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Preface

Pulsed power technology provides conditioned charging profiles for present 
and future applications requiring high peak power. This book is primarily 
concerned with providing the concepts, design information, and system tech
niques for optimizing this profile to the application. The field of pulsed power 
has been difficult to codify because each high-power application requires 
specific power sources. This customization, along with the innate inter
disciplinary nature of the field, has inhibited comprehensive documentation. 
This book is meant to be useful for designers of pulsed power sources and the 
researchers who require them. The book will be valuable for graduate students, 
studying courses in pulsed power technology, plasma physics and applications, 
laser physics and technology, high-voltage insulation and power system engi
neering, measurement and diagnostics, high-power electromagnetics, particle 
beams, and electromagnetic interference and compatibility. 
The authors have spent the bulk of their careers in government research 

laboratory settings in the design and construction of pulsed power technology 
and applications and have been heavily involved in the evolution of the field. 
Both authors have taught academic courses in pulsed power and recognize the 
deep need for a comprehensive book focused on the fundamental principles of 
the field. It is our deep conviction that a strong foundation in the fundamental 
principles – and the history of the field – will provide the future workforce with 
the necessary skills for emerging applications. This book, with its emphasis on 
engineering design and construction of pulsed power equipment, is intended 
for graduate students and practicing engineers with specialization in multiple 
disciplines, since it establishes a firm foundation in pulsed power components, 
systems, and measurements. Moreover, we include electromagnetic interfer
ence, compatibility, and topology concepts for the purpose of controlling noise 
and interference for modern designs of the pulsed power system. The book 
bridges the gap between a textbook for students and a monograph for research 
scientists. The length of the book is intended to provide in-depth insight into 
the theory, design, and construction of individual components of pulsed power 
equipment, but short enough to keep the attention anchored to overall system 
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requirements. This book is illustrated with a large number of equations derived 
from fundamental concepts, figures, and solved design examples. Foundations
of Pulsed Power Science and Technology complements the other books on 
the subjects of pulsed power: Gennady A. Mesyats, Pulsed Power, Kluwer 
Academic/Plenum Press, 2005; Paul W. Smith, Transient Electronics: Pulsed
Circuit Technology, John Wiley & Sons, Inc., 2002; JC Martin on Pulsed Power, 
edited by T.H. Martin, A.H. Guenther, and M. Kristiansen, Plenum Press, 
1996; S.-T. Pai and Qi Zhang, Introduction to High Pulse Power Technology, 
World Scientific, 1995; and W. James Sarjeant and R.E. Dollinger, High Power
Electronics, TAB Books, 1989. 
The entire subject of pulsed power technology is covered in 12 chapters. Each 

chapter contains a large number of references, to lead the researchers to greater 
depths in the field. This book is organized such that the Chapters 1–5 describe 
the “building blocks” of a pulsed power system. Chapters 6 and 7 describe 
considerations with examples of systems resulting from synergetic integration 
of individual components. The remaining five chapters describe the vital topics 
of electrical breakdown in insulators of interest (Chapters 8 and 9), pulsed 
voltage and current measurements (Chapter 10), and electromagnetic interfer
ence, compatibility, and topology for interference control (Chapters 11 and 12). 
The following are the salient features of the various chapters: 

