Peripheral Artery Disease
Peripheral Artery Disease

Edited By

Emile R. Mohler, MD, MSVM, FACC, FAHA
University of Pennsylvania, Philadelphia, PA, USA

Michael R. Jaff, DO, FACP, FACC, FAHA, MSVM
Newton-Wellesley Hospital, Newton, MA, USA

Second Edition

WILEY Blackwell
Contents

Contributors xi
Preface xiii

1 Epidemiology of Peripheral Artery Disease 1
 Wobo Bekwelem and Alan T. Hirsch
 Definitions 1
 PAD Clinical Syndromes 2
 Prevalence and Incidence 3
 Asymptomatic PAD 8
 Claudication 10
 Atypical Leg Pain 12
 Critical Limb Ischemia 12
 Acute Limb Ischemia 13
 Risk Factors for Development of PAD 13
 Tobacco Use 14
 Diabetes Mellitus 15
 Dyslipidemia 15
 Hypertension 16
 Homocysteinemia 16
 C-Reactive Protein and Fibrinogen 17
 Obesity 17
 Other Risk Factors 18
 Awareness of PAD in the Community 20
 Progression, Natural History, and Outcomes of PAD 20
 Progression 20
 Natural History and Outcomes 22
 Summary 24
 References 26
2 Office Evaluation of Peripheral Artery Disease – History and Physical Examination Strategies 37

Maen Nusair and Robert S. Dieter

Introduction 37
Identifying At-Risk Individuals 37
Regional Symptom Analysis 38
 Neurologic Symptoms 38
 Thoracic Symptoms 40
 Abdominal Pain 41
 Extremity Pain 42
 Skin Manifestations 44
Physical Examination 46
 General Appearance 46
 Head and Neck Examination 46
 Chest 48
 Abdominal Examination 48
 Lower Extremity Examination 49
 Palpating for Pulses 50
 Auscultation 52
References 53

3 Vascular Laboratory Evaluation of Peripheral Artery Disease 57

Thomas Rooke

Introduction 57
Anatomic 57
Hemodynamic 57
Functional 58
Physiological Testing 58
 Background/History 58
 Physiological Invasive Testing 58
 Physiological Non-Invasive Testing 58
 Vascular Laboratory 59
Doppler 59
 Motion Detection 59
 Waveform Analysis 60
Plethysmography 60
 PVR Amplitude 61
 PVR Contour 62
 Ankle–Brachial Index (ABI) and Segmental Pressures 63
Tissue Perfusion 65
 Transcutaneous Oximetry (TcPO₂) 66
Duplex Scanning 67
 Background/History 67
Contents

- Imaging (Anatomy) 67
- Doppler (Hemodynamic) 68
- Vascular Laboratory Accreditation 69
- References 69

4 Magnetic Resonance, Computed Tomographic, and Angiographic Imaging of Peripheral Artery Disease 73
Thomas Le, Masahiro Horikawa and John A. Kaufman

Introduction 73

Computed Tomography Angiography 73
- Basics 73
- Image Acquisition and Interpretation 74
 - Protocol 74
- Advantages 76
- Pitfalls 76
 - Calcification 76
 - Artifacts 76
 - Radiation Exposure 76
 - Contrast-Induced Nephropathy 76
 - Anaphylaxis 77

Magnetic Resonance Angiography 77
- Basics 77
- Image Acquisition and Interpretation 77
 - Protocol 77
- Non-Contrast-Enhanced MRA 77
- Contrast-Enhanced MRA (CE-MRA) 78
- Post-Processing and Interpretation 78
- Advantages 78
- Pitfalls 80
 - Time 80
 - Nephrogenic Systemic Fibrosis 80
 - Bolus Timing 80
 - Artifacts 80
 - Other Pitfalls 80

Conventional Angiography 81
- Basics 81
- Image Acquisition and Interpretation 81
 - Pre-Procedure Patient Care 81
 - Protocol 81
- Advantages 82
- Pitfalls 82
 - Contrast-Induced Nephropathy and Anaphylaxis 82
 - Artifacts 84
Other Disadvantages 84
Intravascular Ultrasonography 84
 Basics 84
 Advantages 85
 Pitfalls 85
Results 85
 Aortoiliac 85
 CTA 85
 MRA 86
 Runoff 86
 CTA 86
 MRA 86
 Pedal 87
 CTA 87
 MRA 87
Conclusion 87
References 87

