Fruit and Vegetable Phytochemicals
To Mariam, Nadia-Amina, and Tarek
To my students, who taught me more than I taught them
To the health of the world
Contents

List of Contributors xiii
Foreword xxvii
 Jeffrey K. Brecht
About the Editor xxix
Introduction xxxi
 Elhadi M. Yahia

Volume I

Part I Chemistry and Biological Functions 1

1 The Contribution of Fruit and Vegetable Consumption to Human Health 3
 Elhadi M. Yahia, María Elena Maldonado Celis, and Mette Svendsen

2 Anticarcinogenic Phytochemicals 53
 Adriana Cavazos-Garduño, Julio C. Serrano-Niño, Rebeca García-Varela,
 and Hugo S. García

3 Beneficial Effects of Phytochemicals on the Endocrine System 67
 Juan Carlos Solís-S, Pablo García-Solís, Ludivina Robles-Osorio, and Hebert Luis
 Hernández-Montiel

4 Phytochemicals Effects on Neurodegenerative Diseases 85
 Hebert Luis Hernández-Montiel, Juan Carlos Solís-S, Pablo García Solís, Mónica
 López Hidalgo, Nancy Georgina Hernández Chan, Lorena Asucena García
 Noguez, Julián Valeriano Reyes López, Ana Gabriela Hernández Puga, Haydé Azeneth
 Vergara Castañeda, Lorena Méndez Villa, and Nelly Angélica Morales Guerrero

5 Synthesis and Metabolism of Phenolic Compounds 115
 Mikal E. Saltveit

6 Biological Actions of Phenolic Compounds 125
 Ana Elena Quirós Saucedo, Sonia Guadalupe Sáyago-Ayerdi,
 Jesús Fernando Ayala-Zavala, Abraham Wall-Medrano, Laura A. de la Rosa,
 Gustavo A. González-Aguilar, and Emilio Álvarez-Parrilla

