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Preface

This is a collection of manuscripts presented at the 4th World Congress on Inte-
grated Computational Materials Engineering, a specialty conference organized by
The Minerals, Metals & Materials Society (TMS) and the seven conference orga-
nizers, and held in Ypsilanti, Michigan, USA, on May 21–25, 2017.

Integrated computational materials engineering (ICME) has received interna-
tional attention as it has been proven to shorten product and process development
time, while lowering cost and improving outcomes. Building on the great success
of the first three World Congresses on Integrated Computational Materials Engi-
neering, which started in 2011, the 4th World Congress convened researchers,
educators, and engineers to assess the state-of-the-art ICME and determine paths to
further the global advancement of ICME. More than 200 authors and attendees
from all over the world contributed to this conference in the form of presentations,
lively discussions, and manuscripts presented in this volume. The international
advisory committee members representing 11 different countries actively partici-
pated and promoted the conference.

The specific topics highlighted during this conference included integration
framework and usage, ICME design tools and application, microstructure evolution
and phase field modeling, mechanical performance using multiscale modeling,
ICME success stories and applications, and a special focus on additive manufac-
turing. The conference consisted of integrated all-conference plenary talks, invited
talks, contributed presentations, and a number of excellent poster presentations.
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The 34 papers presented in this volume represent a cross section of the pre-
sentations and discussions from this congress. It is our hope that the 4th World
Congress on ICME and these proceedings will further the global implementation of
ICME, broaden the variety of applications to which ICME is applied, and ultimately
help industry design and produce new materials more efficiently and effectively.

Paul Mason
Charles R. Fisher

Ryan Glamm
Michele V. Manuel
Georg J. Schmitz

Amarendra K. Singh
Alejandro Strachan
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An Attempt to Integrate Software Tools
at Microscale and Above Towards
an ICME Approach for Heat Treatment
of a DP Steel Gear with Reduced
Distortion

Deepu Mathew John, Hamidreza Farivar, Gerald Rothenbucher,
Ranjeet Kumar, Pramod Zagade, Danish Khan, Aravind Babu,
B.P. Gautham, Ralph Bernhardt, G. Phanikumar and Ulrich Prahl

Abstract Finite element simulation of heat treatment cycles in steel could be
challenging when it involves phase transformation at the microscale. An ICME
approach that can take into account the microstructure changes during the heat
treatment and the corresponding changes in the macroscale properties could greatly
help these simulations. Dual phase steel (DP steel) are potential alternate materials
for gears with reduced distortion. Inter-critical annealing in DP steel involves phase
transformation at the microscale and the finite element simulation of this heat
treatment could be greatly improved by such an ICME approach. In the present
work, phase field modeling implemented in the software package Micress is used to
simulate the microstructure evolution during inter-critical annealing. Asymptotic
Homogenization is used to predict the effective macroscale thermoelastic properties
from the simulated microstructure. The macroscale effective flow curves are
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obtained by performing Virtual Testing on the phase field simulated microstructure
using Finite Element Method. All the predicted effective properties are then passed
on to the macro scale Finite Element simulation software Simufact Forming, where
the heat treatment cycle for the inter-critical annealing is simulated. The thermal
profiles from this simulation are extracted and passed on to microscale to repeat the
process chain. All the simulation softwares are integrated together to implement a
multi-scale simulation, aiming towards ICME approach.

Keywords DP steel ⋅ Multi phase field modeling ⋅ Homogenization ⋅
Inter-critical annealing ⋅ Gear ⋅ Finite element method ⋅ Micress ⋅ Simufact

