WEED RESEARCH
Expanding Horizons
Weed Research

Expanding Horizons

Edited by Paul E. Hatcher and Robert J. Froud-Williams

University of Reading, Reading, UK
Contents

List of Contributors xv
Preface xix

1 Weed Science Research: Past, Present and Future Perspectives 1
 Robert J. Froud-Williams
 Introduction 1
 Factors Influencing the Weed Flora 2
 Succession 2
 Clean Seed 3
 Rotation 3
 Fallow 4
 Cultivation 5
 Straw Burning 5
 Soil Amelioration, Drainage and Fertiliser Use 5
 Nitrogen 6
 Herbicides 6
 Consequences of Changing Practices 9
 Changing Weed Floras 9
 Episodic Decline 13
 Weed Spatial Distribution 13
 History of Weed Science in the UK and Origins of the Weed
 Research Organization 14
 Origins of the European Weed Research Society 17
 Weed Research (Journal): Origin of Papers and Discipline 18
 Changing Attitudes to Weeds 18
 Set-Aside and Agri-Environment 19
 Weeds, Climate and Invasive Aliens 20
 Future Directions (Quo Vadis?) 21
 Environmental Weed Management 21
 Evolutionary Genetics and the Role of Molecular Ecology 22
 Is there a Need for a Change of Emphasis? 22
 Conclusion 23
 Acknowledgements 24
 References 24
2 Descriptive and Mechanistic Models of Crop–Weed Competition 33
Lammert Bastiaans and Jonathan Storkey

Introduction 33
Descriptive Models for Yield Loss Due to Weed Competition 34
 The Hyperbolic Yield Loss–Weed Density Curve 34
 Accounting for Differences in Relative Time of Emergence 36
 Other Factors Influencing Parameter i 39
 Management Aimed at Modifying Crop–Weed Competitive Relations 40
 A Quantitative Characterisation of Differences in Weed-Suppressive Ability of Crop Cultivars 45
Mechanistic Models for Crop–Weed Competition 46
 Structure and Function of Process-Based Models for Crop–Weed Competition 46
 A First Application: Ideotyping of More Weed-Suppressive Cultivars 50
 A Second Application: Predicting the Impact of Climate Change on Weed Distribution 51
Conclusion 55
References 56

3 Approaches and Objectives of Arable Weed Species Mapping: Where Next? 61
Hansjörg Krähmer and Paolo Bàrberi

Weed Species Mapping: Why? 61
 Scientific Literature: State of the Art 62
 Mapping Herbicide-Resistant Biotypes 63
 Mapping Invasive Species 63
Weed Species Mapping: Who? 65
Weed Species Mapping: Where and What? 66
 Maps of Weeds in European Arable Crops 66
 Field-Level Mapping 71
Weed Species Mapping: How? 72
 Geo-Referencing 72
 Timing of Assessment 74
 Sampling Parameters 74
 Documentation and Maps 74
What to Conclude from Weed Mapping Data? 75
Weed Mapping: Where to Go? 76
Acknowledgements 80
References 80

4 Seed Biology and Population Dynamics 85
Kirsten S. Tørresen, Laila M. Karlsson and Jose Luis Gonzalez-Andujar

Introduction 85
Seed Biology 86
 Seed Production and Dispersal 86
 Seed-Bank 88
Germination and Dormancy 90
 Germination 90
 Dormancy 91
 Sprouting from Vegetative Plant Parts 96
Predicting Seedling Emergence 97
 Empirical Models 97
 Mechanistic Models 97
 Challenges in Predicting Emergence 98
Importance for Weed Control 99
Population Dynamics 100
 Dynamics in Time and Space 100
 Modelling 100
 Non-Spatial Models 101
 Spatial Models 103
 Practical Applications in Weed Science 103
 Evaluation of Management Systems 103
 Decision Support Systems 104
 Challenges in Modelling Population Dynamics 104
Future Prospects 104
Conclusion 105
Acknowledgements 106
References 106

5 Weeds and Biodiversity 115
Bärbel Gerowitt, Paolo Bàrberi, Henri Darmency, Sandrine Petit, Jonathan Storkey and Paula Westerman
Introduction 115
 Arable Weeds in the Context of Biodiversity 116
 Functional Biodiversity 116
 Agronomic Services and Dis-services Associated with Weeds 117
 Genetic Diversity in Weeds 117
 How to Measure Genetic Diversity 119
 At Which Scale Can Genetic Diversity be Described? 120
 Why is it Important to Understand Weed Genetic Diversity? 121
 Rare Weed Species as Objects of Conservation 122
 Drivers of Arable Weed Declines 123
 The Rare Weed Trait Syndrome 124
 Conserving Rare Weed Communities 124
 Weeds in Food Chains of Arable Systems 124
 Factors Influencing Seed-Based Food Webs in Agroecosystems 126
 Weed Seed Production 126
 Within-Season Temporal Variability 126
 Between-Season Temporal Variability 126
 Spatial Variability 127
 Seed Morphology and Chemistry 127
 Weed Diversity 127
 Current Status of Seed-Based Food Webs on Farms and Management Options 127
Diversity of Weeds and Arable Management 129
 Site Conditions of Arable Fields Shape Weed Communities 129
 Methods to Identify and Separate the Influence of Arable Site and Arable
 Management on Weed Diversity 130
 Arable Management Determines Weed Diversity 131
 Weed Diversity Versus Weed Abundance 131
 Diversity in Weeds Facilitates Management Options 132
Diversity of Weeds in a Landscape Context 133
 The Landscape Context of Weeds 133
 Conducting Landscape-Scale Weed Studies 134
 Landscape Effects on Weed Biodiversity: Empirical Evidence 135
Biodiversity of Weeds in an Economic and Political Context 136
 Field Margin Programmes 136
 Encouraging Weed Diversity in Farming 136
Conclusions and Perspectives 137
References 138