� The design formulas, considerations, and examples of the widely used 
voltage-multiplying circuits based on the Marx generator are discussed in 
Chapter 1, Marx Generators and Marx-Like Circuits. A number of modified 
configurations of low-inductance Marx generators with capabilities for high
power delivery, fast erection with low jitter, and capability for repetitive pulse 
generation are discussed. Other circuits, such as the Maxwell Marx and Fitch 
circuit are introduced even though not widely used. � Chapter 2, Pulse Transformers, introduces another popular means of voltage 
multiplication: the Tesla transformer. This chapter also includes a discussion 
of transmission line transformers for modifying high power pulses with 
minimum distortion, with its special application for impedance matching 
to the application device. � Pulse forming lines, discussed in Chapter 3, receive input from a Marx 
generator or Tesla transformer, having capabilities to deliver gigawatts of 
power in a very short rise time and a flat-top. The various configurations of 
PFL, such as coaxial lines, striplines, Blumleins, stacked Blumleins, radial 
lines, helical lines, and spiral generators, are covered. The optimization of PFL 
design from the viewpoints of maximum charging voltage, maximum power 
delivery, choice of dielectric, and dielectric strength dependence on charging 
time are illustrated with solved design examples. � The design considerations and performance parameters of self-triggered and 
externally triggered spark gap switches to transfer the energy to the load at 
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high efficiency with minimum distortion in waveform are covered in 
Chapter 4. A review of spark gap configurations, trigger geometries, trigger 
modes, and salient features of specialized spark gaps like krytrons, burst mode 
gaps, and radioisotope-aided gaps is included. Design examples are provided 
for calculation of inductive rise time, resistive rise time, and a rough 
estimation of number of spark channels. � Chapter 5 describes a variety of opening switches that are a critical component 
of inductive energy storage systems. An exhaustive coverage of opening 
switches, their configurations, and performance are discussed at length. The 
subject covered in this chapter is taken largely from the NRC Report 
“Opening Switches in Pulsed Power Systems,” Rep.TR-GD-007, by P.H. 
Ron & R.P. Gupta. � Chapter 6 on multigigawatt pulsed power systems describes advanced 
systems with capabilities to deliver single or repetitive pulses at very high 
peak power levels. The major system categories are cascaded capacitor 
storage, cascaded inductor storage, magnetic pulse compression schemes, 
inductive cavity cells, and induction linacs. Some well-known machines 
comprised of fast Marx generators, fast pulse forming lines, and multichannel 
spark gaps are discussed at greater length, because of their historical 
importance and the relevance to the evolution of modern-day pulsed power 
systems. � In Chapter 7, Energy Storage in Capacitor Banks, the theoretical, practical, 
and safety aspects involved in the design and construction of high current or 
energy storage capacitor banks are discussed. Capacitor banks are used for 
the delivery of large energy in the microsecond regime. The capacitor bank 
discharges have wide ranging applications in plasma heating, high magnetic 
field generation, and electromagnetic propulsion. � Chapter 8, Electrical Breakdown in Gases, gives basic concepts of the kinetic 
theory of gases and ionization. The early experiments of Paschen and 
Townsend are described as well as insight into the fundamental mechanisms 
of electrical breakdown of gases. Pseudospark discharge and corona phe
nomena are also introduced. The techniques of optimum utilization of 
insulation by providing intermediate electrodes into electrically weak cylin
drical and spherical geometries are discussed at depth. Practical hints are 
given for deriving maximum benefit out of SF6 gas and its mixtures with other 
gases. � Chapter 9 deals with the properties of electrical insulation and electrical 
breakdown in solids, liquids, and vacuum. The breakdown mechanisms in the 
above dielectrics and practical techniques to be adopted for enhancing 
insulation performance are discussed. The important topics of partial dis
charges and electrical trees, which govern long-term performance of solid 
dielectrics, behavior of liquids for PFL insulation, and vacuum in application 
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devices, and the theory of surface flashover and some mitigation techniques 
are described. � The concepts and techniques for pulsed voltage and current measurements, 
which necessarily involves the accurate scaling down of parameters without 
distortion of pulse shape, are discussed at great depth in Chapter 10. The 
electro-optical and optoelectronic techniques, which possess high immunity 
to intense EMI, are introduced. � The topic of Chapter 11 electromagnetic interference and compatibility, is 
important because of the intense radiated electromagnetic fields generated by 
the operation of the pulsed power system. This radiation may damage 
equipment or cause inaccurate measurements or even operation because 
of extraneous ground loops. After discussing the theory of fundamental 
mechanisms of capacitive coupling, inductive coupling, common impedance 
coupling, and radiative coupling responsible for electromagnetic interfer
ence, the practical methods of incorporating protection techniques such as 
shielded cables, power line and signal line filters, isolation transformers, 
effective earthing, and shielded enclosures are discussed at length. � Techniques required for high frequencies are introduced in Chapter 12, EM 
Topology for Interference Control. Multiple, nested shields in complicated 
geometric shapes may be incorporated to enable the safe and reliable 
operation of electronic systems from high interfering levels in harsh environ
ments. To maintain high shield integrity in the presence of numerous shield 
surface discontinuities requires specialized techniques in the various protec
tion zones and high standards of connections between the penetrating 
devices and shield. 