Introduction

Production of tailored components with improved properties is one of the primary
aims of the industry at present. This requires materials with complex microstruc-
tures and strategic process design and control. Integrated computational materials
engineering (ICME) is one of the present areas of interest for both academic and
industrial research, as it uses physics based models, empirical models and human
expertise in an integrated manner to significantly reduce the time and cost of
development of new materials and their manufacturing processes. ICME had been
successfully used for materials design, development and rapid qualification [1, 2].
Dual phase steel (DP steel) is one of the potential alternate materials for gears as it
shows improved fatigue life and decrease in heat treatment distortion [3]. Low
pressure vacuum carburizing (LPC), along with high pressure gas quenching
(HPGQ) can be used to produce carburized components with less distortion,
compared to other heat treating methods. ICME tools can help in controlling the
gear distortion in such a heat treatment [4]. ICME approach had also been applied
to optimize the metallurgy and improve the performance of carburizable ferrium
steels, which are now commercially available for gear and bearing applications [5].
Multiscale modeling can be used to achieve ICME in order to assess the effects of
constituent properties and processing on the performance of materials [6]. The
present work aims towards an ICME approach for the design of a DP steel gear with
reduced distortion. Vertical integration (multiscale modeling) is one of the aspects
of an ICME approach. The present work addresses this aspect for the micro and
macro scales. The data input-output of all the simulation tools was modeled on an
ICME platform. LPC with HPGQ was used to carburize and heat treat the DP steel
gear. A chemical composition selected using Calphad tools for carburized DP steel
gear with maximum hardenability and maximum difference between Ae3 and Aem
was used for the simulations.

4 D.M. John et al.



Simulations at Different Length Scales

Microscale: Phase Field Simulation

Phase field modeling is one of the widely used technique to predict the microstructure
evolution during diffusional phase transformations. It had been used successfully to
simulate the austenite to ferrite transformation in DP steels [7–9]. In the present work,
phase field modeling implemented in the commercial software packageMicress® was
used to simulate the microstructure evolution during phase transformation. The
austenite to ferrite transformation during inter-critical annealing in DP steel was
simulated at the microscale. In order to simulate this phase transformation, a two
dimensional multi-phase field simulation was performed on a multi-component sys-
tem with chemical composition Fe-0.35Cr-0.75Mn-0.5Mo-0.4Si-0.1Ni-0.18C. An
initial syntheticmicrostructurewas created using voronoi tessellation, using the initial
austenite grain size obtained by averaging the grain size from several experimental
micrographs. Figure 1a shows the initial austenite microstructure with an average
grain size of 10 µm. For simulating the nucleation of ferrite, seeds were defined at the
triple junctions. The thermodynamic and the kinetic data required for the phase field
simulationwas obtained fromThermoCalc database, using the TQ coupling feature of
Micress. Periodic boundary conditions were defined in all directions and the local
equilibrium negligible partitioning (nple) approach was used to simulate the redis-
tribution of the alloying elements. Simulations were run with 12 threads on an Intel
Xeon E5-2630 processor and the average simulation time was around 9 h. The other
simulation parameters used are reported in Table 1. Some of these parameters are
taken from literature [10].

The simulation was performed for the heat treatment cycle consisting of cooling
and holding (inter-critical annealing) as shown in Fig. 1c. The inter-critical
annealing (IC annealing) time chosen for the simulation was 30 min. Figure 1b
shows the final microstructure after the 30 min of holding. The white colour rep-
resents the ferrite phase and the remaining region represents the austenite phase.

Fig. 1 a Initial austenite microstructure. b Final microstructure. c Heat treatment cycle used for
simulation
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Effective Properties: Asymptotic Homogenization

Asymptotic homogenization could be used to predict the effective thermo-elastic
properties of an RVE (Representative Volume Element). The method uses
assumption of microstructure periodicity and uniformity of the macroscopic fields
within a unit cell domain [11]. In the present work, in order to predict the effective
thermo-elastic properties from the phase field simulated microstructure, asymptotic
homogenization implemented in the commercial software tool Homat® was used.
The simulated microstructure in Micress (RVE) was meshed with C3D8 (8 node
linear) hexahedral elements using Mesh2Homat tool. The meshed microstructure
was passed on to Homat tool for performing the asymptotic homogenization. In
order to perform the homogenization, Homat requires the geometric description and
the properties of the individual phases. Geometric description (microstructure) was
obtained from Micress whereas the properties of individual phases were obtained
from JMatPro® database. Thermo-elastic homogenization was performed at 790 °C
to obtain the effective macroscale elastic modulus, poissons ratio, density, specific
heat capacity, thermal expansion coefficient and thermal conductivity.