6 Optimising Herbicide Performance 149
 Per Kudsk
 Introduction 149
 Herbicide Classification 150
 Optimising Herbicide Performance: How to Study It 151
 Biotic Factors 154
 Weed Flora 154
 Weed Growth Stage 156
 Crop Competition 157
 Abiotic Factors 158
 Soil Texture 158
 Climatic Conditions 159
 Light 159
 Temperature 160
 Humidity 161
 Precipitation 162
 Soil Moisture 163
 Wind 164
 Concluding Remarks 164
 Application Technique 165
 Adjuvants 166
 Mixtures with Other Herbicides 168
 Concluding Remarks and Future Challenges 170
References 172

7 Herbicide Resistance in Weeds 181
 Stephen Moss
 Historical Perspective 181
 What is Herbicide Resistance? 182
 The Worldwide Occurrence of Resistant Weeds 183
Contents

Herbicide Mode of Action and Risk of Resistance 185

Resistance Mechanisms 188
 Target-Site Resistance 188
 PSII (Triazines) 189
 ALS Inhibitors 190
 ACCase Inhibitors 190
 Other Herbicide Classes 191
Non-Target-Site Resistance 191
 Reduced Herbicide Uptake 193
 Reduced Herbicide Translocation 193
 Enhanced Herbicide Metabolism 194

Evolution of Herbicide Resistance 194
 Initial Frequency of the Resistance Trait and Size of Weed Population 195
 Genetic Basis of Resistance 197
 Selection Pressure 199
 Frequency of Herbicide Use 199
 Persistence of the Herbicide and Pattern of Weed Emergence 199
 Intrinsic Activity of the Herbicide and Degree of Resistance Conferred by the Resistance Mechanism(s) 200
 Specificity of the Herbicide: Number of Species the Herbicide Controls 201
 Seed-Bank in the Soil 201

Resistance Risk 201
 Prevention and Management of Herbicide Resistance 203
 Detection of Resistance in the Field 203
 Integrated Weed Management 203
 Non-Chemical Control Methods 204
 Herbicidal Control 204
 Alternative Herbicides 204
 Mixtures, Sequences and Rotations 205
 Managing Resistance in Alopecurus myosuroides (Black-grass):
 A Case Study 205
 Farmer Psychology: An Under-Recognised Component of Resistance Management 206
 Conclusion 209
 References 209

8 Weed Biological Control 215
 Richard H. Shaw and Paul E. Hatcher

Introduction 215

Definitions of Weed Biocontrol 217

Biocontrol of Weeds in European Extensive Agriculture 218
 Cirsium arvense 219
 Rumex Species 221

Biocontrol of Weeds in Intensive Agriculture 222

Biocontrol of Non-Native Weeds 224
 Ambrosia 228
 In Summary 230
Combining Biocontrol with Other Weed Control Techniques 230
Combining with Other Non-Chemical Control Methods 231
Combination with Herbicides 232
 Arthropod Biocontrol Agents 232
 Fungal Biocontrol Agents 233
Legislation, Responsibilities and Drivers 234
 Arthropods 234
 Fungi 235
Conclusion 235
References 236

9 Non-Chemical Weed Management 245
Bo Melander, Matt Liebman, Adam S. Davis, Eric R. Gallandt, Paolo Bòrberi,
Anna-Camilla Moonen, Jesper Rasmussen, Rommie van der Weide and Francesco Vidotto
Introduction 245
Preventive and Cultural Weed Control 246
Objectives, Principles and Practices 247
 Objective 1: Reduce Weed Density 247
 Objective 2: Reduce Damage Per Surviving Weed 248
 Objective 3: Prevent Undesirable Shifts in Weed Community Composition 249
Current Adoption and Challenges 250
Cover Crops and Mulches 250
 Mechanisms of Cover Crop–Weed Interactions 251
Challenges for Research 252
Mechanical Weed Control 253
 How It Works 256
 Shortcomings 257
 Challenges for Research 258
Thermal Weed Control 259
 Thermal Weed Control in Practice 262
 Challenges for Research 263
Conclusion 263
References 264

10 Invasive Plants 271
Christian Bohren
Introduction 271
Why Do Invasive Plants Symbolise such a Threat? 271
Invasive Weeds and Human Health 271
 Ambrosia 272
 Giant Hogweed 273
Weedy Crops, Super Weeds and Mimetic Weeds 274
Invasive Aquatic Weeds 275
Human Intervention 276
 Human Curiosity 276
Reasons for Increased Occurrence of Invasive Weeds 276
Species-Specific Control 303
Conclusion 305
References 306