7 Flavonoids and Their Relation to Human Health 139
 J. Abraham Domínguez-Ávila, Francisco J. Olivas-Aguirre, Laura A. de la Rosa,
 Abraham Wall-Medrano, and Gustavo A. González-Aguilar
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Bioaccessibility and Bioavailability of Phenolic Compounds from Tropical Fruits</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Gustavo R. Velderrain Rodríguez, Francisco J. Blancaz-Benítez, Abraham Wall-Medrano, Sonia Guadalupe Sáyago-Ayerdi, and Gustavo A. González-Aguilar</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mangosteen Xanthones: Bioavailability and Bioactivities</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Mark L. Failla and Fabiola Gutiérrez-Orozco</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Methyloxanthines: Dietary Sources, Bioavailability, and Health Benefits</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>María Raquel Mateos Briz, Beatriz Sarriá Ruiz, and Laura Bravo-Clemente</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Glucosinolates and Isothiocyanates: Cancer Preventive Effects</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Ahmad Faizal Abdul Razis, Asvinidevi Arumugam, and Nattaya Konsue</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Effect of Soy Isoflavones on DNA Metabolic Enzyme Inhibitory Activity and Anticancer Activity</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Yoshiyuki Mizushima and Shinko Hata</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Tannins in Fruits and Vegetables: Chemistry and Biological Functions</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Julio Montes-Ávila, Gabriela López-Angulo, and Francisco Delgado-Vargas</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Chlorophylls: Chemistry and Biological Functions</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Sunil Pareek, Narashans Alok Sagar, Sunil Sharma, Vinay Kumar, Tripti Agarwal, Gustavo A. González-Aguilar, and Elhadi M. Yahia</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Chemistry, Stability, and Biological Actions of Carotenoids</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Elhadi M. Yahia, José de Jesús Ornelas-Paz, Tatiana Emanuelli, Eduardo Jacob-Lopes, Leila Queiroz Zepka, and Braulio Cervantes-Paz</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Protective Effects of Carotenoids in Cardiovascular Disease and Diabetes</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Tatiana Emanuelli, Paula Rossini Augusti, and Miguel Roehrs</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Betalains: Chemistry and Biological Functions</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Armando Carrillo-López and Elhadi M. Yahia</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Dietary Fiber and Associated Macromolecular Antioxidants in Fruit and Vegetables</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Jara Pérez-Jiménez and Fulgencio D. Saura-Calixto</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Impact of Fruit Dietary Fibers and Polyphenols on Modulation of the Human Gut Microbiota</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Ana E. Quiros Sauceda, Ramón Pacheco-Ordaz, Jesús Fernando Ayala-Zavala, Adrián Hernández Mendoza, Aarón F. González-Córdo, Belinda Vallejo-Galland, and Gustavo A. González-Aguilar</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Lipids in Fruits and Vegetables: Chemistry and Biological Activities</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Ramiro Baeza-Jiménez, Leticia X. López-Martínez, Rebeca García-Varela, and Hugo S. García</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Vitamin E (Tocopherols and Tocotrienols) in Fruits and Vegetables with Focus on Chemistry and Biological Activities</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Ibrahim Elmadfa and Alexa L. Meyer</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Plant Vitamin C: One Single Molecule with a Plethora of Roles</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Ifigeneia Mellidou, Athanasios Koukouiharas, Fani Chatzopoulou, Stefanos Kostas, and Angelos K. Kanellis</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>23</td>
<td>Capsaicinoids: Occurrence, Chemistry, Biosynthesis, and Biological Effects</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Mathias Kaiser, Inocencio Higuera, and Francisco M. Goycoolea</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Flavors and Aromas: Chemistry and Biological Functions</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>Charles F. Forney and Jun Song</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Recent Advances in Bioactivities of Common Food Biocompounds</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>Abdelkarim Guadàdaoui</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Biomarkers for the Evaluation of Intake of Phytochemicals and Their</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>Bioactive Effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>María Tabernero Urbieta and José C.E. Serrano</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Influen of Postharvest Handling and Processing Technologies, and</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>Analysis of Phytochemicals</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Influence of Postharvest Technologies and Handling Practices on</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>Phytochemicals in Fruits and Vegetables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elhadi M. Yahia, María Serrano, Daniel Valero, and Gustavo A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>González-Aguilar</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Phytochemical Changes during Minimal Processing of Fresh Fruits and</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>Vegetables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gustavo A. González-Aguilar, Jesús Fernando Ayala-Zavala, Laura A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de la Rosa, Emilio Alvarez-Parrilla, A. Thalia Bernal-Mercado, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cintia Anabela Mazzucotelli</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Conventional and Novel Thermal Processing Used for the Improvement</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td>of Bioactive Phytochemicals in Fruits and Vegetables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sirithon Siriamornpun and Niwat Kaewsuejan</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Non-thermal Processing Effects on Fruits and Vegetables Phytonutrients</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>Noor Akhmazillah Mohd Fauzi and Alifdalino Sulaiman</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Chlorophylls and Colour Changes in Cooked Vegetables</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>Maria Paciulli, Marianontella Palermo, Emma Chiavaro, and Nicoletta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pellegrini</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Pressurized Fluid Extraction of Phytochemicals from Fruits, Vegetables</td>
<td>721</td>
</tr>
<tr>
<td></td>
<td>Cereals, and Herbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marleny D.A. Soldaña, Idaresit Ekaette, Carla S. Valdivieso Ramírez,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jane S. dos Reis Coimbra, and Lucio Cardozo-Filho</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Supercritical Fluid Extraction of Bioactive Compounds from Fruits and</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Vegetables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raghuraj Singh, Tushar Dhanani, and Satyanshu Kumar</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>The Use of Non-destructive Techniques to Assess the Nutritional</td>
<td>763</td>
</tr>
<tr>
<td></td>
<td>Content of Fruits and Vegetables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maria L. Amodio, Muhammad M.A. Chaudhry, and Giancarlo Colelli</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Rapid Estimation of Bioactive Phytochemicals in Vegetables and Fruits</td>
<td>781</td>
</tr>
<tr>
<td></td>
<td>Using Near Infrared Reflectance Spectroscopy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satyanshu Kumar, Raghuraj Singh, and Tushar Dhanani</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Methods for Determining the Antioxidant Capacity of Food Constituents</td>
<td>803</td>
</tr>
<tr>
<td></td>
<td>María Janeth Rodríguez-Roque, Robert Soliva-Fortuny, and Olga Martin-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beloso</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>38</td>
<td>Modeling Shelf Life of Packaged, Ready-to-Eat Fruits and Vegetables with Reference to the Fate of Nutritional Compounds</td>
<td>Maria L. Amodio, Antonio Derossi, and Giancarlo Colelli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part III Phytoceminals in Some Fruits and Vegetables</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Ackee (Blighia sapida Koenig)</td>
<td>Machel A. Emanuel</td>
</tr>
<tr>
<td>40</td>
<td>Andean Berry (Vaccinium meridionale Swartz)</td>
<td>María Elena Maldonado Celis, Yuly Nataly Franco Tobón, Carlos Agudelo, Sandra Sulay Arango, and Benjamin Rojano</td>
</tr>
<tr>
<td>41</td>
<td>Berries</td>
<td>Luca Mazzoni, Jessica Scalzo, Lucia Di Vittori, Bruno Mezzetti, and Maurizio Battino</td>
</tr>
<tr>
<td>42</td>
<td>Bottle Gourd (Lagenaria siceraria)</td>
<td>Debjani Nath, Pratyusha Banerjee, Mithun Shaw, and Manas Kumar Mukhopadhyay</td>
</tr>
<tr>
<td>44</td>
<td>Cactus Pear Fruit and Cladodes</td>
<td>Elhadi M. Yahia and Carmen Sáenz</td>
</tr>
<tr>
<td>45</td>
<td>Capsicums</td>
<td>Puran Bridgemohan, Majeed Mohammed, and Ronell S.H. Bridgemohan</td>
</tr>
<tr>
<td>46</td>
<td>Carrots (Daucus carota L.)</td>
<td>Cielo D. Char</td>
</tr>
<tr>
<td>47</td>
<td>Chayote (Sechium edule (Jacq.) Swartz)</td>
<td>Oscar Andrés Del Ángel Coronel, Elizabeth León-Garcia, Gilber Vela-Gutiérrez, Javier De la Cruz Medina, Rebeca García-Varela, and Hugo S. García</td>
</tr>
<tr>
<td>48</td>
<td>Cherimoya (Annona cherimola Mill.)</td>
<td>Luis M. Anaya-Esparza, Marco V. Ramirez-Marez, Efigenia Montalvo-González, and Jorge A. Sánchez-Burgos</td>
</tr>
<tr>
<td>49</td>
<td>Citrus</td>
<td>Ahmed Ait-Outahou, Mohamed Benichou, Maha Sagar, Amar Kaanane, and Elhadi M. Yahia</td>
</tr>
<tr>
<td>50</td>
<td>Dates (Phoenix dactylifera L.)</td>
<td>Elhadi M. Yahia, Ahmed Ait-Outahou, and Mohammad Al Abid</td>
</tr>
<tr>
<td>51</td>
<td>Grapes</td>
<td>Alvaro Peña-Neira</td>
</tr>
</tbody>
</table>
52 Grape Bagasse: A Potential Source of Phenolic Compounds 1055
Fabiola C. Muñoz-De la Cruz, Frida R. Cornejo-García, Nadia M. Vázquez-Díaz, Miriam A. Anaya-Loyola, and Teresa García-Gasca

53 Guava (Psidium guajava) 1067
Francisco J. Blancas-Benitez, Gustavo A. González-Aguilar, and Sonia Guadalupe Sáyago-Ayerdi

54 Indian Gooseberry (Emblica officinalis Gaertn.) 1077
Sunil Pareek, Alexander N. Shikov, Olga N. Pozharitskaya, Valery G. Makarov, Gustavo A. González-Aguilar, Suyare A. Ramalho, and Narendra Narain