5 Non-atherosclerotic Peripheral Artery Disease 91
 Mitchell D. Weinberg and Ido Weinberg
Introduction – Presentation of Peripheral Artery Disease 91
When Should Non-atherosclerotic Causes of PAD Be Suspected? 92
Entities that Make up Non-atherosclerotic PAD 94
 Popliteal Artery Entrapment Syndrome 94
 External Iliac Artery Endofibrosis 98
 Fibromuscular Dysplasia 99
 Cystic Adventitial Disease 100
 Vasculitis 101
 Idiopathic Mid-aortic Syndrome 102
 Arterial Manifestations of Pseudoxanthoma Elasticum 102
 Chronic Exertional Compartment Syndrome 103
 Musculoskeletal Pathology 103
Diagnostic Evaluation of Patients with Leg Pain with Exertion 104
Treatment Considerations 105
Conclusions 105
References 105

6 Medical Therapy of Peripheral Artery Disease 111
 Lee Joseph and Esther S. H. Kim
Introduction 111
Atherosclerotic Risk Factor Management 111
 Hypertension 112
 Diabetes Mellitus 113
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
</tr>
</tbody>
</table>

Hyperlipidemia 114
Tobacco Cessation 114
Antiplatelet Agents 116
Management of Claudication 117
 Claudication Pharmacotherapy 118
 Cilostazol 118
Exercise Therapy 118
Claudication Management Strategies: A Comparison 119
Lower Extremity Wound Care 120
Summary 121
References 121

7 Endovascular Treatment of Peripheral Artery Disease 129
Vikram Prasanna, Jay Giri and R. Kevin Rogers

Introduction 129
Clinical Background 129
 Intermittent Claudication 129
 Critical Limb Ischemia 131
 Limb Prognosis/Overall Survival 131
 Typical Anatomy in Patients with CLI 131
 Patency Issues 131
 Indications for Endovascular Therapy for CLI 131
Background for Endovascular Therapy 132
 Anatomy 132
 Technical Background 136
 Preprocedural Imaging 136
 Access 138
 Anticoagulation 139
 Antiplatelet Management 141
 Radiation 143
 Chronic Total Occlusions 143
Clinical Evidence for Peripheral Intervention 145
 Aorto-Iliac Interventions 145
 Angioplasty vs. Stent 146
 Polytetrafluoroethylene (PTFE)-Covered versus Bare Metal Balloon-Expandable Stents 147
 Femoropopliteal Interventions 147
 Angioplasty versus Stenting 149
 Drug-Eluting Stents in Femoropopliteal Arteries 149
 Drug-Coated Balloon (DCB) Therapy in Femoropopliteal Disease 150
 Covered Stents in Femoropopliteal Disease 151
 Atherectomy 152
8 Surgical Management of Peripheral Artery Disease 163
Julia Glaser and Scott M. Damrauer

When to Refer Patients with Claudication 163
When to Refer Patients with CLI 164
Revascularization Options and Results 166
 Iliac Revascularizations 166
 Femoropopliteal Disease 169
 Tibioperoneal Disease 171
Complications of Revascularization 173
Preoperative Evaluation and Management 175
Conclusion 175
References 176

Index 179
Contributors

Wobo Bekwelem, MD MPH
Lillehei Heart Institute and
Cardiovascular Division
University of Minnesota Medical School
Minneapolis
MN, USA

Scott M. Damrauer, MD
Hospital of the University of Pennsylvania; and Corporal Michael Crescent VA Medical Center
Philadelphia
PA, USA

Robert S. Dieter, MD RVT
Associate Professor of Medicine
Loyola University Medical Center
Maywood
IL, USA

Jay Giri, MD
Interventional Cardiology &
Vascular Medicine
Cardiovascular Medicine Division
University of Pennsylvania
PA, USA

Julia Glaser, MD
Hospital of the University of Pennsylvania
Philadelphia
PA, USA

Al T. Hirsch, MD
Director, Vascular Medicine, Quality Outcomes, and Population Health
Professor of Medicine, Epidemiology and Community Health
Lillehei Heart Institute and
Cardiovascular Division
University of Minnesota Medical School
Minneapolis
MN, USA