11 Parasitic Weeds 313
Maurizio Vurro, Alejandro Pérez-de-Luque and Hanan Eizenberg
Introduction 313
Classification 315
Orobanchaceae (Broomrape Family) 315
Cuscuta 315
Life-Cycle 316
Broomrapes 316
Dodder 317
Distribution at the European Level, Host Range and Yield Losses 318
Management Strategies 325
Management and Control 325
Biological Control 325
Natural Products 328
Strigolactones and Other Germination Stimulants 329
Nanotechnological Approaches 332
Genetic Resistance 334
Defensive Mechanisms 335
Novel Genetic Approaches 337
Chemical Control of Broomrapes 337
Herbicide-Resistant Crops for Broomrape Control 340
Developing Models for Optimising Chemical Control of Root Parasitic Weeds 341
Precision Agriculture 342
Conclusion 346
References 346

12 Weed Management Systems in Vegetables 355
Francesco Tei and Euro Pannacci
Introduction 355
Weed Flora 357
Weed–Vegetable Crop Interactions 358
Integrated Weed Management 365
Preventive Measures 366
Cultural Methods 366
Crop Rotation 366
Cover-Crops 367
Stale Seed-Bed Preparation 368
Cultivar Selection 368
Planting Method, Planting Pattern, Row Spacing and Crop Density 368
Physical Weed Control 368
Non-Living Mulches 369
Solarisation 369
Contents

Flaming 369
Steaming 370
Mechanical Weed Control 370
Hand-Weeding 371
Biological Weed Control 371
Chemical Weed Control 371
Conclusions and Perspectives 377
References 380

13 Perennial Weeds 389
Paul E. Hatcher
Introduction 389
Perennating Structures 390
Fragmentation, Nutrient Reserves and Regrowth 391
Dormancy of Vegetative Structures 392
Grassland Perennials 392
Perennials in Organic Arable Systems 394
Perennials of Southern European Agriculture 396
Cyperus Species 397
Sorghum halepense 398
Bracken 399
Conclusion: Perennial Weeds in the Future 401
Climate Change 401
Reduced Tillage 402
References 403

Index 413
List of Contributors

Paolo Bàrberi
Institute of Life Sciences
Scuola Superiore Sant’Anna
Pisa
Italy

Lammert Bastiaans
Crop and Weed Ecology
Centre for Crop Systems Analysis
Wageningen University
Wageningen
The Netherlands

Christian Bohren
Herbology in Field Crops and Viticulture
Agroscope
Changins
Switzerland

Henri Darmency
Institute National de la Recherche Agronomique (INRA)
Agroécologie
Dijon
France

Adam S. Davis
Global Change and Photosynthesis
Research Unit
US Department of Agriculture—Agricultural Research Service
Urbana
Illinois
USA

Hanan Eizenberg
Department of Plant Pathology and Weed Research
Newe Ya’ar Research Center
Agricultural Research Organization (ARO)
Ramat Yishay
Israel

Robert J. Froud-Williams
University of Reading
Reading
UK

Eric R. Gallandt
School of Food and Agriculture
University of Maine
Orono
Maine
USA

Bärbel Gerowitt
Faculty of Agricultural and Environmental Sciences
Crop Health
University of Rostock
Rostock
Germany

Jose Luis Gonzalez-Andujar
Instituto de Agricultura Sostenible (CSIC)
Cordoba
Spain
Paul E. Hatcher
School of Biological Sciences
University of Reading
Reading
UK

Laila M. Karlsson
IFM Biology
Linköping University
Linköping
and Department of Crop Production Ecology
Swedish University of Agricultural Sciences (SLU)
Uppsala
Sweden

Hansjörg Krähmer
Bayer Crop Science AG
Frankfurt
Germany

Per Kudsk
Department of Agroecology
Aarhus University
Slagelse
Denmark

Matt Liebman
Department of Agronomy
Iowa State University
Ames
Iowa
USA

Bo Melander
Department of Agroecology
Aarhus University
Slagelse
Denmark

Anna-Camilla Moonen
Institute of Life Sciences
Scuola Superiore Sant’Anna
Pisa
Italy

Stephen Moss
Department of Agroecology
Rothamsted Research
Harpenden
Hertfordshire
UK

Euro Pannacci
Department of Agricultural, Food and Environmental Sciences
University of Perugia
Perugia
Italy

Alejandro Pérez-de-Luque
IFAPA
Centro Alameda del Obispo
Área de Mejora y Biotecnología
Córdoba
Spain

Sandrine Petit
Institute National de la Recherche Agronomique (INRA)
Agroécologie
Dijon
France

Jesper Rasmussen
Department of Plant and Environmental Sciences
University of Copenhagen
Taastrup
Denmark

