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Preface

In the field of power system analysis, an extensive amount of high-quality lit-
erature is available. Most of these textbooks follow more or less the same line
and cover the same topics.This book differs from existingmaterials because the
(steady-state) modeling of the power system components is covered in appen-
dices. Therefore, the focus in the chapters itself is not on the modeling, but on
the structure, functioning, and organization of the power system. The appen-
dices contribute to the book by offering material that is not an integral part
of the main text, but support and enhance it and as such are an integral part of
the book.The book contains a large number of problems of which the extensive
solutions are presented in a separate chapter.
The following is a short summary of the contents of the chapters and the

appendices.
Chapter 1 (Introduction to Power System Analysis)
This first chapter describes the scope of the material and is an introduction
to the steady-state analysis of power systems. Questions such as “why AC,”
“why 50 or 60Hz,” “why sinusoidally shapedAC,” “why a three-phase system”
are addressed. The basics for a steady-state analysis of balanced three-phase
power systems are outlined, such as phasors, single-line diagrams, active
power, reactive power, complex power, power factor, and per-unit normal-
ization.

Chapter 2 (The Generation of Electric Energy)
The conversion from a primary source of energy to electrical energy is the
topic of Chapter 2. The primary source of energy can be fossil fuels such
as gas, oil, and coal or uranium, but can come from renewable sources as
well: wind energy, hydropower, solar power, or geothermal power. In order
to understand the nature of a thermal power plant, which is still the main
source of power in the system, the principles of thermodynamics are briefly
discussed. The final conversion from mechanical energy to electrical energy
is achieved by the synchronous machine. The coupling of the machine with
the grid and the actual power injection is analyzed.
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Chapter 3 (The Transmission of Electric Energy)
The transmission and distribution network is formed by the overhead lines,
the underground cables, the transformers, and the substations between the
points of power injection and power consumption. Various substation con-
cepts are presented, together with substation components and the protec-
tion installed. The transformers, overhead transmission lines, underground
cables, gas-insulated transmission lines, protective relay operating princi-
ples, surge arresters, fuses, and circuit breakers are then considered in more
detail. The transformer design, possible phase shift, and specific properties
due to the magnetic core are highlighted. As overhead transmission lines are
themost visible part of the power system, they are discussed from the point of
view of what may be seen and why it is like that.The underground cables are
also considered, contrasting them with overhead transmission. The chapter
ends with the principles of HVDC transmission.

Chapter 4 (The Utilization of Electric Energy)
The power system is designed and arranged in such a way that demand may
be fulfilled: consumers are supplied with the requested amount of active and
reactive power at constant frequency and with a constant voltage. A load
actually transforms the AC electrical energy into another form of energy.
The focus in this chapter is on the various types of loads that transform the
AC electrical energy into mechanical energy (synchronous and induction
motors), light, heat, DC electrical energy (rectifiers), and chemical energy.
After that, the individual loads in the system are clustered and classified
as grid users according to three categories: residential loads (mostly single-
phase loads), commercial and industrial loads (often three-phase loads), and
electric railways (either DC or single-phase AC).

Chapter 5 (Power System Control)
Continuous control actions are necessary in the system for the control of the
voltage, to maintain the balance between the amount of generated and con-
sumed electricity, and to keep the system frequency at either 50 or 60Hz. It is
demonstrated that, in transmission networks, there is more or less a “decou-
pling” between the active power and the voltage angles on one side and the
reactive power and voltage magnitudes on the other, which is the basis for
the control.The power balance is maintained (primary control), and the sys-
tem frequency deviation minimized (secondary control), by controlling the
active power output of the generators. Voltage is controlled locally either at
generator buses by adjusting the generator voltage control or at fixed points
in the system where tap-changing transformers, capacitor banks, or other
reactive power consumers/producers are connected. Flexible AC transmis-
sion systems (FACTS) devices are large power-electronic devices; they are
operated in a shunt configuration for reactive power and voltage control, or
they are connected in series to control the power flow.
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Chapter 6 (Energy Management Systems)
In the control center, the transmission and distribution of electrical energy
aremonitored, coordinated, and controlled.The energymanagement system
(EMS) is the interface between the operator and the actual power system.The
supervisory control and data acquisition (SCADA) system collects real-time
measured data from the system and presents it to the computer screen of the
operator, and it sends control signals from the control center to the actual
components in the network. The EMS is in fact an extension of the basic
functionality of the SCADA system and includes tools for the analysis and
the optimal operation of the power system. The state estimator serves as a
“filter” for the collected measurement data; it determines the state of the
power system that matches best with the available measurements. This is
necessary input for other analysis programs in the EMS, such as the load
flow or power flow and the optimal power flow. The load flow computation
is one of the most important power system computations, giving us insight
into the steady-state behavior of the power system. Therefore, besides the
well-known Newton–Raphson load flow, a decoupled load flow and the DC
load flow are also presented.