Virtual Testing: Effective Flow Curve

Virtual testing on an RVE can be used to predict the effective flow curve of the
macroscopic material [12]. Ramazani et al. [13] have successfully used virtual
tensile testing on RVE in two and three dimensions to predict the flow curves of DP
steel. In the present work, in order to predict the effective flow curve from the phase
field simulated microstructure (RVE), a uniaxial tension test was performed on the
microstructure using finite element method. The phase field simulated
microstructure was meshed with C3D8 hexahedral elements. The microstructure
consisted of two phases, austenite and ferrite as shown in Fig. 2a. White region
represents ferrite phase and the remaining portion represents austenite phase. The
properties of ferrite and austenite phases obtained from JMatPro® database were
used for performing the finite element simulations. The meshed microstructure was

Table 1 Micress simulation parameters

Simulation parameter Value

Interfacial mobility: cm4/Js γ − γ, α− α 1 × 10−5

γ − α 2 × 10−5

Interfacial energy: J/cm4 γ − γ, α− α 2 × 10−5

γ − α 4 × 10−5

Domain size 100 × 100 µm
Grid size 0.25 µm
Time step Automatic (based on stability criterion)
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loaded uniaxially in x direction to 7% strain and the average stress-strain response
from the entire microstructure was recorded. Figure 2b shows the distribution of
stresses in x direction for a strain of 7%. All operations were performed using
commercial finite element tools. The average stress-strain response of all the ele-
ments in the RVE was used to obtain the effective flow curve of the macroscopic
material. This flow curve is passed on to the software Simufact Forming® to start
the macroscale simulation.

Macroscale Simulation of Heat Treatment

The inter-critical annealing heat treatment was simulated at the macroscale using
finite element method, implemented in the commercial software package Simufact
Forming®. Two dimensional axisymmetric simulation was performed on a cylin-
drical layered geometry. The geometry is assumed to be extracted from one tooth of
a carburized gear as shown in Fig. 3a, b. The outer layer corresponds to the car-
burized layer (case of the gear). It is assumed that this layer has a uniform carbon
composition of 0.7% throughout. The inner layer corresponds to the core of the gear
with 0.18% carbon. The austenite to ferrite phase transformation is assumed to
happen only in the core region. For the case region, no phase transformation
happens during the inter-critical annealing. A fully austenite microstructure as
shown in Fig. 1a is used to assign the effective macroscale material property for this
layer. The material properties are assigned separately for the core and the case
layers. The macroscale heat treatment cycle shown in Fig. 1c is simulated on the
layered geometry. 2D quadrilateral elements were used for the simulation. Fig-
ure 3c shows the temperature distribution at an intermediate stage of the simulation

Fig. 2 a Initial microstructure for virtual testing. b Microstructure with 7% strain
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in Simufact. Tracking points were used in the simulation to extract the thermal
profile across the geometry during the simulation. The data from these tracking
points were used to start a phase field simulation to obtain the microstructure
evolution across the macroscale geometry. Figure 3d shows the phase field simu-
lated microstructure using the data from one of the tracking points. The phase
fraction from this simulated microstructure was compared with experimental data
and was found to be matching well.

Multiscale Simulation Chain

A multi-scale simulation chain as shown in Fig. 4 was completed. For imple-
menting this simulation chain, homogenization and virtual testing was performed
for the phase field simulated microstructure at various instants along the heat
treatment cycle. The effective macroscale properties calculated were fed to the
macroscale heat treatment simulation in Simufact. The tracking point data in

Fig. 3 a One tooth of a carburized gear. b Selected layered geometry. c Temperature distribution
at an intermediate stage in Simufact. d Phase field simulated microstructure using the data from
one of the tracking point in Simufact
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Simufact was used to start a phase field simulation to obtain the microstructure
evolution at the tracking point during the macroscale heat treatment process. In this
way, the microstructure evolution at various points across the geometry was cal-
culated and the corresponding effective macroscale material properties were
obtained using homogenization and virtual testing. These properties were in turn
fed to macroscale heat treatment simulation in Simufact to repeat the multiscale
simulation chain.