Richard H. Shaw
CABI UK
Egham
Surrey
UK

Jonathan Storkey
Department of Agroecology
Rothamsted Research
Harpenden
Hertfordshire
UK
Francesco Tei
Department of Agricultural, Food and Environmental Sciences
University of Perugia
Perugia
Italy

Kirsten S. Tørresen
Norwegian Institute of Bioeconomy Research (NIBIO)
Ås
Norway

Francesco Vidotto
Department of Agriculture, Forest and Food Sciences
University of Torino
Grugliasco
Italy

Maurizio Vurro
Institute of Sciences of Food Production National Research Council (CNR)
Bari
Italy

Rommie van der Weide
Department of Applied Plant Research Wageningen University and Research Centre
Lelystad
The Netherlands

Paula Westerman
Faculty of Agricultural and Environmental Sciences
Crop Health
University of Rostock
Rostock
Germany
Preface

Weed science is a very broad discipline, encompassing not only many aspects of pure and applied biology but also areas as diverse as agricultural economics, precision engineering, spray systems technology and plant taxonomy. This is due in part to the evolution of the subject, from one with an original overriding concern with pragmatic weed control to one having a greater understanding of weeds and their ecology, including interactions with other organisms. For many years the working groups of the European Weed Research Society (EWRS) have enabled weed scientists to keep up-to-date in their areas of weed research, and through regular workshops and conferences to meet other scientists working in their fields. In this book, the leaders of the current EWRS working groups have described the state-of-the-art and future prospects in their areas. After an introduction which puts recent developments in weed research and the EWRS into context, there are chapters on mapping and describing weed populations, weed seed biology, modelling weed effects on the crop and the effects of weeds on biodiversity. Other chapters deal with particular types of weeds, such as parasitic weeds, perennial weeds and invasive weeds, and a chapter describes the special case of weed management in vegetables. Further chapters are concerned with weed management systems, including optimising herbicide use and the problems of herbicide resistance, the use of non-chemical weed management and biological control of weeds. Although by necessity the chapters have a broadly European focus, the areas covered and future prospects have a world-wide relevance.

We hope that this book will bridge the gap between one-volume weed science textbooks and specialist reviews in scientific journals and will prove useful to higher-level students, those starting their academic career in weed science and academics in related areas.

Paul E. Hatcher
Robert J. Froud-Williams
Introduction

Plants popularly referred to as weeds have been described by Sir E.J. Russell (1958) as ‘The ancient enemy.’ In his text on agricultural botany, Sir John Percival (1936) made the observation that the idea of uselessness was always present in the mind when weeds are being spoken of, while, in the editor’s preface to Weeds and Aliens by Sir Edward Salisbury (1961), weeds are likened to criminals – when not engaged in their nefarious activities both may have admirable qualities: ‘an aggressive weed in one environment may be a charming wild flower in another’. Our relationship with weeds certainly is as old as agriculture itself and the concept of weediness was recognised from biblical abstracts, for example the gospel according to St Matthew (Ch. 13 v. 7, the parable of the sower): ‘Other seed fell among thorns, which grew up and choked them.’ Yet weed science as a discipline is less than one hundred years old, albeit Fitzherbert (1523) in his Complete Boke of Husbandry recognised the injurious effect of weeds on crop production: ‘Weeds that doth moche harme’ included kedlokes, coceledrake, darnolde, gouldes, dodder, hauddodes, mathe, dogfennel, ter, thystles, dockes and nettylles. These are recognised today as corncockle, charlock, darnel, corn marigold, dodder, cornflower, mayweed, stinking mayweed, fumitory, thistles, docks and nettles, several of which are now greatly diminished in abundance.

A major development in weed removal from within crops was achieved with the development of the seed drill by Jethro Tull c. 1701. Initially, the objective of this invention was to enable cereals to be sown in rows, whereby a horse-drawn hoe could be used to pulverise the soil in the inter-row. Tull conjectured that such ‘pulverisation’ would release nutrients beneficial to the crop, but coincidentally enabled weed removal, whereby ‘horse-hoeing husbandry’ became standard practice, reducing weed competition and the necessity of fallow, a serendipitous discovery.

Despite the efficacy of technological advances in weed control, weeds still exert great potential to reduce crop yields. Weeds are considered the major cause of yield loss in five crops (wheat, rice, maize, potato and soybean and a close second in cotton) (Oerke, 2006). Estimated potential losses due to weeds in the absence of herbicides were 23, 37,
40, 30, 37 and 36% for the six crops respectively, while weed control reduced these losses to 7.7, 10.2, 10.5, 8.3, 7.5 and 8.6%, albeit with considerable regional variation (Oerke, 2006). Efficacy of crop protection practices varied between geographic regions, but whereas efficacy of disease and pest control was only 32 and 39% respectively, efficacy of weed control was almost 75%. The greater efficacy of weed control was attributed to the ability to employ both physical and chemical methods. Possible reasons for the apparent mismatch between weed control efficacy and actual yield losses were ascribed to changing cultural practices such as monoculture, multiple cropping, reduced rotation and tillage and the introduction of more vulnerable crop cultivars dependent on increased fertilisation.

