bio-based materials containing a high content of derivatives from renewable biomass is the best solution.

This volume of the book series “Handbook of Composites from Renewable Materials” is solely focused on the “Polymeric Composites”. Some of the important topics include but not limited to: Keratin as renewable material for developing polymer composites; natural and synthetic matrices; hydrogels in tissue engineering; smart hydrogels: application in bioethanol production; principle renewable biopolymers; application of hydrogel biocomposites for multiple drug delivery; nontoxic holographic materials; bioplasticizer - epoxidized vegetable oils-based poly (lactic acid) blends and nanocomposites; preparation, characterization and adsorption properties of poly (DMAEA) – cross-linked starch gel copolymer in waste water treatments; study of chitosan cross-linking hydrogels for absorption of antifungal drugs using molecular modelling; pharmaceutical delivery systems composed of chitosan; eco-friendly polymers for food packaging; influence of surface modification on the thermal stability and percentage of crystallinity of natural abaca fiber; influence of the use of natural fibers in composite materials assessed on a life cycle perspective; plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release; vegetable oil based polymer composites; applications of chitosan derivatives in wastewater treatment; novel lignin-based materials as a products for various applications; biopolymers from renewable resources and thermoplastic starch matrix as polymer units of multi-component polymer systems for advanced applications; chitosan composites: preparation and applications in removing water pollutants and recent advancements in biopolymer composites for addressing environmental issues.

Several critical issues and suggestions for future work are comprehensively discussed in this volume with the hope that the book will provide a deep insight into the state-of-art of “Polymeric Composites” of the renewable materials. We would like to thank the Publisher and Martin Scrivener for the invaluable help in the organisation of the editing process. Finally, we would like to thank our parents for their continuous encouragement and support.

Vijay Kumar Thakur, Ph.D.
Washington State University - U.S.A

Manju Kumari Thakur, M.Sc., M.Phil., Ph.D.
Himachal Pradesh University, Shimla, India

Michael R. Kessler, Ph.D., P.E.
Washington State University - U.S.A
Keratin as Renewable Material to Develop Polymer Composites: Natural and Synthetic Matrices

Flores-Hernandez C.G., Murillo-Segovia B., Martinez-Hernandez A.L.* and Velasco-Santos C

Division of Graduate Studies and Research, Technological Institute of Querétaro, Querétaro, Mexico

Abstract
Keratin is a structural fibrous protein, considered as the main constituent of wool, hair, horns, feathers and other outer coverings of mammals, reptiles and birds. This protein represents an inexhaustible source of non-contaminant materials for possible diverse applications. In the last decade the use of keratin in different forms to elaborate polymer composites has opened a novel and outstanding research field. Ongoing research have been developed keratin materials from diverse sources as reinforcements. These have been in the form of fibers, particles, nanoparticles or powder, among others. Thus, this chapter reviews different studies related to the use of keratin materials obtained from feathers, wool, hair and other renewable sources in order to reinforce polymer matrices. The properties obtained in these polymer composites are discussed separately depending on the nature of the matrix, natural or synthetic. The possible applications and the future of these kinds of composites are also discussed.

Keywords: Keratin, natural fiber, polymer composites, biodegradable polymer

1.1 Introduction
Biocomposites can be obtained from plant or living beings (natural/biofiber) and crop-derived plastics (bio-plastic). Actually, these are considered novel materials, still in development during the beginning of the twenty-first century (Singha & Thakur, 2009a–c; 2010a–c). The study of these materials started as an answer to a growing environmental threat and as attempt to supply solutions for the coming problem about petroleum supply (Mohanty et al., 2002; Thakur et al., 2016). It was reported that since the 1960s the demand for non-continuous components of composites has been growing incessantly. For example, in 1967, in the United States, necessities for fillers by the plastic production were around 525,000 tons, whereas in 1998, 1,925,000 tons were

*Corresponding author: almh72@gmail.com

Vijay Kumar Thakur, Manju Kumari Thakur and Michael R. Kessler (eds.), Handbook of Composites from Renewable Materials, Volume 6, (1–30) © 2017 Scrivener Publishing LLC
required by the same industry (Eckert, 1999). By this century, in 2000 the US market for natural composites exceeded $150 million (Mohanty et al., 2002), but for 2010, the projected requirement for fillers for the United States plastic production was to 3.85 billion kilograms, from which 0.31 billion kilograms (8%) were expected to be bio-based fibers (Farsi, 2012).