55 Loquat (Eriobotrya japonica Lindl.) 1107
Mostafa Z. Sultan

56 Maqui (Aristotelia chilensis (Mol.) Stuntz) 1127
Carolina Fredes and Paz Robert

57 Pecans (Carya illinoinensis) 1137
Jose Alberto Gallegos-Infante, Nuria Elizabeth Rocha-Guzman, Ruben Francisco Gonzalez-Laredo, and Martha Rocio Moreno-Jimenez

58 Onion (Allium cepa L.) 1145
Sunil Pareek, Narashans Alok Sagar, Sunil Sharma, and Vinay Kumar

59 Papaya (Carica papaya) 1163
Laura E. Gayosso-García Sancho, Gilber Vela-Gutiérrez, and Hugo S. García

60 Pineapples (Ananas comosus) 1173
Jorge A. Sánchez-Burgos and María de Lourdes García-Magaña

61 Pomegranates (Punica granatum L.) 1179
Asghar Ramezanian and Mustafa Erkan

62 Potato and Other Root Crops 1195
Anne Pihlanto

63 Prunus 1215
Francisco J. Luna-Vázquez, César Ibarra-Alvarado, Alejandra Rojas-Molina, Juana I. Rojas-Molina and Moustapha Bah

64 Rambutan (Nephelium lappaceum L.) 1227
Muhammad Tayyab Akhtar, Siti Nazirah Ismail, and Khozirah Shaari

65 Rose Apple (Syzygium jambos (L.) Alston) 1235
Manjeshwar Shrinit Baliga, Karkala Shreedhara Ranganath Pai, Elroy Saldanha, Vikram Singh Ratnu, Rashmi Priya, Mohammed Adnan, and Taresh S. Naik

66 Soursop (Annona muricata) 1243
Ana V. Coria-Téllez, Efgenia Montalvo-González, and Eva N. Obedo-Vázquez

67 Sugar Apple (Annona squamosa) 1253
Andrés E. León-Fernández and Efgenia Montalvo-González
Contents

68 Tomato (*Solanum lycopersicum*) 1259
Elizabeth León-García, Oscar Andrés Del Ángel Coronel, Gilber Vela-Gutiérrez, Javier De la Cruz Medina, and Hugo S. García

69 Wild and Cultivated Mushrooms 1279
Pirjo H. Mattila, Pertti Marnila, and Anne Pihlanto

70 Phytochemicals in Organic and Conventional Fruits and Vegetables 1305
Giuseppina Pace Pereira Lima, Cristine Vanz Borges, Fabio Vianello, Luis Cisneros-Zevallos, and Igor Otavio Minatel

71 Recent Advances in Phytochemicals in Fruits and Vegetables 1323
Fereidoon Shahidi, Priyatharini Ambigaipalan, and Anoma Chandrasekara

Index 1357
List of Contributors

Ahmad Faizal Abdull Razis
Laboratory of Molecular Biomedicine
Institute of Bioscience
Laboratory of Food Safety and Food Integrity
Institute of Tropical Agriculture and Food Security
Universiti Putra Malaysia
Selangor
Malaysia

Mohammed Adnan
Mangalore Institute of Oncology
Pumpwell
Mangalore
Karnataka
India

Tripti Agarwal
Department of Agriculture and Environmental Sciences
National Institute of Food Technology Entrepreneurship and Management (NIFTEM)
Ministry of Food Processing Industries
Kundli
Sonepat
Haryana
India

Carlos Agudelo
Nutrition and Dietetic School
University of Antioquia
Medellin
Colombia

Ahmed Ait-Oubahou
Agronomic and Veterinary Institute Hassan II
Agadir
Morocco

Muhammad Tayyab Akhtar
Laboratory of Natural Products
Institute of Bioscience
Universiti Putra Malaysia
Selangor
Malaysia

Mohammad Al Abid
Mantrust Services Inc
Brampton
Canada

Emilio Álvarez-Parrilla
Autonomous University of the City of Juarez
Juarez, Anillo Envolvente del PRONAF y Estocolmo s/n
Chihuahua
Mexico

Priyatharini Ambigaipalan
Department of Biochemistry
Memorial University of Newfoundland
St. John’s
Newfoundland
Canada

Maria L. Amodio
Department of the Science of Agriculture, Food, and Environment
University of Foggia
Foggia
Italy

Luis M. Anaya-Esparza
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Miriam A. Anaya-Loyola
Faculty of Natural Sciences
Autonomous University of Querétaro
Querétaro
Mexico
Sandra Sulay Arango
Faculty of Sciences
Metropolitan Institute of Technology
Medellín
Colombia

Asvinidevi Arumugam
Laboratory of UPM-MAKNA Cancer Research
Institute of Bioscience
Universiti Putra Malaysia
Selangor
Malaysia

Graciela Ávila-Quezada
University Autonomous of Chihuahua
Zootechnics and Ecology Department
Chihuahua
Mexico

Jesús Fernando Ayala-Zavala
Technology of Food of Vegetable Origin
Research Center for Food and Development
Hermosillo
Sonora
Mexico

Ramiro Baeza-Jiménez
Research Center for Food and Development (CIAD)
Delicias
Chihuahua
Mexico

Moustapha Bah
Laboratory of Chemical and Pharmacological Research of Natural Products
Faculty of Chemistry
Autonomous University of Querétaro
Querétaro
Mexico

Manjeshwar Shrinath Baliga
Mangalore Institute of Oncology
Pumpwell
Mangalore
Karnataka
India

Pratyusha Banerjee
Department of Zoology
University of Kalyani
Nadia
West Bengal
India

Maurizio Battino
Department of Odontostomatology and Specialized Clinical Sciences
Faculty of Medicine
Polytechnic University of Marche
Ancona
Italy

Mohamed Benichou
Food Sciences Laboratory
Faculty of Sciences
Cadi Ayyad University
Marrakech
Morocco