Weeds have a major impact on human activities for not only do they adversely affect economic crop yield indirectly through interspecific competition (see Bastiaans & Storkey, Chapter 2) directly as a result of parasitism (see Vurro et al., Chapter 11) and allelopathy, but also they affect human health and the well-being of livestock through physical and chemical toxicity. Additionally they may negatively impact environmental quality and functionality, such as that posed by alien invasive species including aquatic weeds (see Bohren, Chapter 10).

The objective of this preliminary chapter is one of scene setting. It seeks to associate ‘man’s’ controversy with weeds as a consequence of their detrimental as well as beneficial relationships. Our changing perception of weeds is examined in terms of a shift in emphasis from that of pragmatic weed destruction to one of management and rational justification for their suppression.

Agronomic practices greatly influence weed population dynamics and these are outlined with particular attention to the UK weed floras. The history of weed science is explored as a discipline, together with a brief history of weed control technology including the discovery and development of synthetic herbicides. The origins of the Weed Research Organization (WRO) are discussed, together with the subsequent formation of the European Weed Research Society.

Weed science as a discipline originated at Rothamsted in England, the first agricultural research institute to be established in the world, with the pioneering work of Winifred Brenchley on the classic long-term continuous winter wheat experiment, Broadbalk, where she investigated the impact of various agronomic factors such as manuring, liming and fallow on the arable weed flora.

Factors Influencing the Weed Flora

Succession

The British flora is not an event, but a process that is continuing both with respect to accretions and diminutions (Salisbury, 1961). Vegetation is never static and weed populations are probably subject to greatest fluctuation as their habitat is continually disturbed. Two types of change within plant communities may be recognised: fluctuating and successional. Arable plant communities are subject to fluctuations as a consequence of direct intervention. Weeds are fugitives of ecological succession; were it not for the activities of man they would be doomed to local extinction and relegated to naturally disturbed habitats such as dune and scree. Weeds have been described as the pioneers of secondary succession, of which the weedy arable field is a special case (Bunting, 1960).
Successional change is less likely within ephemeral communities, although potentially capable in systems of prolonged monoculture and non-tillage. Two types of successional change may be recognised – autogenic and allogenic. Autogenic succession occurs in response to changes within the habitat, as species better adapted to a changing habitat oust previous inhabitants. A classic example of autogenic succession is Broadbalk Wilderness, whereby climax vegetation was achieved 30 years after the abandonment of an arable crop (Brenchley & Adam, 1915). Allogenic succession occurs in response to modified environmental factors such as fertiliser and herbicide input.

Prior to the advent of selective herbicides in 1945, weeds were kept in check by a combination of rotation, cultivation and clean seed, the three tenets of good husbandry. Previously, weed control was strategic, but the availability of herbicides enabled a tactical approach. However, the realisation that some weed species are of beneficial value to the arable ecosystem rendered the pragmatic destruction of weeds other than those that were most intransigent less acceptable; maximisation of yield was not necessarily synonymous with maximisation of profit.

Clean Seed

The use of clean seed as a consequence of the development of threshing machinery was greatly assisted by improvements in seed screening and legislation such as the 1920 Seeds Act designed to reduce the number of impurities. Regular inspection by the Official Seed Testing Station (OSTS) provides testament to the merits of seed certification. Early casualties of improved sanitation were the mimetic weeds such as *Agrostemma githago* L. (corncockle)*, a formerly characteristic weed of cereals which could be separated by seed screening. Prior to 1930 it was a frequent grain contaminant, as witnessed by records of the OSTS; the last authenticated record of its occurrence was documented in 1968 (Tonkin, 1968). A further factor contributing to its demise was the fact that its seeds are of short persistency in soil and require continual replenishment for survival. A survey of cereal seed drills in 1973 indicated considerable contamination by weed seeds including wild oats (*Avena* spp.) and couch grass *Elymus repens* (L.) Gould) as well as *Galium aparine* L. (cleavers) and *Polygonum* spp. (Tonkin & Phillipson, 1973).

EU legislation designed to reduce the incidence of weed seed impurities in crop seed has certainly reduced this as a source of infestation, with, for example, only a single wild oat seed permitted per 500-g sample, provided that the next 500-g sample is entirely free of contamination.

Rotation

The season of sowing is the greatest determinant of weed occurrence (Brenchley & Warington, 1930). Hence, in the 1960s when spring barley predominated, spring-germinating species were prolific, the most significant of which was *Avena fatua* L., but also a diverse array of broad-leaved species, the periodicity of which is predominantly or entirely in the spring. The shift to autumn cropping in the 1980s disadvantaged spring-germinating species as a consequence of crop competition. *Avena fatua* exhibits a bimodal pattern of germination such that it was not necessarily disadvantaged, but it is possible that the related *Avena sterilis* ssp. *ludoviciana* (Durieu) Gillet & Magne.,

* Botanical nomenclature follows Stace (1997).
which is entirely autumnal in germination periodicity, may have supplanted it as the dominance of winter cropping continues. Previously, rotation for a spring-sown crop would have detrimentally affected the incidence of *Avena sterilis*.