ICME Platform

ICME approach requires an efficient information exchange between the simulation
tools at various length scales. An ICME platform can greatly help in facilitating this
information exchange and can also help in tracking the results along the process
chain. This in turn eases the effort required and also gives a better understanding of
the mechanisms by tracking the simulation results along the production chain [14].
In the present work, the data input-output of all the simulation tools was modeled
on the ICME platform PREMAP (Platform for Realization of Engineered Materials
and Products). PREMAP is an IT platform from Tata Consultancy Services
(TCS) that facilitates integration of models, knowledge, and data for designing both
the material and the product [15]. PREMAP requires ontological definitions of
various entities including for product with requirements, manufacturing processes
and material description at different scales. It essentially provides semantic bases
which can be used for working with different tools through a unified semantic

Fig. 4 Workflow for the multiscale simulation
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language. This enables extensibility as well as use of different tools within an
engineering workflow. This ontology can be used to express various forms of
knowledge in forms or rules, expressions, etc. to help take engineering decisions. In
the present work, the platform is used to help in repeating the multi scale simulation
chain for various conditions, across the macroscale geometry, in order to arrive at
the best possible process conditions. Figure 5 shows a snapshot of the simulation
chain implemented in PREMAP for micress and homat. With the help of the ICME
platform, several runs with different conditions could be made across the simulation
chain to arrive at microstructure which gives minimum distortion and best possible
combination of mechanical properties at the macroscale.

ICME Implementation Strategy

In order to start the multi-scale simulation chain to implement ICME approach, a
starting temperature profile was required. In order to obtain this profile across the
macroscale geometry, a Simufact simulation was performed using the material
property data obtained from JMatPro database. The temperature-time data from the
tracking points in this simulation was used to start a phase field simulation in
Micress, as shown in Fig. 6. The simulated microstructure was then used to perform
homogenization and virtual testing to obtain the macroscale effective properties.
These properties were then fed to Simufact to start the macroscale simulation of
heat treatment. This process chain was repeated until the target values for the
desired properties were achieved. Once all the simulations are calibrated with
experiments, this strategy could be used to obtain the microstructure and the process
conditions corresponding to minimum distortion and best possible combination of
mechanical properties at the macroscale.

Fig. 5 Workflow implemented in PREMAP for micress and homat
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Fig. 6 Workflow for the implementation of a part of an ICME approach

Fig. 7 Comparison of simulated ferrite volume fraction with experiments during isothermal
holding at 790 °C
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Experimental Validation

In order to validate the Micress phase field simulations, the macroscale heat
treatment process was physically simulated on cylindrical samples in Baehr®

Dilatometer and the phase fractions were obtained from the optical micrographs.
The phase fraction evolution during the inter-critical annealing, obtained from these
experiments were compared with that simulated in Micress, as shown in Fig. 7. The
carburizing process and the final distortion at macroscale are simulated on
Navy C-Ring specimens and experimentally validated in another work by the
authors [16].

Conclusion

The present work implements the vertical integration aspect (multi-scale modeling),
aiming towards an ICME approach for the microstructure and process design of a
DP steel gear with reduced distortion. The microstructure and property evolution
during inter-critical annealing heat treatment in DP steels were simulated using
commercial software tools. The macroscale heat treatment was simulated on a
layered cylindrical geometry to mimic the heat transfer across the cross-section of
one tooth of a carburized gear. The data input-output of all the software tools was
modeled on an ICME platform. The simulation chain implemented in this work
could be used to obtain the microstructure with minimum distortion and best
possible combination of macroscale material properties. In this way, the number of
experiments required for such a microstructure and process design could be
reduced.
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Integrated Microstructure Based
Modelling of Process-Chain for Cold
Rolled Dual Phase Steels
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Abstract The properties of dual phase (DP) steels are governed by the underlying
microstructure, the evolution of which is determined by the processing route. In
order to design a dual phase steel with tailored properties, it is therefore important
to model and design each of the process involved at the microstructure level in an
integrated fashion. In this work, an integrated approach is used to predict the final
microstructure and mechanical properties of dual phase steels through
microstructure based modelling of cold rolling, intercritical annealing and
quenching processes. Starting with a representative volume element (RVE) of initial
ferrite-pearlite microstructure, cold-reduction during rolling is simulated in a FEM
based micromechanics approach under appropriate boundary conditions. The
deformed microstructure with plastic strain energy distribution after cold-reduction
serves as input for modelling static recrystallization and ferrite/pearlite to austenite
transformation during intercritical annealing using a phase-field approach. A mi-
cromechanics based quenching simulation is then used to model austenite to
martensite transformation, related volume expansion and evolution of transforma-
tional stress/strain fields. The resultant microstructure with its complete state is used
to evaluate the flow behavior under uniaxial loading conditions in a FEM based
micromechanics approach under periodic boundary conditions. Property variation
for different initial microstructure, composition and processing conditions are
studied and discussed.
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Introduction