A. Thalía Bernal-Mercado
Technology of Food of Vegetable Origin
Research Center for Food and Development
Hermosillo
Sonora
Mexico

Francisco J. Blancas-Benítez
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Cristine Vanz Borges
Department of Chemistry and Biochemistry
Institute of Biosciences
Paulista State University (UNESP)
Botucatu
São Paulo
Brazil

Laura Bravo-Clemente
Department of Metabolism and Nutrition
Institute of Food Science
Technology, and Nutrition (ICTAN-CSIC)
Spanish National Research Council (CSIC)
Madrid
Spain

Jeffrey K. Brecht
Horticultural Sciences Department
Institute of Food and Agricultural Sciences
University of Florida
Gainesville
Florida
USA
Puran Bridgemohan
University of Trinidad and Tobago
Centre of Biosciences
Agriculture and Food Technology
Waterloo Research Campus
Carapichaima
Trinidad

Ronell S.H. Bridgemohan
Georgia College and State University
Milledgeville
Georgia
USA

Lucio Cardozo-Filho
Department of Chemical Engineering
State University of Maringá
Maringá
Brazil

Armando Carrillo-López
Food Science and Technology Postgraduate Program
Faculty of Chemical-Biological Science
Autonomous University of Sinaloa
Sinaloa
Mexico

Adriana Cavazos-Garduño
University Center for Exact Science and Engineering (CUCEI)
Pharmacobiology Department
University of Guadalajara
Guadalajara
Jalisco
Mexico

Braulio Cervantes-Paz
Faculty of Natural Sciences
Autonomous University of Querétaro
Querétaro
Mexico

Anoma Chandrasekara
Department of Applied Nutrition
Wayamba University of Sri Lanka
Makandura (Gonawila)
Sri Lanka

Cielo D. Char
Biopolymer Research and Engineering Laboratory
School of Nutrition and Dietetics
University of the Andes
Las Condes
Santiago
Chile

Fani Chatzopoulou
Group of Biotechnology of Pharmaceutical Plants
Laboratory of Pharmacognosy
Department of Pharmaceutical Sciences
Aristotle University of Thessaloniki
Thessaloniki
Greece

Muhammad M. A. Chaudhry
Department of the Science of Agriculture
Food, and Environment
University of Foggia
Foggia
Italy

Emma Chiavaro
Department of Food and Drug
University of Parma
Parma
Italy

Luis Cisneros-Zevallos
Department of Horticultural Sciences
Texas A&M University
College Station
Texas
USA

Giancarlo Colelli
Department of the Science of Agriculture
Food, and Environment
University of Foggia
Foggia
Italy

Ana V. Coria-Téllez
Laboratory of Analysis of Heritage
The College of Michoacan
La Piedad
Michoacan
Mexico

Frida R. Cornejo-García
Faculty of Natural Sciences
Autonomous University of Querétaro
Querétaro
Mexico

Javier De la Cruz Medina
UNIDA
Technological Institute of Veracruz
Veracruz
Mexico
Oscar Andrés Del Ángel Coronel
Superior Technological Institute of Huatusco
Food Industry Engineering Division
Huatusco
Veracruz
Mexico

Laura A. de la Rosa
Autonomous University of the City of Juarez
Juarez, Anillo Envolvente del PRONAF y Estocolmo s/n
Chihuahua
Mexico

Francisco Delgado-Vargas
School of Chemical and Biological Sciences
Autonomous University of Sinaloa
Ciudad Universitaria s/n
Culiacan
Sinaloa
Mexico

Antonio Derossi
Department of the Science of Agriculture, Food, and Environment
University of Foggia
Foggia
Italy

Tushar Dhanani
ICAR-Directorate of Medicinal and Aromatic Plants Research
Anand
Gujarat
India

Lucia Di Vittori
Department of Agricultural, Food and Environmental Sciences
Polytechnic University of Marche
Ancona
Italy

J. Abraham Domínguez-Ávila
Technology of Food of Plant Origin
Research Center for Food and Development
Hermosillo
Sonora
Mexico

Jane S. dos Reis Coimbra
Department of Food Technology
Federal University of Viçosa
Viçosa
Brazil

Idaresit Ekaette
Department of Agricultural, Food and Nutritional Science
University of Alberta
Edmonton
Alberta
Canada

Ibrahim Elmadfa
IUNS Past-President TR Department of Nutritional Sciences
Faculty of Life Sciences
University of Vienna
Vienna
Austria

Machel A. Emanuel
Department of Life Sciences
Faculty of Science and Technology
University of the West Indies
Kingston
Jamaica

Tatiana Emanuelli
Integrated Center for Laboratory Analysis Development (NIDAL)
Department of Food Technology and Science
Federal University of Santa Maria
Santa Maria
Brazil

Mustafa Erkan
Department of Horticulture
Faculty of Agriculture
Akdeniz University
Antalya
Turkey

Mark L. Failla
Human Nutrition Program
The Ohio State University
Columbus
Ohio
USA

Charles F. Forney
Kentville Research and Development Centre
Agriculture and Agri-Food Canada
Kentville
Nova Scotia
Canada

Yuly Nataly Franco Tobón
Faculty of Pharmaceutical and Food Sciences
University of Antioquia
Hospital Pablo Tobón Uribe
Medellín
Colombia
Carolina Fredes
Department of Food Science and Chemical Technology
Faculty of Chemical and Pharmaceutical Sciences
University of Chile
Santiago
Chile

Jose Alberto Gallegos-Infante
Chemical and Biochemical Department
Durango Institute of Technology
Durango
Mexico

Hugo S. García
UNIDA
Technological Institute of Veracruz
Veracruz
Mexico

Mónica L. García-Bañuelos
Research Center for Food and Development, A.C.
(C.I.A.D.)
Sonora
Mexico

Teresa García-Gasca
Faculty of Natural Sciences
Autonomous University of Querétaro
Querétaro
Mexico