Chapter 7 (Electricity Markets)
At a broad conceptual level, there exists such a thing as a “common mar-
ket model” that provides for both spot market trading coordinated by a
grid/market operator and for bilateral contract arrangements scheduled
through the same entity. The spot market is based on a two-sided auction
model: both the supply and demand bids are sent to the power exchange.
Market equilibrium occurs when the economic balance among all partici-
pants is satisfied and the benefits for society, called “the social welfare,” are
at their maximum value.The power system is a large interconnected system,
so that multiple market areas are physically interconnected with each other:
this facilitates the export of electricity from low-price areas to high-price
areas.

Chapter 8 (Future Power Systems)
In this chapter some developments, originating from the complex tech-
nological, ecological, sociological, and political playing field and their
possible consequences on the power system, are highlighted. A large-scale
implementation of electricity generation based on renewable sources, for
example, will cause structural changes in the existing distribution and
transmission networks. Many of these units are decentralized generation
units, rather small-scale units that are connected to the distribution net-
works often by means of a power-electronic interface. A transition from the
current “vertically operated power system” into a “horizontally operated
power system” in the future is not unlikely. Energy storage can be applied to
level out large power fluctuations when the power is generated by renewable
energy sources, driven by intermittent primary energy. The complexity of
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the system increases because of the use of FACTS devices, power-electronic
interfaces, intermittent power production, and so on. Chaotic phenomena
are likely to occur in the near future and large system blackouts will probably
happen more often.

Appendix A (Maxwell’s Laws)
Circuit theory can be regarded as describing a restricted class of solutions
of Maxwell’s equations. In this appendix, power series approximations will
be applied to describe the electromagnetic field. It is shown that the zero-
and first-order terms in these approximations (i.e., the quasi-static fields)
form the basis for the lumped-circuit theory. By means of the second-order
terms, the validity of the lumped-circuit theory at various frequencies can be
estimated. It is the electrical size of the structure – its size in terms of themin-
imum wavelength of interest in the bandwidth over which the model must
be valid – that dictates the sophistication and complexity of the required
model. A criterion is derived that relates the dimensions of the electromag-
netic structure to the smallest wavelength under consideration so that the
validity of the lumped-element model can be verified.

Appendix B (Power Transformer Model)
Transformers essentially consist of two coils around an iron core. The iron
core increases the magnetic coupling between the two coils and ensures
that almost all the magnetic flux created by one coil links the other coil.
The central item of this appendix is the mathematical description of the
voltage–current relations of the transformer. First, the voltage–current
relation of an ideal transformer, including the impedance transformation, is
given. After that, a more general description of the transformer by means of
magnetically coupled coils is derived. In the next step, the nonideal behavior
of the transformer, comprising leakage flux and losses in the windings and
in the iron core, is taken into account, and a transformer equivalent circuit
is derived. The appendix ends with an overview of single-phase equivalent
models of three-phase transformers.

Appendix C (Synchronous Machine Model)
A synchronous generator generates electricity by conversion of mechanical
energy into electrical energy. The two basic parts of the synchronous
machine are the rotor and the armature or stator. The iron rotor is equipped
with a DC-excited winding, which acts as an electromagnet. When the
rotor rotates and the rotor winding is excited, a rotating magnetic field is
present in the air gap between the rotor and the armature.The armature has
a three-phase winding in which the time-varying EMF is generated by the
rotating magnetic field. For the analysis of the behavior of the synchronous
machine in the power system, a qualitative description alone is not suffi-
cient. The central item of this appendix is the mathematical description of
the voltage–current relation of the synchronous generator. Based on the
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voltage–current relation, a circuit model is developed that is connected to
an infinite bus to study the motor and generator behavior.