The switch to autumn-sown cereals sown increasingly earlier and established by minimal tillage has exacerbated the incidence of annual grass-weeds, most notably *Alopecurus myosuroides* Huds. (Moss, 1980). Delayed drilling enables the use of stale seedbeds, thereby eliminating earlier weed emergence. It is of note that fallowing was introduced on the classic Broadbalk continuous winter wheat experiment as a response to the increasing problem posed by *A. myosuroides* (black-grass) in the 1930s and 1940s (Moss *et al*., 2011).

A deviant of rotation was fallow, designed to reduce the incidence of perennial weeds on heavy soils by means of repeated cultivation through desiccation and exhaustion of vegetative propagules. Indeed, prior to the advent of herbicides this was the favoured means of reducing infestations of perennial grass-weeds, notably the five species of couch grass.

Fallow

Traditionally, perennial grass-weeds proved intractable and control depended on the inclusion of rotation and fallowing to enable mechanical weed control. The development of the non-selective herbicide aminotriazole in 1955, providing both soil and foliar activity, offered opportunities for couch grass control in the uncropped situations of autumn stubble.

Diquat and paraquat, introduced in 1957 and 1958 respectively, similarly allowed control of *Elytrigia* in non-crop situations. Because of the limited translocated activity of diquat, it proved desirable to cultivate stubbles prior to treatment in order to fragment rhizomes, thus alleviating apical dominance and enabling bud regeneration and regrowth.

It was not until the advent of glyphosate in 1971 that a non-selective foliar-translocated herbicide no longer necessitated rhizome fragmentation. Its ability to be applied pre-harvest of cereals following crop senescence further enabled a reduction in the incidence of couch. Now in English farmland couch is not a problem. However, couch does remain a significant problem in Scotland owing to the delayed senescence of the crop, and the benefits of pre-harvest application in wheat are disputed.

Subsequently, the introduction of sulfosulfuron and propoxycarbazone-sodium in 2002 for the selective control of couch and other grass-weeds within crop situations has further contributed to the reduced incidence of these perennial grass-weeds.

The additional inclusion of winter oilseed rape as an alternative autumn-sown crop resulted in considerable modification of the weed flora. By virtue of its optimal early sowing date, mid–late August, a number of late-season germinating species became characteristic of the crop, including *Sonchus* spp. and *Matricaria* spp. (Froud-Williams & Chancellor, 1987). Also, notable gaps in the herbicide arsenal enabled species such as *Galium aparine* and *Geranium dissectum* L. (cut-leaved cranesbill) to proliferate, as well as unlikely candidates such as *Lactuca serriola* L. (prickly lettuce), *Conium maculatum* L. (hemlock) and *Sisymbrium officinale* (L.) Scop. (hedge mustard). Hitherto, *Papaver rhoeas* L. (field poppy) that was highly susceptible to the phenoxyacetic acid herbicides in cereals became prominent in the absence of an effective treatment prior to
the advent of metazachlor. The acreage of oilseed rape in the UK increased dramatically from c. 1000 ha in 1970 to 705,000 ha in 2011. One consequence of the expansion of oilseed rape was the legacy of feral rape as a roadside weed.

Cultivation

The transition from traditional systems of cultivation based on mouldboard ploughing to non-inversion tillage, made possible by the advent of paraquat and glyphosate, exacerbated the incidence of grass-weeds to the detriment of broad-leaved weeds characteristic of arable land. In particular this was exemplified by species such as *Alopecurus myosuroides* and *Anisantha sterilis* (L.) Nevski (barren brome), the latter particularly prevalent on shallow calcareous soils. A combination of straw burning and soil-acting residual herbicides such as isoproturon and pendimethalin contributed to management of black-grass, but during the 1970s suitable herbicides for brome management were lacking other than expensive combinations such as tri-allate followed by a sequence of metoxuron. By comparison, inversion tillage with or without straw burning had prevented brome from becoming a significant problem prior to the uptake of minimal tillage and autumn cropping. That said, the incidence of *Anisantha sterilis* as a weed of cereals was documented in the 1960s (Whybrew, 1969).

Straw Burning

A further contributory factor enabling the adoption of non-inversion tillage was the ability to remove previous straw residues by stubble burning. This had a sanitary effect, destroying a considerable number of weed seeds on the soil surface, albeit some impairment of herbicide performance was observed with the phenylureas, most notably chlorotoluron. However, the UK straw burning ban introduced in 1993 necessitated some return to traditional cultivation practices, as did the increasing threat of herbicide-resistant black-grass. Since the mid-1990s there has been a resurgence of non-inversion tillage made possible through stubble incorporation and treatment with glyphosate.

The overall effect of various agronomic practices on an individual weed species has been demonstrated in relation to black-grass (Lutman et al., 2013). The greatest reduction was achieved by rotation with a spring-sown cereal which reduced populations on average by 88%. Mouldboard ploughing prior to winter cropping reduced plant densities on average by 69% relative to non-inversion tillage, while delaying drilling from September to October reduced densities by up to 50%. Increasing crop seed rate and selecting for more competitive cultivars reduced the number of reproductive heads by up to 15 and 22% respectively.