María de Lourdes García-Magaña
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Lorena Asucena García Nogués
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Pablo García-Solis
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Rebeca García-Varela
CIATEJ
Apodaca
Nueva Leon
Mexico

Alfonso A. Gardea
Research Center for Food and Development, A.C.
(C.I.A.D.)
Hermosillo
Sonora
Mexico

Laura E. Gayosso-García Sancho
Engineering in Food Technology
State University of Sonora
Ley Federal del Trabajo s/n
Hermosillo
Sonora
Mexico

Gustavo A. González-Aguilar
Technology of Food of Vegetable Origin
Research Center for Food and Development
Hermosillo
Sonora
Mexico

Aarón F. González-Córdova
Center for Food Research and Development (CIAD)
Hermosillo
Samara
Mexico

Ruben Francisco Gonzalez-Laredo
Chemical and Biochemical Department
Durango Institute of Technology
Durango
Mexico

Francisco M. Goycoolea
School of Food Science and Nutrition
University of Leeds
Leeds
UK

Abdelkarim Guaâdaoui
Laboratory of Genetics and Biotechnology (LGB)
Team (2) Valorisation of Natural and Synthetic Products and Biotechnologies
Department of Biology, Faculty of Sciences (FSO)
Mohammed the First University (UMP)
Oujda
Morocco
List of Contributors

Fabiola Gutiérrez-Orozco
Mead Johnson Nutrition
Evansville
Indiana
USA

Avtar K. Handa
Department of Horticulture
Purdue University
West Lafayette
Indiana
USA

Shinko Hata
Research Laboratory
Ig-M Co. Ltd.
Nakamachi
Minatojima
Chuo-ku
Kobe
Japan

Nancy Georgina Hernández Chan
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Adrián Hernández Mendoza
Center for Food Research and Development (CIAD)
Hermosillo
Sonora
Mexico

Hebert Luis Hernández-Montiel
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Ana Gabriela Hernández Puga
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Inocencio Higuera
Food Technology Unit
Center for Research and Assistance in Technology and Design of the State of Jalisco A.C. (CIATEJ)
Zapopan
Jalisco
Mexico

César Ibarra-Alvarado
Laboratory of Chemical and Pharmacological Research of Natural Products
Faculty of Chemistry
Autonomous University of Querétaro
Querétaro
Mexico

Siti Nazirah Ismail
Laboratory of Natural Products
Institute of Bioscience
Universiti Putra Malaysia
Selangor
Malaysia

Eduardo Jacob-Lopes
Department of Food Technology and Science
Federal University of Santa Maria
Santa Maria
Brazil

Amar Kaanane
Agronomic and Veterinary Institute Hassan II
Rabat
Morocco

Niwat Kaewseejan
Department of Chemistry
Faculty of Science
Mahasarakham University
Maha Sarakham
Thailand

Mathias Kaiser
University of Münster
IBBP
Münster
Germany

Angelos K. Kanellis
Group of Biotechnology of Pharmaceutical Plants
Laboratory of Pharmacognosy
Department of Pharmaceutical Sciences
Aristotle University of Thessaloniki
Thessaloniki
Greece
Bhavneet Kaur
Sustainable Agricultural Systems Laboratory
The Henry A. Wallace Agricultural Research Center
Agricultural Research Service
United States Department of Agriculture
Beltsville
Maryland
USA

Nattaya Konsue
School of Agro-Industry
Mae Fah Luang University
Chiang Rai
Thailand

Stefanos Kostas
Department of Horticulture
School of Agriculture
Aristotle University of Thessaloniki
Thessaloniki
Greece

Athanasios Koukounaras
Department of Horticulture
School of Agriculture
Aristotle University of Thessaloniki
Thessaloniki
Greece

Satyanshu Kumar
ICAR-Directorate of Medicinal and Aromatic Plants
Research
Anand
Gujarat
India

Vinay Kumar
Department of Agriculture and Environmental Sciences
National Institute of Food Technology Entrepreneurship
and Management (NIFTEM)
Ministry of Food Processing Industries
Kundli
Sonepat
Haryana
India

Manas Kumar Mukhopadhyay
Department of Zoology
University of Kalyani
Nadia
West Bengal
India

Andrés E. León-Fernández
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Elizabeth León-García
UNiDA
Technological Institute of Veracruz
Veracruz
Mexico

Gabriela López-Angulo
School of Chemical and Biological Sciences
Autonomous University of Sinaloa
Ciudad Universitaria s/n
Culiacan
Sinaloa
Mexico

Mónica López Hidalgo
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Leticia X. López-Martínez
CONACYT-Research Center for Food and Development (CIAD)
Culiacán
Sinaloa
Mexico

Francisco J. Luna-Vázquez
Laboratory of Chemical and Pharmacological Research of Natural Products
Faculty of Chemistry
Autonomous University of Querétaro
Querétaro
Mexico

Valery G. Makarov
St-Petersburg Institute of Pharmacy
Leningrad Region
Vsevolozhsky
Russia

Maria Elena Maldonado Celis
Nutrition and Dietetic School
University of Antioquia
Medellín
Colombia
Pertti Marnila
Natural Resources Institute Finland (Luke)
Jokioinen
Finland

Olga Martín-Belloso
Department of Food Technology
UTPV-CeRTA
University of Lleida
Lleida
Spain

Maria Raquel Mateos Briz
Department of Metabolism and Nutrition
Institute of Food Science Technology, and Nutrition (ICTAN-CSIC)
Spanish National Research Council (CSIC)
Madrid
Spain

Pirjo H. Mattila
Natural Resources Institute Finland (Luke)
Jokioinen
Finland

Autar K. Mattoo
Sustainable Agricultural Systems Laboratory
The Henry A. Wallace Agricultural Research Center
Agricultural Research Service
United States Department of Agriculture
Beltsville
Maryland
USA

Luca Mazzoni
Department of Agricultural, Food and Environmental Sciences
Polytechnic University of Marche
Ancona
Italy