Jane Lehr
Pralhad Ron
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Introduction

Pulsed power technology is an area of interest to physicists and engineers in 
fields requiring high voltages and large currents. Modern pulsed power runs the 
gamut from its historical roots in flash radiography, X-ray generation, and the 
simulation of weapons effects, such as nuclear electromagnetic pulse (EMP), to 
packaged pulsed power for directed energy weapons and biological and medical 
applications. New applications and techniques continue to emerge. 
Pulsed power has traditionally been described as the gradual accumulation of 

energy over a relatively long timescale and the subsequent compression into 
pulses of high instantaneous power for delivery in the required form to a load. 
This process is illustrated in Figure I.1, and is discussed in Chapter 3. Depending 
on the application, the slow accumulation of energy may be over minutes, such 
as for charging large capacitive energy store, or milliseconds for systems 
operating in a repetitive burst mode. The fast discharge is usually less than 
tens of microseconds but may be measured in tens of picoseconds. 
Pulsed power generally falls within the following range of parameters: 

Energy per pulse 1–107 J 

Peak power 106 –1014W 

Peak voltage 103 –107V 

Peak current 103 –108 A 

Pulse width 10�10 –10�5 s 

This explanation, however, does not capture the two key elements of the field: 
the exploitation of the time dependence of electrical breakdown on insulating 
materials and the specifics of the load requirements. 
The observation that electrical breakdown of insulators – be it gas, liquid, or 

solid – occurs at higher electric fields at shorter pulse durations was well known 
before the “birth” of pulsed power in the United Kingdom in the late 1950s. 
Definitive work on electrical discharges in gases and the mechanisms leading to 
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electrical breakdown was performed in the first half of the twentieth century, 
starting with Townsend’s experiments on current growth in low-pressure gases 
and its relation to ionization. The invention of the Marx generator, patented in 
1923, allowed the generation of substantially higher voltages with shorter pulse 
durations than previously available. The streamer mechanism of electrical 
breakdown of gases was proposed in the 1940s and seminal work was performed 
by Loeb, Meek, Craggs, and Raether. At the same time, Llewellyn-Jones and 
Davies, as well as Raether, continued to advance the understanding of the 
Townsend breakdown mechanism. The focus, however, was on physics and 
scant attention was paid to the increased breakdown strength of insulators upon 
application of pulses of short duration. Even in the very thorough, modern text, 
Gas Discharge Physics by Yu. Raizer [1], the time dependence of electrical 
breakdown is rarely mentioned. 
The integral nature of the time dependence of electrical breakdown to pulsed 

power is illustrated in an anecdote relayed by Goodman [2] and Martin [3]. The 
Atomic Weapons Research Establishment (AWRE) in the United Kingdom had 
acquired a used electron accelerator that was being used to radiograph 
explosive events. The radiographs were somewhat blurred and a better resolu
tion was needed. The conventional option was to increase the accelerator beam 
current by three orders of magnitude – an enormously expensive option. 
Martin proposed an alternative concept of a high-voltage (∼6MV), high
current (∼50 kA) accelerator lasting for 30–50 ns exploiting the time depen
dence of electrical breakdown. The second option was chosen on the basis of 
cost, and, with its success, pulsed power was born. Martin and his colleagues 
went on to develop a number of high peak power devices, and, along the way, an 
empirical relation for the time dependence of insulator breakdown that had the 
general form: 

F � ta � Ab � k

where F is the average electrical breakdown field, t is the charge time, A is the 
area, and a, b, and  k are constants that depend on the insulating material. 
These empirical relations allowed electrical breakdown to be predicted and 
therefore exploited, and are discussed in detail in Chapter 3. The scaling 
relation clearly shows that higher breakdown electric fields are attained with 
shorter charge and discharge times. Thus, using the pulse compression 
scheme illustrated in Figure I.1 permits the generation of high peak power. 
An in-depth history of these early developments can be found in the article by 
Smith [4]. Much of the material presented here is derived from work done in 
the United States and the United Kingdom. Pulsed power was independently 
and simultaneously developed in the former Soviet Union and is well 
documented by Mesyats in the English translation of his incredibly detailed 
book Pulsed Power [5]. 
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Figure I.1 Pulsed power may be represented schematically as a series of power conditioning
stages that increases the peak power while decreasing the pulse width. This technique is
known as pulse compression.