Cold rolled dual phase steels are known for their high strength, high toughness and
high formability. This makes them a suitable candidate for producing
strength-relevant and crash-relevant body-in-white components having complex
geometries such as cross-beams, pillars and other reinforcements [1]. This has been
possible due to the multiphase nature of these steels wherein the different
microstructure constituents impart varied properties to the steels. The constant
pursuit of the auto-makers to cater to the increasing fuel-efficiency demands and
safety regulations have led to the necessity of continual improvement and opti-
mization of the properties and hence the microstructure of these steels.

Researchers have continuously tried to optimize the properties of the dual phase
steels with new processing routes and processing conditions [2, 3]. The final
properties of dual phase steels not only depend upon the individual properties of
these micro-constituents but also on their morphology and distribution. On the other
hand, the properties of the individual phases, their morphology and distribution
depend upon the processing history of the steel. Therefore, in order to optimize the
final properties of steels in a systematic way, it is not only important to optimize the
individual processes involved but also the entire process-chain with explicit
tracking of the microstructure evolution. With the advent of microstructure based
process-structure [4, 5] and structure-property [6, 7] modelling techniques, it is now
possible to model the evolution of microstructure and properties with the processing
conditions. Apart from that, with more efforts being put towards solving problem
through ICME route, optimizing the entire process-chains of the products in a
closed-loop with systematic decision making at each decision point is the need of
the hour.

The final steps of a typical processing route for the production of cold-rolled
dual phase steels is shown in Fig. 1. There has been number of attempts in past for
sequential integration of microstructure based process models as well as integration
of process-property models. Madej et al. [8] carried out microstructure based
modelling of cold-rolling of ferritic-pearlitic steels using FEM and used its plastic
energy distribution output for modelling static recrystallization (SRX) during
inter-critical annealing (ICA) using cellular automata in a digital material

Fig. 1 A typical processing
route for cold-rolled dual
phase steels
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representation framework. Rudinizki [9] on the other hand studied the through
process modelling of production of dual phase steels by modelling ICA using
phase-field approach followed by property prediction of the microstructure thus
obtained using FEM based micromechanics approach. Ramazani et al. [10] mod-
elled the process chain for dual-phase by integrating a similar phase-field approach
based ICA model with FEM based micromechanics model of property prediction
that took into account the effect of geometrically necessary dislocation formed
during quenching on the final properties. However, none of these efforts attempt the
integration of process-chain right from the cold-rolling till the final
property-predictions in an ICME framework.

The present work involves the integration of microstructure based models of
cold-deformation, inter-critical annealing and quenching processes to take into
account the effect of each of them on the final microstructure and properties pre-
diction of a cold-rolled dual phase steel. The focus is on the integration of models
on an ICME-enabling platform that allows running the process-chain simulations in
a loop with decision-making at each stage, thereby opening up the opportunity for
optimizing the process-chain in a closed-loop.

Integrated Numerical Models

Figure 2 shows the integration of various micro-scale process models used in this
study along with relevant phenomena modelled and related information exchange.
The process-chain simulation starts with a 2D RVE of ferritic-pearlitic
microstructure having certain statistics defined in terms of ferrite grain size, pear-
lite colony size etc. This RVE represents a typical ferritic-pearlitic microstructure
obtained at the end of runout table (ROT). A typical RVE used in this study is
shown in Fig. 3a. The microstructure RVE was subjected to different mechanical
and thermal boundary conditions of the subsequent processes and the essential
physics involved was modelled to keep track of the evolution of microstructure
along with its state of stress and strain. Following sections describe the details of the
various microstructure-scale process and property models used.

Cold-Rolling

Cold reduction was modelled as a plain-strain compression of the RVE under
homogenous boundary conditions using a FEM model in ABAQUSTM. Chemical
composition based flow curves for ferrite and pearlite [11], were used as input for
the model. Based on the stress and strain partitioning between ferrite and pearlite
phases, plastic strain energy was calculated at each material point of the RVE.
A typical plastic strain energy distribution in a ferritic-pearlitic RVE having 14%
pearlite, deformed to 50% cold reduction is shown in Fig. 3b.
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