Masahiro Horikawa, MD
Instructor, Dotter Interventional Institute/Oregon Health & Science University
Portland
OR, USA
Lee Joseph, MD MS
Division of Cardiovascular Diseases
Department of Internal Medicine
University of Iowa
Iowa City
IA, USA

Esther S.H. Kim, MD MPH
Cardiovascular Division
Vanderbilt University Medical Center
Nashville
TN, USA

John A. Kaufman, MD MS
Frederick S. Keller Professor of Interventional Radiology
Director of the Institute, Dotter Interventional Institute/Oregon Health & Science University
Portland
OR, USA

Thomas Le, MD MS
Assistant Professor, Department of Radiological Sciences
David Geffen School of Medicine at UCLA Los Angeles; and Staff Interventional Radiologist
Section of Vascular and Interventional Radiology
Department of Radiology
Olive View-UCLA Medical Center
Sylmar
CA, USA

Maen Nusair, MD
PeaceHealth Southwest Heart and Vascular Center
Vancouver
WA, USA

Vikram Prasanna, MD
Interventional Cardiology & Vascular Medicine
Cardiovascular Medicine Division
University of Pennsylvania
Philadelphia
PA, USA

R. Kevin Rogers, MD MSc
Section of Vascular Medicine and Intervention
Division of Cardiology
University of Colorado
Aurora
CO, USA

Thomas Rooke, MD BS RVT
Krehbiel Professor of Vascular Medicine
Mayo Clinic
Rochester
MN, USA

Ido Weinberg, MD FSVM
Vascular Medicine Section
Cardiology Division
Massachusetts General Hospital
Boston
MA, USA

Mitchell D. Weinberg, MD FACC
System Director of Peripheral Vascular Intervention
Northwell Health System
Division of Cardiology; and
Assistant Professor, Hofstra Northwell School of Medicine
Northwell School of Medicine
Long Island
NY, USA
Peripheral artery disease (PAD) is unfortunately infrequently recognized. The treatment of PAD continues to evolve but is fundamentally focused on control of risk factors in order to prevent the associated risk of heart attack, stroke, and premature cardiovascular death as well as improvement in exercise performance and limb preservation. The pathophysiology of progressive atherosclerotic plaque in the extremities is thought to involve plaque hemorrhage and rupture, but few data support this presumption. Clinical research is needed to develop agents designed to halt progression of atherosclerotic disease in the peripheral arterial system. Despite these current limitations in understanding and treating PAD, new lipid modifying agents and new antiplatelet treatment of risk factors and strategies to improve pain-free walking distance have emerged, including the use of emerging endovascular strategies. In addition, with the rapid evolution of technology to improve arterial perfusion with minimally invasive catheter-based strategies, options for revascularization of patients with advanced symptoms and signs of PAD are improving.

The primary objective of Peripheral Artery Disease is to provide the reader with the most current information on diagnosis and treatment of PAD.

We hope that this reference provides an easy-to-use resource for the practicing clinician, ultimately resulting in better care for our patients. In addition, we would like to dedicate this entire book to Alan T. Hirsch, MD, who died suddenly and unexpectedly in April 2017. It minimizes his impact on the field and all vascular specialists to discuss his publications, presentations, and advocacy. Alan was a tireless voice for patients around the World who suffered from PAD. It was through his efforts that exercise and guidelines-based medical therapies have become primary in the management of these patients. We will forever miss his enthusiasm, humor, expertise and care, but most importantly, the World is a bit smaller with his passing.
This chapter describes the epidemiology of peripheral artery disease (PAD). The definitions used to describe PAD and PAD syndromes are discussed. The prevalence and incidence, risk factors, progression and outcomes of PAD are summarized. Finally, the low awareness of PAD in the community is highlighted.

Definitions

Peripheral artery disease is an all-encompassing term used to describe disorders of the structure (including stenosis and aneurysms) and function of all non-coronary arteries [1]. Peripheral artery disorders include atherosclerosis, plaque rupture, abnormal vascular reactivity, vasospasm, inflammation, arterial wall dysplasia, and thrombus formation leading to occlusion. In the past, a range of other terms have been used, including peripheral vascular disease (PVD), peripheral artery occlusive disease (PAOD), lower extremity arterial disease (LEAD), and arteriosclerosis obliterans. The term “PVD” is not synonymous as it is less specific, potentially signify venous, arterial or lymphatic disease. PAD is preferred as it communicates the accurate anatomic disease site, is accepted in all current practice guidelines, and better communicates the disease site to patients and other health care professionals.