Appendix D (Induction Machine Model)
The induction machine is an alternating current machine that is very well
suited to be used as a motor when it is directly supplied from the grid.
The stator of the induction machine has a three-phase winding; the rotor
is equipped with a short-circuited rotor winding. When the rotor speed
is different from the speed of the rotating magnetic field generated by the
stator windings, we describe the rotor speed as being asynchronous, in
which case the short-circuited rotor windings are exposed to a varying
magnetic field that induces an EMF and currents in the short-circuited rotor
windings.The induced rotor currents and the rotating stator field result in an
electromagnetic torque that attempts to pull the rotor in the direction of the
rotating stator field. The central item of this appendix is the mathematical
description of the voltage–current relation and the torque–current relations
of the induction machine. Based on the voltage–current relation, a circuit
model is developed.

Appendix E (The Representation of Lines and Cables)
When we speak of electricity, we think of current flowing through the con-
ductors of overhead transmission lines and underground cables on its way
from generator to load. This approach is valid because the physical dimen-
sions of the power system are generally small compared to the wavelength
of the currents and voltages in steady-state analysis. This enables us to apply
Kirchhoff’s voltage and current laws and use lumped elements in our model-
ing of overhead transmission lines and underground cables. We can distin-
guish four parameters for a transmission line: the series resistance (due to the
resistivity of the conductor), the inductance (due to the magnetic field sur-
rounding the conductors), the capacitance (due to the electric field between
the conductors), and the shunt conductance (due to leakage currents in the
insulation).Three different models are derived, which, depending on the line
length, can be applied in power system analysis.

In the process of writing this book, we sometimes felt like working on a film
script: we put the focus on selected topics and zoomed in or out whenever nec-
essary, as there is always a delicate balance between the thing that you want to
make clear and the depth of the explanation to reach this goal. We hope that
we have reached our final goal and that this book provides you with a coherent
and logical introduction to the interesting world of electrical power systems!
While writing this book we gratefully made use of the lecture notes that

have been used over the years at the Delft University of Technology and the
Eindhoven University of Technology in the Netherlands. The appendices
on the modeling of the transformer, the synchronous machine, and the
induction machine are based on the excellent Dutch textbook of Dr. Martin
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Hoeijmakers on the conversion of electrical energy. We are very grateful for
the careful reading of the manuscript by Prof. Emeritus Koos Schot, Robert
van Amerongen, and Jan Heijdeman. We would like to thank Ton Kokkelink
and Rene Beune, both from TenneT TSO B.V., for their valuable comments on
Chapters 5 and 7, respectively. We appreciate the contribution to the problems
and their solutions of RomainThomas, and Dr. Laura Ramirez Elizondo.
The companion website for the book is http://www.wiley.com/go/

powersystem, where PowerPoint slides for classroom use can be downloaded.

Pieter H. Schavemaker
Lou van der Sluis
The Netherlands
Spring 2017

http://www.wiley.com/go/powersystem
http://www.wiley.com/go/powersystem
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1

Introduction to Power System Analysis

1.1 Introduction

As electricity comes out of the alternating current (AC) outlet every day, and
has already been doing so formore than 100 years, itmay nowadays be regarded
as a commodity. It is a versatile and clean source of energy; it is fairly cheap
and “always available.” In the Netherlands, for instance, an average household
encountered only 20minutes’ interruption to their supply in the year 2014 [1]
out of a total of 8760 hours, resulting in an availability of 99.996195%!
Society’s dependence on this commodity has become critical and the social

impact of a failing power system is beyond imagination:

• Cars would not be refueled as gas station pumps are driven by electricity.
• The sliding doors of shops and shopping malls would not be able to open or

close and people would therefore be locked out or in.
• Electrified rail systems, such as subways and trains, would come to a

standstill.
• Traffic lights would not work.
• Refrigerators would stop.
• Heating/cooling installations would fail.
• Cash dispensers would be offline.
• Computers would serve us no longer.
• Water supplies would stop or run out.