Pulsed power technology, simply stated, is the technique and equipment 
required to adapt the power characteristics of the prime power source to the 
electrical requirements of the load. Pulsed power in the context of power 
conditioning captures the quintessence since significant efforts must be made 
to optimize and specify the power demand. In the preface to the Pulsed Power 
Monograph series [6–8], Magne (Kris) Kristiansen and Art Guenther describe 
pulsed power as “special power conditioning for specific applications.” This 
statement captures both the inextricable link between pulsed power and the 
application and their uniqueness. In applications requiring high peak power, 
pulsed power is a low-cost power conditioning technique. Electrical efficiency is 
increased by delivering the power in a specific optimal form – the “art” of pulsed 
power. Pulsed power provides unique solutions to certain physics applications. 
Based on the above, the following succinct description of pulsed power is 

proposed: 

Pulsed power is a special power conditioning technique that transforms 
the characteristics of the prime energy source to the electrical require
ments of the load. Energy from a primary source is accumulated over a 
relatively long time scale and compressed into pulses of high instanta
neous power. Several stages may be needed to fully exploit the time 
dependence of breakdown of insulating materials to deliver energy with 
the required time dependence and amplitude for the application. The 
resulting peak power delivered to the load has a large ratio of instanta
neous-to-average power. 

Recognizing pulsed power as special power conditioning, the breadth of 
applications and the wide variety of implementation imply an overwhelming 
amount of knowledge is needed to participate. Certainly, this is true in part, but 
a large user-facility or a high-performance system is rarely designed by a single 
engineer. Our premise in choosing material for this book is that a strong 
foundation in fundamental principles – using realized systems as examples –
provides a better perspective for the wide number of applications a pulsed 
power engineer should expect to encounter over a career. In modern times, it is 
rare that a pulsed power engineer spends an entire career on a single applica
tion. In general, an in-depth treatise on applications is avoided to highlight this 
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and instead the focus is on the foundations of pulsed power technology on 
which most systems are built. Many of the references in this book are old, which 
is a reflection of fundamental nature of this book, but modern references are 
included where appropriate. 
While traditional applications of pulsed power are still relevant and 

continue to incorporate advances in technology, a host of new applications 
with very different operational requirements are emerging. For this reason, we 
chose to avoid application-driven pulsed power and focus on the fundamen
tals to provide a strong technical foundation for the next generation, as well as 
to document the many innovations achieved thus far. It is our belief that once 
the basics are mastered, they can be combined in any number of ways to 
create the specified output. The dimensional scale of the equipment may be 
vastly different but a focus on the fundamentals allows the similarities to be 
seen. For example, the Marx bank was invented almost a century ago, but 
continues to play an integral part in many systems. The basic Marx architec
ture is very versatile: It has been used with solid-state switches to produce 
a few hundred volts and is used exclusively to produce tens of megavolts, 
and it stores energy ranging from joules to kilojoules. It is the basis for 
trigger generators as well as lightning simulators. Marx generators are used 
exclusively as the energy storage stage of multigigawatt pulsed power 
systems and voltages over 18 MV have been produced [9]. However, the 
fundamental circuit architecture used to produce a 10 J per pulse, 200 kV peak 
voltage Marx generator that is only 15 cm long [10] is also configured into a 
bank of Marx generators that yields 5MV, requires a robust mechanical 
support, and powers a current source. While is it obvious that the application 
of these two voltage sources are vastly different, their basic operation is the 
same. 

Sources of Information

The dissemination of information related to pulsed power has been a low 
priority for much of its history and this may be attributed not only to its initial 
rapid growth but also to its initial use for military applications. Thus, much of 
the early progress was preserved primarily in reports and internal memoranda 
and passed informally throughout the community. Copies of these early reports 
are increasingly difficult to find, with the exception of Carl Baum’s Note Series. 
The Note Series was started in early 1964 by R.E. Partridge, a technical staff 
member at Los Alamos National Laboratory, to document the rapid progress in 
the simulation of the nuclear-generated effects. The Note Series recorded both 
simulation technology (largely pulsed power) and measurement techniques. 
The Note Series quickly passed into the care of Carl Baum and now stands at 
over 2000 documents, most of which are available electronically (The Note 