Natural fibers are the support to develop high performing fully biodegradable eco or green composites (Thakur et al., 2013a-e). Natural fibers are considered as biodegradable and environmentally friendly, mainly due to their plant-based cellulosic or lignocellulosic fibers. Much research is being undertaken of these as natural prospects for reinforcing (or filling) polymers to make them less aggressive towards the environment (Netravali & Chabba, 2003). In agreement with Thakur et al., (2014), one of the most successful emerging areas of interest in polymer engineering and materials science is precisely related to the proper application of raw natural fibers as an essential element towards achievement of new low-cost green composites.

In reality, many scientists have found an interesting research field by using plant-based fibers due to their ready availability. However, different prospects exist if high-strength protein fibers are taken into account. For example, keratin can be obtained from chicken feathers, wool, hair and horns. Keratin, a non-food protein, is an abundant biopolymer, and because of its animal origin, it is a renewable and low-priced feedstock. It is also assessed that worldwide there are some million tons per year of material-based keratin disposed in landfills that comes from non-used residues of wools, hairs, feathers, horns and nails (Bertini et al., 2013).

This chapter reviews the latest advancements in the field of composites with synthetic and natural matrices using keratin as reinforcement. The first section begins with a brief description of the structural characteristics of keratin. Subsequently, different natural materials that contain keratin are compared. In the second section, composites with synthetic matrices and different sources of keratin as reinforcement are detailed. The methods, techniques and properties are described for these composites. The last part discusses composites with natural matrices reinforced with keratin from different natural sources.

It is worthy of mention that there are many matrix systems that have been reinforced with keratin materials; therefore these novel composites are versatile to different applications depending on the desired properties. However, important criteria in the synthesis procedures must be carefully observed, since natural characteristics of keratin represent certain processing restrictions. Examples of these criteria could be: processing methods, morphological structures of keratin reinforcements, quantity of keratin used to reinforce matrices, among others. Thus, this review aims to describe the development of different polymeric composites using natural and synthetic matrices and applying renewable keratin reinforcements obtained from different natural sources.

1.2 Keratin

Keratin is present in almost all animals that have a backbone; this protein is the product of the keratinization process, which occurs because the skin cells die and accumulate in the surface layer. This protein can be considered as soft or hard, according to the diverse mechanism of biosynthesis (Meyers et al., 2008). Mammals have diverse tissues
formed by hard keratin (skin, hair, wool, nail, claw, quill, horn, hoof and whale baleen),
all of which are sophisticated epidermal appendages, differentiated not only by their
external morphology and physical properties but also in their amino acid composi-
tions, especially the content of amino acids like cysteine and tyrosine (Meyers et al.,
2008; Gillespie & Frenkel, 1974). Generally, the keratin class of proteins is mechanically
strong, designed to be unreactive and resistant to most forms of stress encountered
by animals (Whitford, 2005). There are 30 different variants of keratin in mammals;
these have been identified according to cells in a tissue-specific manner. In spite of the
basic unit of keratin being an α helix, this structure is slightly distorted as a result of
interactions with a second helix that leads to the formation of a left handed coiled-coil.
Commonly, the arrangement for keratin is a coiled-coil of two α helices, although three
helical stranded arrangements are known for extracellular protein domains, whereas
those in bugs have been found as four-stranded coiled coils (Whitford, 2005).