Many more examples may be given, but the message is clear: electric power
systems are the backbone of modern society (see Figure 1.1), and chaos would
result if the electricity supply failed for an extended period.
Our society needs engineers who know how to design, build, and operate an

electrical power system. So let us discover what lies beyond the AC outlet and
enter the challenging world of power system analysis.

Electrical Power System Essentials, Second Edition. Pieter Schavemaker and Lou van der Sluis.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



�

� �

�

2 1 Introduction to Power System Analysis

Figure 1.1 The Earth’s city lights, indicating the most urbanized areas. The Visible Earth,
NASA.

1.2 Scope of the Material

Power system analysis is a broad subject, too broad to cover in a single textbook.
The authors confine themselves to an overview of the structure of the power
system (from generation via transmission and distribution to customers) and
only take into account its steady-state behavior.Thismeans that only the power
frequency (50 or 60Hz) is considered. An interesting aspect of power systems
is that the modeling of the system depends on the time scale under review.
Accordingly, the models for the power system components that are used in this
book have a limited validity; they are only valid in the steady-state situation and
for the analysis of low-frequency phenomena. In general, the time scales we are
interested in are as follows:

• Years, months, weeks, days, hours, minutes, and seconds for steady-state
analysis at power frequency (50 or 60Hz)
This is the time scale on which this book focuses. Steady-state analysis cov-
ers a variety of topics such as planning, design, economic optimization, load
flow/power flow computations, fault calculations, state estimation, protec-
tion, stability, and control.

• Milliseconds for dynamic analysis (kHz)
Understanding the dynamic behavior of electric networks and their compo-
nents is important in predicting whether the system, or a part of the system,
remains in a stable state after a disturbance. The ability of a power system to
maintain stability depends heavily on the controls in the system to dampen
the electromechanical oscillations of the synchronous generators.
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• Microseconds for transient analysis (MHz)
Transient analysis is of importance when we want to gain insight into the
effect of switching actions, for example, when connecting or disconnecting
loads or switching off faulty sections, or into the effect of atmospheric dis-
turbances, such as lightning strokes, and the accompanying overvoltages and
overcurrents in the system and its components.

Although the power system itself remains unchanged when different time
scales are considered, components in the power system should be modeled in
accordance with the appropriate time frame. An example to illustrate this is
the modeling of an overhead transmission line. For steady-state computations
at power frequency, the wavelength of the sinusoidal voltages and currents is
6000 km (in the case of 50Hz):

λ = v
f
= 3 × 105

50
= 6000km (1.1)

λ the wavelength [km]
v the speed of light≈ 300000 [km/s]
f the frequency [Hz= 1/s]

Thus, the transmission line is, so to speak, of “electrically small” dimensions
compared to the wavelength of the voltage. The Maxwell equations can
therefore be approximated by a quasi-static approach, and the transmission
line can accurately be modeled by lumped elements (see also Appendix A).
Kirchhoff’s laws may fruitfully be used to compute the voltages and currents.
When the effects of a lightning stroke have to be analyzed, frequencies
of 1MHz and higher occur and the typical wavelength of the voltage and
current waves is 300m or less. In this case the transmission line is far from
being “electrically small,” and it is not allowed to use the lumped-element
representation anymore. The distributed nature of the transmission line
has to be taken into account, and we have to calculate with traveling
waves.
Despite the fact that we mainly use lumped-element models in our book, it

is important to realize that the energy is mainly stored in the electromagnetic
fields surrounding the conductors rather than in the conductors themselves
as is shown in Figure 1.2. The Poynting vector, being the outer product of the
electric field intensity vector and the magnetic field intensity vector, indicates
the direction and intensity of the electromagnetic power flow [2, 3]:

S = E ×H (1.2)

S the Poynting vector [W/m2]
E the electric field intensity vector [V/m]
H the magnetic field intensity vector [A/m]



�

� �

�

4 1 Introduction to Power System Analysis

E

E

E

V H

S

S

S

H

H

H

S

S

S

E

E

E

H

S

S
E

H

I I

E

H

S

S

E

H

S

S

σ ≠ ∞ μ ≠ ∞

Figure 1.2 Transmission line–transformer–transmission line–load: the energy is stored in
the electromagnetic field.