Soil Amelioration, Drainage and Fertiliser Use

Other characteristic cornfield weeds such as *Chrysanthemum segetum* L. (corn marigold) have further suffered decline despite being relatively non-susceptible to herbicides, as a consequence of amelioration of soil conditions by liming. A weed more typical of the north and west of the British Isles, it is associated with sandy soils of low pH. Although it exhibits a bi-modal pattern of germination in autumn and spring, the autumn-emerging cohort is particularly prone to frost damage, and so it is more likely encountered in spring barley.
Large-scale soil drainage during the 1960s has resulted in decline of those species tolerant of a high water table, such as *Gnaphalium uliginosum* L. (marsh cudweed), *Polygonum cuspidatum* L. (amphibious bistort) and *Polygonum hydropiper* L. (water pepper). Consequently, many species have retreated to their climatic and geographic refugia (Holzner, 1978).

Nitrogen

Changes in the use of nitrogenous fertilisers have also had a considerable impact on those species that are least competitive, such as *Legousia hybrida* (L.) Delarbre (Venus’s looking glass), partly as a consequence of their inability to compete with nitrophilous species such as *Galium aparine*. It has been stated that the most effective means of weed suppression is a healthy vigorous crop. Studies at Broadbalk indicate that leguminous species such as *Medicago lupulina* L. are more prevalent on low nitrogen plots, as is also *Equisetum arvense* L., partly as a consequence of their tolerance or lack of suppression by nitrophilous species (Moss *et al*., 2004; Storkey *et al*., 2010). Conversely, *Stellaria media* (L.) Vill. (chickweed) showed a positive correlation with increasing nitrogen amount. Use of nitrogen in UK cereals increased dramatically between the 1960s and 1980s (Chalmers *et al*., 1990). Despite increased rates of nitrogen application this does not explain the demise of *Lithospermum arvense* L. (corn gromwell), which is nitrophilous and highly competitive and not excessively susceptible to herbicides. A major factor here has been the earlier drilling date of cereals (Wilson & King, 2004). Species that are adversely affected by fertiliser and herbicides have been shown to share characteristic traits of short stature, late flowering and large seed size (Storkey *et al*., 2010). Traits such as short stature and large seed size were shown to be of competitive advantage under conditions of low fertility. So too, Storkey *et al*. (2012) have shown a correlation between arable intensification and the proportion of rare, threatened or recently extinct arable plants within the European flora, with the greatest variance attributed to fertiliser use. Thus, the proportion of endangered species was positively related to increasing wheat yield.

Despite the transitory effects of cultural practices on weed populations, herbicides* have most probably exerted the greatest impact on species diversity and abundance. This is further evident from depletion of arable weed seedbanks, which often exhibited densities of between 30,000 and 80,000 m$^{-2}$ in the pre-herbicide era but have shown substantial reductions in recent years (Robinson & Sutherland, 2002).

Herbicides

The earliest attempts at chemical weed control involved inorganic salts and acids, perhaps the earliest example of which was the use of sodium chloride for total vegetation control, as occurred following the sacking of Carthage in 146 BC. During the latter half of the nineteenth century, inorganic salts were developed for selective weed control, for example, copper sulphate used selectively in France (1896) for control of charlock (*Sinapis arvensis* L.) in wheat (Smith & Secoy, 1976). Ferrous sulphate and sodium chlorate were introduced between 1901 and 1919; the latter for total weed control in France,

* Herbicide chemical nomenclature follows Tomlin (2006).
as reported in Timmons (2005). Ferrous sulphate is still used for moss control in lawns. Sulphuric acid introduced from 1930 for selective control of annual weeds in cereals was first used in France in 1911, but superseded by DNOC (4,6-dinitro-ortho-cresol), developed as the first organic herbicide in 1932 and originally discovered to have insecticidal properties (Ivens, 1980) and used in early locust control. However, perhaps the earliest example of an organic herbicide was amurca derived from olive residue, used by the romans for weed control in olive groves (Smith & Secoy, 1976).

Until 1945, chemical weed control was largely limited to the use of arsenical and copper salts and sulphuric acid, the only organic substance being DNOC. Development of modern herbicides stems from the development of the growth regulator (hormone) herbicides during the 1940s following independent research of Imperial Chemicals Industry (ICI) and Rothamsted. ICI discovered the selective action of NAA (α-naphthylacetic acid), whilst the Rothamsted team demonstrated the selectivity of IAA (indole acetic acid) against clovers at low concentrations. Results of both groups were communicated to Professor G.E. Blackman at the ARC Unit of Agronomy in Oxford, who led search for related structures of greater potency. Because of wartime secrecy, results were not disclosed until 1945. This research led to the development of MCPA (4-chloro 2-methyl phenoxy acetic acid) (Blackman, 1945) and of 2,4-D (2,4 dichloro-phenoxy acetic acid) independently in the USA.