There are two major groups of keratin that can be identified: α- and β-keratin, depend-
ing on keratin’s molecular structure (Meyers et al., 2008). Hard α-keratin is a hierarchi-
cally ordered material, with a fibrillar organization from the micrometer to the nanometer
scale. In addition, α-keratin is rich in cysteine residues that form disulfide bonds linking
adjacent polypeptide chains (Kreplak et al., 2004; Whitford, 2005). α-keratin is found
in skin, hoof, baleen and wool, whereas β-keratin is found in feather, beaks, claw and
silk fibroin structures (Meyers et al., 2008; Whitford, 2005). The term “soft” or “hard”
refers to the sulfur content of keratins, but also originates from the keratins’ biosynthesis
process, which is related to their mechanical properties. In fact sulfur presence is due to
cysteine amino acid, hard keratin has high content of this amino acid and it is resistant
to deformation. Hard keratin is found in nails and hair, whereas a low content of cysteine
residues induces keratin with less mechanical resistance to stress (Whitford, 2005).

Keratin assembles in its primary structure around 18 different amino acids; these
form polypeptide chains by condensation reactions. These biopolymer chains have
molecular weights in the range from 59,000 to 65,000 (Mercer, 1961). Amino acids per-
form as monomers to construct the biopolymer, in this sense the polypeptide chain is
assembled by 16% of serine, 12% of proline, 11% of glycine, 9% of valine, 7% of cysteine,
and other amino acids comprise smaller percentages (Huda & Yang, 2008). Figure 1.1
shows a schematic representation of the main chain of keratin with the most abundant
amino acids. The amino acid content in keratins depends on diverse factors directly
related to the animals, the primary source of this protein, among these, breed, diet and
environment. Despite of the diversity in composition, a common arrangement can be
observed, since keratin contains a two-phase structure involving nanometric filaments
embedded in diverse quantities of filamentous matrix. One of the most important
amino acids in keratin is cysteine, due to stabilize the structure through disulphide
cross-linkages. If these bonds are disrupted around 90% of the keratinous tissues can be
extracted and easily separated into three types of proteins with different composition:
a low sulphur protein, which originates in the filaments and is partly α-helical, a high
sulphur protein, which is rich in cysteine, and finally the high tyrosine protein; the last
two kinds are identifiable from matrix (Gillespie & Frenkel, 1974). The high content of
cysteine causes stability in the protein, because the α-amino group and α-carbonyl are
useful functional links capable to weave a network between the nearby structures of
polypeptides (Schmidt, 1998; Martinez-Hernandez et al., 2005a).
Keratin is a fibrillar protein, a product of the keratinization process, which generates a highly structured protein with arrangement in different levels. The primary structure is constituted by the assembly of amino acids forming the polypeptide chain; this is folded upon itself, acquiring three dimensions and forming the called secondary structure, which represents its molecular structure (α-keratin and β-keratin). The first one could be arranged as a spiral, known as protein α-helix. The shape of this structure is maintained by hydrogen bonding and hydrophobic forces that hold together the amino acids of protein, which gives that special characteristic hardness. The α-keratin is also called mammalian keratin, and the β-keratin is found in avian and reptilian keratin. However, it is possible to find the two types of keratin in the same tissues, for example, the hair has α-keratin based on fiber cortex and β-keratin based cuticle (Hill et al., 2010). The main difference between both kinds of keratins is basically the intermediate filament (IF). The α-keratin has an IF arranged as an α-helix folding pattern with diameter of 8 nm, while β-keratin is based on a folding pattern β-sheet and its diameter is 4 nm. Although there are fundamental differences, both molecular structures have similar mechanical behavior and are linear elastic. In fact these two structures could be rearranged according to the environment needs, for instance during mechanical stretching the α-keratin structure changes into β-keratin (Meyers et al., 2008). Figure 1.2 represents both kinds of molecular structures of keratin. Other general features of keratin are important in materials field, since because of hierarchical and stable structure, this protein is characterized by durability, non-soluble in organic solvents, chemically non-reactive and flexible. In addition keratin is able to recover its original mechanical properties, after repeated deformations and only with minimal loss (Martinez-Hernandez et al., 2005a).