Cintia Anabela Mazzucotelli
Engineering Faculty
National University of Mar del Plata
Mar del Plata
Argentina

Ifigeneia Mellidou
Group of Biotechnology of Pharmaceutical Plants
Laboratory of Pharmacognosy
Department of Pharmaceutical Sciences
Aristotle University of Thessaloniki
Thessaloniki
Greece

Lorena Méndez Villa
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Alexa L. Meyer
Department of Nutritional Sciences
Faculty of Life Sciences
University of Vienna
Vienna
Austria

Bruno Mezzetti
Department of Agricultural, Food and Environmental Sciences
Polytechnic University of Marche
Ancona
Italy

Igor Otavio Minatel
Department of Chemistry and Biochemistry
Institute of Biosciences
Universidade Estadual Paulista (UNESP)
Botucatu
São Paulo
Brazil

Yoshiyuki Mizushina
Research Laboratory
Ig-M Co. Ltd.
Nakamachi
Minatojima
Chuo-ku
Kobe
Japan

Majeed Mohammed
Department of Food Production
Faculty of Food and Production
The University of the West Indies
St. Augustine
Trinidad

Noor Akhmaszillah Mohd Fauzi
Department of Chemical Engineering Technology
Faculty of Engineering Technology
Universiti Tun Hussein Onn Malaysia (UTHM)
Batu Pahat
Johor
Malaysia
Efgenia Montalvo-González
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Julio Montes-Ávila
School of Chemical and Biological Sciences
Autonomous University of Sinaloa
Ciudad Universitaria s/n
Culiacan
Sinaloa
Mexico

Nelly Angélica Morales Guerrero
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Martha Rocío Moreno-Jimenez
Chemical and Biochemical Department
Durango Institute of Technology
Durango
Mexico

Manas Kumar Mukhopadhyay
Department of Zoology
University of Kalyani
Nadia
West Bengal
India

Fabiola C. Muñoz-De la Cruz
Faculty of Natural Sciences
Autonomous University of Querétaro
Querétaro
Mexico

Taresh S. Naik
Father Muller Medical College
Mangalore
Karnataka
India

Narendra Narain
Laboratory of Flavor and Chromatographic Analysis
Federal University of Sergipe
Sao Cristovao-SE
Brazil

Debjani Nath
Department of Zoology
University of Kalyani
Nadia
West Bengal
India

Eva N. Obledo-Vázquez
Unit of Plant Biotechnology
Center for Research and Assistance in Technology
and Design of the State of Jalisco
Guadalajara
Mexico

Francisco J. Olivas-Aguirre
Department of Chemical-Biological Sciences
Autonomous University of the City of Juarez
Chihuahua
Mexico

José de Jesús Ornelas-Paz
Center for Research in Food and Development
Unidad Cuauhtémoc, Laboratory of Phytochemicals
and Nutrients, Cuauhtémoc
Chihuahua
Mexico

J. Antonio Orozco-Avitia
Research Center for Food and Development, A.C. (C.I.A.D.)
Hermosillo
Sonora
Mexico

Ramón Pacheco-Ordz
Center for Food Research and Development A.C. (CIAD)
Hermosillo
Sonora
Mexico

Maria Paciulli
Department of Food and Drug
University of Parma
Parma
Italy

Mariantonella Palermo
Department of Agriculture and Food Science
University of Naples Federico II
Naples
Italy
List of Contributors

Sunil Pareek
Department of Agriculture & Environmental Sciences
National Institute of Food Technology Entrepreneurship and Management (NIFTEM)
Ministry of Food Processing Industries
Kundli
Sonepat
Haryana
India

Nicoletta Pellegrini
Department of Food and Drug
University of Parma
Parma
Italy

Alvaro Peña-Neira
Faculty of Agronomical Sciences
University of Chile
Campus Antumapu
La Pintana
Santiago
Chile

Giuseppina Pace Pereira Lima
Department of Chemistry and Biochemistry
Institute of Biosciences
Universidade Estadual Paulista (UNESP)
Botucatu
São Paulo
Brazil

Karkala Shreedhara Ranganath Pai
Department of Pharmacology
Manipal College of Pharmaceutical Sciences
Manipal University
Manipal
Karnataka
India

Jara Pérez-Jiménez
Department of Metabolism and Nutrition
Institute of Food Science
Technology, and Nutrition (ICTAN-CSIC)
Spanish National Research Council (CSIC)
Madrid
Spain

Anne Pihlanto
Natural Resources Institute Finland (Luke)
Jokioinen
Finland

Olga N. Pozharitskaya
St-Petersburg Institute of Pharmacy
Leningrad Region
Vsevolozhsky
Russia

Rashmi Priya
Institute for Molecular Biosciences
University of Queensland
Brisbane
Australia

Leila Queiroz Zepka
Department of Food Technology and Science
Federal University of Santa Maria
Santa Maria
Brazil

Ana Elena Quirós Saucedo
Center for Food Research and Development (CIAD)
Hermosillo
Sonora
Mexico

Suyare A. Ramalho
Laboratory of Flavor and Chromatographic Analysis
Federal University of Sergipe
Sao Cristovao-SE
Brazil

Asghar Ramezanian
Department of Horticultural Science
College of Agriculture
Shiraz University
Shiraz
Iran

Marco V. Ramirez-Marez
Department of Biochemical Engineering
Technological Institute of Morelia
Morelia Mich
Mexico

Vikram Singh Ratnu
Queensland Brain Institute
University of Queensland
Brisbane
Australia

Julian Valeriano Reyes Lopez
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico
List of Contributors

Paz Robert
Department of Food Science and Chemical Technology
Faculty of Chemical and Pharmaceutical Sciences
University of Chile
Santiago
Chile

Ludivina Robles-Osorio
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Nuria Elizabeth Rocha-Guzman
Chemical and Biochemical Department
Durango Institute of Technology
Durango
Mexico