Lower extremity atherosclerotic PAD is a marker of systemic atherosclerosis which begins in childhood [2] as deposits of cholesterol and cholesterol esters called “fatty streaks” begin to line the intima of large and medium-sized arteries. At this stage, atherosclerosis is subclinical, but it can be quantified using arterial ultrasound imaging in other vascular beds (e.g., the extracranial carotid arteries) to measure carotid intima media thickness (cIMT). Various cohort
studies have demonstrated a higher prevalence of cardiovascular disease and increased incidence of poor cardiovascular outcomes in individuals with increased cIMT. This relationship of early atherosclerosis defined by cIMT measurements has been established in the Atherosclerosis in Communities (ARIC) study [3], the Osaka Follow-Up Study for Carotid Atherosclerosis 2 [4], the Cardiovascular Health Study (CHS) [5], the Rotterdam Study [6], the Tromsø study [7], and the Second Manifestations of ARTerial disease (SMART) study [8]. Progression of these fatty streaks by increased lipid accumulation, followed by development of a fibromuscular cap, lead to formation of a fibrous plaque. Risk factor exposure (e.g., smoking, diabetes, hypertension, diabetes, low high-density lipoprotein [HDL]-cholesterol concentrations, elevated non-HDL-cholesterol concentrations and obesity), lead to further progression of these atherosclerotic lesions and increase the risk of clinically manifest PAD and other atherosclerotic diseases [9]. Clinical PAD is detected when at least one infra-diaphragmatic stenosis leads to a measurable decrease in pedal systolic pressure measurements, with or without clinically recognized limb ischemic symptoms.

In this chapter, the term “PAD” is used exclusively to refer to partial or complete atherosclerotic obstruction of one or more lower extremity peripheral arteries.

PAD Clinical Syndromes

There are five recognized clinical syndromes of PAD that are characterized by distinct presentations. These syndromes are useful both in describing the epidemiology of PAD and in clinical care. They include:

- asymptomatic PAD
- classic claudication
- atypical leg pain
- acute limb ischemia (ALI)
- critical limb ischemia (CLI).

Approximately one-half of individuals with PAD may be asymptomatic, defined by the absence of self-reported leg symptoms [10–14], and this has important implications in estimating the accurate PAD prevalence. PAD in these individuals is defined by a low (≤0.9) ankle–brachial index (ABI). The diagnosis of PAD is discussed in detail in Chapter 2. Claudication, which is the hallmark symptom of PAD, occurs in 10–35% [10–13] of individuals with PAD, and refers to the discomfort, pain, ache or fatigue in limb muscles that reproducibly occurs with exercise (e.g., walking) and is consistently relieved by rest [15]. Atypical leg pain is defined in individuals with objective evidence of PAD and who experience any leg symptom that is not classic claudication [16–18]. Up to
30–50% of individuals with PAD present with atypical pain [13, 15, 16]. ALI is defined by the clinical symptoms that arise with a sudden decrease in limb perfusion and that threatens the viability of the limb. While ALI is presumed to be an immediate vascular emergency, “acute” has been variably defined as occurring within 2 weeks of the initial ischemic presentation. ALI is usually due to thrombosis or embolism [19] and is clinically recognized by the “six Ps”: pain, paresthesia, pallor, pulselessness, poikilothermia, and paralysis. It is estimated that 0.1–1% of PAD patients may experience an episode of ALI [20, 21]. CLI manifests as chronic (>2 weeks) ischemic rest pain, non-healing ulcer or gangrene in 1–2% of PAD patients [22].

Prevalence and Incidence

There are an estimated 202 million people living with PAD globally, with almost 70% of them residing in low- and middle-income countries. Current data suggest that the global prevalence of PAD may be increasing, from 164 million individuals in the decade beginning in 2000–2010, representing an overall 23.5% rise in PAD prevalence (28.7% in low- to medium-income countries [LMICs] and 13.1% in high-income countries [HICs]) [23]. PAD affects most adult populations worldwide irrespective of socioeconomic or national developmental status [24, 25]. Fowkes et al. [23] recently collated the global prevalence of PAD using data from 34 studies (12 from LMICs and 22 from HICs). In women aged 45–89 years old, PAD prevalence ranged from 2.7% to 24.2% in HICs, and from 3.96% to 18.65% in LMICs. In men aged 45–89 years old, PAD prevalence ranged from 2.76% to 24.77% in HICs, and from 1.21% to 21.5% in LMICs.