Keratin is a main protein component in many external appendages in different animal species. Thus, natural different keratinous materials can be divided according to their function (McKittrick et al., 2012), for example:

a. Protection and/or covering: skin, hair and wool, quills, spines and pangolin armor
b. Defense and/or aggression: Horns, claws, nails, beaks, teeth, hagfish slime

c. Motion: hooves and feathers

In the next sections four of these types of keratin, feathers, hair and wool, and horns will be described briefly in order to understand their structure and most important characteristics.

1.2.1 Feathers

Feathers are about 90% protein, mostly β-keratin (Stettenheim, 2000). Feathers are non-homogeneous arrangements distributed in almost all living birds’ bodies. Feathers are used in a diversity of functions and are enormously variable in structure and color (Norell & Xu, 2005). Feathers are probably one of the most complex appendages that have evolved since the dinosaur era (Martinez-Hernandez & Velasco-Santos, 2011; Bartels, 2003).

The evolution of feathers has not been resolved completely because there is no morphological history of its origin. The first recorded history structurally corresponds to modern feathers of Archaeopteryx. Xu et al., have studied in depth some important discoveries of fossilized feathers, and they argued that primitive feathers had their beginning in certain filamentous integumental appendages observed on some theropod dinosaurs. However, there is not an exact homology between these primary structures and feathers, resulting in the theory that two taxa with true feathers (Caudipteryx and Protarchaeopteryx) have been proposed to be flightless birds (Xu et al., 2001). They observed the filamentous primitive feather of the basal dromaeosaurid dinosaur Sinornithosaurus milenii, and indicated those appendages were constituted by complex structures formed by multiple filaments, which exhibit two types of branching arrangement. These are distinctive in avian feathers. The first structure is based on filaments joined in a basal tuft, and the other configuration involves filaments joined at their bases in series along a central filament. These observations are useful to conclude
that integumental appendages of *Sinornithosaurus* and avian feathers can be considered structurally homologous (Xu et al., 2001). In contrast, the question about the evolutionary cause of avian flight is tangled due to first birds (i.e., feathered vertebrates) may not necessarily have had the capability for flight, because primitive feathers were improbable to have been specialized flight appendages (Maderson & Homberger, 2000).

Research has reported a classification of feathers on living birds: contour, down, semiplumes, filoplumes, powder-down and bristles (see Figure 1.3). Contour feathers are the most familiar kind. They cover most of the bird’s body as well as the bird’s integumentary flight surfaces. Contour feathers comprise hollow tubes, called the calamus proximally and the rachis distally. Barbs are branches growing from the rachis or calamus (Norell & Xu, 2005).

Feathers from chicken (*Gallus gallus*) are complex hierarchical arrangements of a three level branched structure. A feather is structured by a central shaft, which is inserted in a follicle by an initial segment called calamus or quill. This is a short, tubular basal segment. The next part is called rachis, and this is a much longer, pith-filled section. Quill or calamus is cylindrical, transparent, and hollow. Barbs grow up from shaft or rachis, this last one is compacted on the sides in order to support the growing of barbs and is roughly rectangular in cross-section, which is the main difference with respect to quill. Internally it is packed with a succinct material containing air cells. The branches (barbs) grow up sideways the rachis; these constitute structures in the shape of sheets or vanes, although some feathers also have series of lateral barbs growing from the upper end of the quill. The barbs (so called rami) originate from flattened sides of rachis and grow in parallel ordered rows opposing one another and directing outward and toward the tip of the feather. Barbs morphology is characterized by a slight ovoid cross-section, broader near their origin in the rachis, but flattening and narrowing close the tip. In similar way to rachis, barbs are also filled with a kind of light material containing air cells. A feather may have only a couple of dozen barbs or several hundred.

![Figure 1.3](image)

Figure 1.3 Different types of feathers and most significant parts of their hierarchical structure.