Maria Janeth Rodríguez-Roque
Faculty of Agrotechnological Sciences
Autonomous University of Chihuahua
Av. Universidad s/n
Chihuahua
Mexico

Miguel Roehrs
University Hospital of Santa Maria (HUSM)
Integrated Center for Laboratory Analysis Development (NIDAL)
Federal University of Santa Maria
Santa Maria
Brazil

Benjamin Rojano
Faculty of Sciences
National University of Colombia
Medellín
Colombia

Alejandra Rojas-Molina
Laboratory of Chemical and Pharmacological Research of Natural Products
Faculty of Chemistry
Autonomous University of Querétaro
Querétaro
Mexico

Juana I. Rojas-Molina
Laboratory of Chemical and Pharmacological Research of Natural Products
Faculty of Chemistry
Autonomous University of Querétaro
Querétaro
Mexico

Paula Rossini Augusti
Institute of Food Science and Technology
Federal University of Rio Grande do Sul
Porto Alegre
Brazil

Carmen Sáenz
Department of Agroindustry and Oenology
Faculty of Agricultural Sciences
University of Chile
Santiago
Chile

Maria Sagar
Food Sciences Laboratory
Faculty of Sciences
Cadi Ayyad University
Marrakech
Morocco

Maha Sagar
Department of Agriculture and Environmental Sciences
National Institute of Food Technology Entrepreneurship and Management (NIFTEM)
Ministry of Food Processing Industries
Kundli
Sonepat
Haryana
India

Marleny D.A. Saldaña
Department of Agricultural, Food and Nutritional Sciences
Faculty of Agricultural, Life and Environmental Sciences
University of Alberta
Edmonton
Alberta
Canada

Elroy Saldanha
Father Muller Medical College
Mangalore
Karnataka
India
Mikal E. Saltveit
Mann Laboratory
Department of Plant Sciences
University of California
Davis
California
USA

Jorge A. Sánchez-Burgos
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Esteban Sánchez-Chávez
Research Center for Food and Development, A.C. (C.I.A.D.)
Hermosillo
Sonora
Mexico

Beatriz Sarriá Ruiz
Department of Metabolism and Nutrition
Institute of Food Science
Technology, and Nutrition (ICTAN-CSIC)
Spanish National Research Council (CSIC)
Madrid
Spain

Bethzabet Sastré-Flores
Virginia Cooperative Extension
Loudoun Office
Leesburg
Virginia
USA

Fulgencio D. Saura-Calixto
Department of Metabolism and Nutrition
Institute of Food Science
Technology, and Nutrition (ICTAN-CSIC)
Spanish National Research Council (CSIC)
Madrid
Spain

Sonia Guadalupe Sáyago-Ayerdi
Integral Food Research Laboratory
Technological Institute of Tepic
Tepic
Nayarit
Mexico

Jessica Scalzo
Costa Berry Category
Range Road
Corindi
New South Wales
Australia

José C.E. Serrano
NUTRENE
Nutrigenomics
University of Lleida
Lleida
Spain

Maria Serrano
Department of Applied Biology
Superior Polytechnic School of Orihuela
University Miguel Hernández
Orihuela (Alicante)
Spain

Julio César Serrano-Niño
University Center for Exact Science and Engineering (CUCEI)
Pharmacobiology Department
University of Guadalajara
Guadalajara
Jalisco
Mexico

Khozirah Shaari
Laboratory of Natural Products
Institute of Bioscience
Universiti Putra Malaysia
Selangor
Malaysia

Fereidoon Shahidi
Department of Biochemistry
Memorial University of Newfoundland
St. John’s
Newfoundland
Canada

Sunil Sharma
Department of Agriculture and Environmental Sciences
National Institute of Food Technology Entrepreneurship and Management (NIFTEM)
Ministry of Food Processing Industries
Kundli
Sonepat
Haryana
India
List of Contributors

Mithun Shaw
Department of Zoology
University of Kalyani
Nadia
West Bengal
India

Alexander N. Shikov
St-Petersburg Institute of Pharmacy
Leningrad Region
Vsevolozhsky
Russia

Raghuraj Singh
ICAR-Directorate of Medicinal and Aromatic Plants Research
Anand
Gujarat
India

Sirithon Siriamornpun
Department of Food Technology and Nutrition
Faculty of Technology
Mahasarakham University
Maha Sarakham
Thailand

Juan Carlos Solís-S
Laboratory of Molecular and Cellular Physiology
Department of Biomedical Sciences
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Robert Soliva-Fortuny
Department of Food Technology
UTPV-CeRTA
University of Lleida
Lleida
Spain

Jun Song
Postharvest Physiologist
Kentville Research and Development Centre
Agriculture and Agri-Food Canada
Kentville
Nova Scotia
Canada

Alifdalino Sulaiman
Department of Process and Food Engineering
Faculty of Engineering
Universiti Putra Malaysia (UPM)
Selangor
Malaysia

Mostafa Z. Sultan
Horticultural Department
Faculty of Agriculture
Al-Azhar University
Nasr City
Cairo
Egypt

Mette Svendsen
Section for Preventive Cardiology
Centre of Preventive Medicine
Oslo University Hospital
Norway

Maria Tabernero Urbietz
Imdea Food Institute
Carretera de CantoBlanco
Madrid
Spain

Carla S. Valdivieso Ramirez
Department of Agricultural, Food and Nutritional Science
University of Alberta
Edmonton
Alberta
Canada

Daniel Valero
Department of Applied Biology
Superior Polytechnic School of Orihuela
University Miguel Hernández
Orihuela (Alicante)
Spain

Belinda Vallejo-Galland
Center for Food Research and Development (CIAD)
Hermosillo
Sonora
Mexico

Nadia M. Vázquez-Díaz
Faculty of Natural Sciences
Autonomous University of Querétaro
Querétaro
Mexico

Gilber Vela-Gutiérrez
University of Sciences and Arts of Chiapas
Faculty of Nutrition and Food Sciences
Tuxtla Gutiérrez
Chiapas
Mexico
List of Contributors