Overall, PAD incidence and prevalence rates are similar in high- and low- to middle-income countries. PAD is as much a problem in HICs as it is in LMICs. Although the rates are similar, due to the greater population of people that live in LMICs compared with HICs, the number of individuals with PAD in LMICs exceed that in HICs (140.8 vs. 61.2 million people) (Figure 1.1). PAD is much more prevalent than common cardiovascular diseases, such as heart failure and atrial fibrillation [23, 26, 27] (Figure 1.2). Various studies have estimated the prevalence of PAD using the presence of claudication, identification of low ABI in asymptomatic individuals, or evidence of advanced forms of PAD (ALI or CLI). It is important to note that the prevalence of PAD in a given population depends on the characteristics of the population studied (i.e., age, ethnicity, socioeconomic status, and risk factors) and the method of diagnosis. In 2007, Allison et al. [28] summarized race- and ethnicity-specific estimates of PAD prevalence. They used data from seven community-based studies (the Cardiovascular Health Study, Honolulu Heart Program, Multiethnic Study of Atherosclerosis, US National Health and Nutrition Examination Survey, San
Diego PAD, San Diego Population Study and the Strong Heart Study). They found that with increasing age, the prevalence rates of PAD in men lay in the range 1.4–22.6% in non-Hispanic whites, 1.2–59% in blacks, 0.2–22.5% in Hispanics, 1.2–21.5% in Asians, and 2.6–28.7% in American Indians. PAD prevalence rates in women were in the range 1.9–18.2% in non-Hispanic whites, 3.0–65.1% in blacks, 0.3–18.2% in Hispanics, 0–18.2% in Asians, and 3.2–33.8% in American Indians. Eraso et al. [29] performed a multivariable age-, gender- and race/ethnicity-adjusted stratified analysis in this population, where the effect of each additional risk factor on the prevalence of PAD was

Figure 1.1 Prevalence of peripheral artery disease by age in men and women in high-income countries (HICs) and low- to middle-income countries (LMICs). Source: adapted from Fowkes et al. [23].
measured. Non-Hispanic blacks (odds ratio [OR] = 14.7, 95% CI: 2.1–104.1) and women (OR = 18.6, 95% CI: 7.1–48.7) had the highest odds of PAD as a result of this cumulative effect (Figure 1.3).

Due to the time and resources required to periodically retest study subjects for incident disease, fewer studies have evaluated the incidence of PAD. In 1970, Kannel et al. [30] assessed claudication incidence in the Framingham study. They reported the age-specific annual incidence of claudication for ages 30 to 44 years as 6/10 000 in men and 3/10 000 in women. The incidence increased among those aged 65–74 years to 61/10 000 in men and 54/10 000 in women. In 1988, the Edinburgh Artery Study used detection of claudication determined by the World Health Organization (WHO) questionnaire, the ABI, and a hyperemia test, among individuals aged 55–74 years, and reported an incidence of 15.5/1000 person-years. Hooi et al. [31] studied the incidence of asymptomatic PAD among 2327 Dutch subjects defined by an ABI < 0.9. After 7.2 years, the overall incidence rate for asymptomatic PAD was 9.9/1000 person-years. More recently, using data from CHS, Kennedy et al. [32] found that during 6 years of follow-up, incident PAD was detected in 9.5% of the cohort as defined by an ABI decrease of > 0.15 to a level of ≤ 0.90. Table 1.1 summarizes the available data on the age- and sex-specific incidences of PAD.

There have been significant methodological challenges relating to measuring the sex-based incidence of PAD. The male:female ratio of incident PAD is higher when measured based on claudication alone, with one study reporting a ratio as high as 1.97. However, in studies that have used an ABI definition of PAD, the incidence rates are lower for men (0.8) or similar between men and women (Table 1.1). Prevalent claudication is also more common in men than in women, with male:female ratio ranging from 1.2 to 2.38. However, when ABI