Following the advent of herbicides, methods of weed control departed considerably from hand hoeing and the use of steerage hoes. A survey of herbicide practice in four arable districts of eastern England in the cropping year 1959–60, of which about 80% of crops sown were cereals, indicated that herbicides were used on almost 80% of cereals in three of the areas (Lincolnshire Wolds, West Suffolk and Humber Warp) and 95% in the other (Isle of Ely). This compares with 56% usage on cereals in north-west Oxfordshire 2 years previous (Church et al., 1962). MCPA was the most widely used herbicide, followed by mecoprop. By comparison, herbicide use in other arable crops ranged between 9 and 21%. Weeds that were targeted in these crops were Cirsium spp., Sinapis arvensis, Galium aparine, Stellaria media, Chenopodium album L. and Rumex spp. However, those species considered most intransigent were Avena spp., Persicaria maculosa Gray syn. Polygonum persicaria (L.), Tussilago farfara (L.), Stellaria media and Matricaria perforata Mérat. A comprehensive account of herbicide development prior to 1980 is provided by Ivens (1980).

The recent history of weed communities has been one of acclimation to the introduction of herbicides. Initially, the introduction of phenoxy-acetic acids reduced the incidence of susceptible weeds such as Sinapis arvensis (charlock), only to find the niche vacated occupied by less susceptible species such as Galium aparine and Stellaria media, necessitating the introduction of phenoxy-propionic acids such as mecoprop in 1957. So too were benzoic acids developed to address the incidence of Polygonum spp., while the hydroxybenzonitriles were introduced to target Matricaria spp. Following the introduction of the phenylurea herbicide isoproturon, Veronica persica (field speedwell) increased in prominence.

Evidence for such a shift in weed floras is documented in studies conducted in Germany by Koch (1964) where depletion of weeds susceptible to DNOC resulted in increased occurrence of Alopecurus myosuroides, and that of Bachthalser (1967) where repeated application of phenoxy-acetic acids over a 17-year period displaced susceptible species in favour of Matricaria spp., Polygonum spp. and Avena fatua.
Likewise, Rademacher et al. (1970) observed a change in weed species dominance over a 12-year period, while Hurle (1974) reported declines in the arable seedbank, particularly of Sinapis arvensis in response to repeated application of phenoxyacetic acids. However, in France, Barralis (1972) found little change in weed flora composition over 5 years. Similarly, Roberts and Neilson (1981) observed a progressive decline of Papaver rhoeas and Raphanus raphanistrum L. (wild radish) following application of simazine in maize, but substitution by Urtica urens L. (annual nettle) and Solanum nigrum L. (black nightshade). That said, other factors may contribute to fluctuations in weed populations, as indicated in a study by Chancellor (1979) where following application of a mixture of ioxynil, bromoxynil and dichlorprop to spring barley, most dicotyledonous species declined, whereas Papaver rhoeas decreased 92% on sprayed plots and by 91% on unsprayed plots. Conversely, Polygonum aviculare L. (knotgrass) increased by 67% on sprayed and by 189% on unsprayed plots. Such inexplicable dynamics have been reported for populations on Broadbalk (Warington, 1958).

Despite the early success of discovering phenoxyalkanoic acid herbicides (hormone herbicides), row crops such as sugar beet benefited from the early discovery of carbamates, for example, propham (IPC) in 1945. Chloridazon, a pyridazinone, was introduced in 1962, metamitron, a triazinone, and phenmedipham in 1965 and 1968 respectively. For use on mineral soils, lenacil was introduced in 1966. Likewise, horticultural crops such as leeks and carrots benefited from the introduction of the substituted phenyl ureas monolinuron (1958) and linuron (1960), as did potatoes with regard to the latter. It is somewhat ironic that linuron use has been restricted in potatoes following EU legislation. Triazines became the mainstay of the horticultural fruit sector following the introduction of simazine in 1956, being applied to 62% of the blackcurrant crop in 1962 (Davison, 1978). Usage in the amenity sector was revoked on 31 August 1993 and in the horticultural sector on 31 December 2007. Approval for the use of paraquat expired in July 2008.

Inevitably, resistance to herbicides became an issue in the 1980s with resistance first appearing to the s-triazines, notably simazine and atrazine. Resistance to the triazines had been predicted as a consequence of their persistency and, based on knowledge of selection pressure and ecological fitness, development of resistance could be foretold. Initially in the UK, resistance was confirmed in populations of Senecio vulgaris L. (groundsel) in geographically diverse locations, but with the common denominator of orchards and nurseries (Putwain, 1982). Resistance to s-triazines involves a mutation of the chloroplast thylakoid membrane and is conferred by cytoplasmic inheritance involving maternal inheritance, and so is particularly likely to occur in inbreeding species such as Senecio vulgaris. Subsequently triazine resistance occurred in other weeds of fruit orchards, most notably Epilobium spp. The nature of resistance to the triazines somewhat misled subsequent conceptions concerning resistance to other herbicide classes such as the phenylureas, where resistance most commonly involves enhanced metabolism and was first evident in outcrossing Alopecurus myosuroides. Following the first reported incidence of resistance to chlorotoluron in 1982, resistance to ACCase inhibitors and ALS inhibitors such as sulfonylureas is now well documented in A. myosuroides, the latter often involving target site resistance. Furthermore, target site resistance has been documented in Stellaria media and Papaver rhoeas (see Moss, Chapter 7).