Gustavo R. Velderrain Rodríguez
Technology of Food of Vegetable Origin
Research Center for Food and Development
Hermosillo
Sonora
Mexico

Haydé Azeneth Vergara Castañeda
Faculty of Medicine
Autonomous University of Querétaro
Querétaro
Mexico

Fabio Vianello
Department of Comparative Biomedicine and Food Science
University of Padua (UNIPD)
Padua
Italy

Abraham Wall-Medrano
Department of Health Sciences
Institute of Biomedical Sciences
Autonomous University of the City of Juarez
Chihuahua
Mexico

Elhadi M. Yahia
Faculty of Natural Sciences
Autonomous University of Querétaro
Avenida de las Ciencias s/n
Juriquilla
Querétaro
Mexico
Foreword

The importance of including a variety of fruits and vegetables in our diet in order to maintain our general health and to avoid chronic diseases is recognized by both the scientific community and the public. Increasing public awareness of the health benefits to be accrued from consuming plant foods containing high levels of nutrients is illustrated by, and has been exploited by, the marketing of the so-called “superfoods,” which include fruits and vegetables like açaí, blueberry, broccoli, kale, pomegranate, and others. This is despite there actually being no scientific or legal definition of a superfood – just that a marketer has highlighted its nutrient density. A similar situation exists for so-called “functional foods,” usually meaning processed foods that have been fortified with biologically active compounds (often or even usually plant based) that have been related to health promotion. A distinction between superfoods and functional foods is that, in contrast to superfoods, products marketed as functional foods usually are required by law to contain compounds that have clinically proven and documented health benefits.

The phytochemicals that are responsible for the nutritional and health benefits accruing from consumption of fruits and vegetables are numerous and varied. While many of these phytochemicals are ubiquitous, such as the vitamins and dietary fiber, many more are unique to different groups of produce or even to individual species. Arguably, the nutritionally important phytochemicals are a subset of an even larger array, all with critical functions in the physiology of the plants in which they are found. Much research has been conducted for the purpose of identifying either the biological function of phytochemicals in plant physiology or their biological activity in animals and humans leading to health-related effects. However, with over 8000 phytochemicals known, this work is far from complete. Indeed, matters are complicated by accumulating evidence that the actions of phytochemicals, in both plant physiology and animal or human health, are synergistic. This means that studying individual phytochemicals in isolation, although to some extent unavoidable, is probably a mistake in terms of developing a complete understanding of their roles. At this time, there is clearly a need for the current phytochemical picture, incomplete as the knowledge still may be, to be assembled in one place for the benefit of the scientific and academic communities. This book, Fruit and Vegetable Phytochemicals: Chemistry and Human Health, which Elhadi Yahia has assembled with the assistance of more than 200 individual chapter authors, admirably addresses that need.

The chapters in the first part of this book explore either the biological activity and bioavailability of phytochemicals from fruits and vegetables, and the benefits in terms of human health when they are included in the diet, or the biological function of phytochemicals in the physiology of fruits and vegetables. Fruits and vegetables have always been considered to be healthy foods containing essential vitamins, minerals, and dietary fiber. This group of chapters includes coverage of those basics, but ventures beyond to examine the full array of phytochemicals for which evidence has been found that they either promote general health and vitality, such as through their action as antioxidants, or exhibit more specific effects in protecting against the onset of cancer, cardiovascular and neurodegenerative diseases, and diabetes. Other chapters describe the biosynthesis and biological functions of various phytochemicals in fruits and vegetables. In sum, these chapters bring the reader up to date on the body of scientific knowledge concerning phytochemistry, phytochemicals, and their influence on human health.

The 12 chapters in the second part of the book address the influence of postharvest handling and technologies on fruit and vegetable phytochemicals as well as methods to measure both the amounts of phytochemicals and their functional properties in fruits and vegetables. How fresh fruits and vegetables are handled, stored, and transported can have important consequences in terms of their phytochemistry. How they are processed and cooked also impacts phytochemical composition. Methods of extraction of phytochemicals from fruits and vegetables for use in functional foods and nutritional supplements are also covered. Several of the chapters here address sensory and other quality aspects in relation
to phytochemicals, including the technologies of handling and processing that influence phytochemical composition and therefore fruit and vegetable quality. Phytochemicals certainly contribute to the sensory appeal of fruits and vegetables. For many fruiting organs, this likely relates to evolutionary selection favoring consumption by animals and leading to seed dispersal. Fruits and vegetables contain diverse arrays of colored compounds, including chlorophyll, carotenoids, flavonoids, and betalains, which contribute to the attractiveness of produce to animals and humans. Fruits and vegetables also produce complex and varied arrays of volatile aroma compounds and soluble taste compounds that are incredibly important in our enjoyment of these healthy foods. Employing proper harvesting, handling, storage, and processing practices to ensure the highest possible desirability of fruits and vegetables has many benefits. As expressed by the late Dr. Adel Kader, “Providing better flavored fruits and vegetables is likely to increase their consumption, which would be good for the producers and marketers (making more money or at least staying in business) as well as for the consumers (increased consumption of healthy foods).”

The third part of this book comprises about three dozen individual chapters covering the phytochemistry of different fruit and vegetable species. These chapters serve to further illustrate the wonderful diversity of phytochemicals found in fruits, vegetables, and nuts. Dr. Yahia’s effort in bringing together this gathering of experts to compile the state of the art on the phytochemistry of fruits and vegetables is praiseworthy. This book is sure to be used to guide future research on the topics included within it — both for identifying what is known and for revealing that which is still unknown. This book will also be appreciated for pointing out the important future research directions that need to be taken in order for us to make full use of fruits and vegetables in our diet for improving human health. My hope is that you, as a reader, appreciate the effort that went into creating this encyclopedic coverage of fruit and vegetable phytochemicals and the roles they play in plant and human life, as I am sure that it will inspire many of you in your future research and teaching.

Jeffrey K. Brecht, Ph.D
University of Florida