Due to the finite conductivity of the conductor material and the finite per-
meability of the transformer core material, a small electric field component is
present inside the conductor and a small magnetic field component results in
the transformer core:

E = J
σ

(1.3)

J the current density vector [A/m2]
σ the conductivity [S/m]

H = B
μ

(1.4)

B the magnetic flux density vector [T=AH/m2]
μ the permeability [H/m]

This leads to small Poynting vectors pointing toward the conductor and
the transformer core: the losses in the transmission line and the trans-
former are fed from the electromagnetic field, as is the power consumed by
the load.
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1.3 General Characteristics of Power Systems

Most of the power systems are 50 or 60Hz three-phaseAC systems.The voltage
levels used are quite diverse. In the following sections, we explain why these
choices have been made.

1.3.1 AC versus DC Systems

The choice for AC systems over DC systems can be brought back to the “bat-
tle” between Nikola Tesla (1856–1943) andThomas Alva Edison (1847–1931).
Edison managed to let a light bulb burn for 20 hours in the year 1879. He used
a 100V DC voltage and this was one of the main drawbacks of the system. At
that time a DC voltage could not be transformed to another voltage level, and
the transportation of electricity at the low voltage level of 100V over relatively
short distances already requires very thick copper conductors to keep the volt-
age drop within limits; this makes the system rather expensive. Nevertheless,
it took quite some time before AC became the standard. The reason for this
was that Edison, besides being a brilliant inventor, was also a talented and cun-
ning businessman as will become clear from the following anecdote. Edison
tried to conquer the market and made many efforts to have the DC adopted
as the universal standard. But behind the scenes he also tried hard to have AC
adopted for a special application: the electric chair. After having accomplished
this, Edison intimidated the general public into choosing DC by claiming that
AC was highly dangerous, the electric chair being the proof of this! Eventually
AC became the standard because transformers can quite easily transform the
voltage from lower to higher voltage levels and vice versa.
Nowadays, power-electronic devices make it possible to convert AC to DC,

DC to AC, andDC toDCwith a high rate of efficiency, and the obstacle of alter-
ing the voltage level in DC systems has disappeared. What determines, in that
case, the choice between AC and DC systems? Of course, financial investments
do play an important role here.The incremental costs of DC transmission over
a certain distance are less than the incremental costs of AC, because in a DC
system two conductors are neededwhereas three-phaseAC requires three con-
ductors. On the other hand, the power-electronic converters for the conversion
of AC to DC at one side, and from DC to AC at the other side, of the DC trans-
mission line are more expensive than the AC transmission terminals. If the
transmission distance is sufficiently long, the savings on the conductors over-
come the cost of the converters, as shown in Figure 1.3, and DC transmission
is, from a capital investment point of view, an alternative to AC.
The following are a few of the examples of high-voltage DC (HVDC)

applications.

• Long submarine crossings. For example, the Baltic cable between the Scan-
dinavian countries and Germany and the 600 km cable connection between
Norway and the Netherlands (the NorNed Cable Project).
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Figure 1.3 Break-even distance for HVDC [4].

• Asynchronous interconnection to interconnect networks that operate at dif-
ferent frequencies. For example, the HVDC intertie connection between the
50Hz, 500 kV Argentinean system and the 60Hz, 525 kV Brazilian system.

• Asynchronous interconnection to interconnect networks that operate at the
same frequency but cannot be connected by means of AC due to stability
reasons or operational differences. For example, the Scandinavian system is
asynchronously connected to the western continental European system; the
same applies for the US Eastern Interconnection and the US Western Inter-
connection.

Also in our domestic environment DC systems are present as the majority of
our electronic equipment works internally with a DC voltage: personal com-
puters, hi-fi equipment, video, DVD players, the television, and so on.

Shape of the alternating voltage
When an alternating voltage is considered, several types of alternating volt-
age are possible, such as sinusoidal, block, or triangular-shaped voltages, as
depicted in Figure 1.4. For power systems, the sinusoidal alternating voltage
is the right one to choose. By approximation, the power system can be con-
sidered to be a linear time-invariant (LTI) dynamic system. The elementary
operations in such a system are multiplication with a constant number and
addition and subtraction of quantities and delay in time (phase shift). When we
perform these operations on a sinusoidal signal of constant frequency, another

vv

tt

v

t

Figure 1.4 Alternating voltages: triangular, sinusoidal, and block.


