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Preface

Rigid voltage sources, such as an ideal grid, an output-voltage feedback-controlled
converter, and a storage battery, have dominated as input sources for a long time.
As a consequence, the scholars and engineers have learned every detail and
developed a multitude of power stages and control methods for the voltage
domain. A common characteristic of these sources is that their output impedance
is low in magnitude at low frequencies. From time to time, a term current-sourced
converter has been used with a voltage-sourced converter in case there is an
inductor connected in series with the voltage-type source. Unfortunately, such a
converter has no explicit relation to the current source as an input source.
However, duality implies that there also exist sources that can be classified as real
current sources, that is, sources that have an output impedance, which is high in
magnitude.

Since the last decade, people have started paying more and more attention on
renewable energy sources for providing pollution-free energy and ensuring
energy availability also in the future. Usually, most of the power electronic
converters applied in interfacing the renewable energy sources into power
grid in grid-feeding mode are to be considered as current-fed converters due
to the feedback control of DC voltage. Despite the real nature of the input source,
the scholars and engineers still like to consider them as voltage sources and justify
their opinions by means of Norton–Thevenin transformation. The dual nature of
the photovoltaic generators (i.e., current and voltage at specific operation points
of their current–voltage curve) makes them an input source that may be too
confusing for an engineer to analyze and thus the analysis will be performed in the
familiar voltage domain even though such a power source will significantly affect
the dynamic behavior of the converters connected at their output terminals. The
long history of voltage sources as the dominating input source has created a
situation, which has prevented the full understanding of the special features
introduced by the current sources as input sources. This is quite understandable,
because the most difficult learning process is to learn out from the past.

This book contains material from both of the domains by using the same power
stage powered either by the rigid voltage or the current source. The differences in
the dynamic behavior of the converters in different domains are explicitly shown
including also comprehensive analyses of the source and load interactions in DC–
DC converter as well as in grid-connected three-phase converters. Similar
material cannot be found from any available book and the material in scientific
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papers is scarce and may be hard to identify from the vast number of published
papers.

Many individuals have helped us to create the book during the past 20 years in
academy. Most of those individuals are our past Ph.D. students and colleagues at
TUT, who have created new knowledge during the research projects we have
conducted together. We appreciate very much the Finnish industry and funding
organizations, who have helped us to fund the research.

Tampere University of Technology
Tampere, Finland

Teuvo Suntio

Tampere University of Technology
Tampere, Finland

Tuomas Messo

ABB Oy
Helsinki, Finland

Joonas Puukko
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1

Introduction

1.1 Introduction

For a long time, voltage-type sources such as storage battery, AC grid, and output
voltage-regulated converters have dominated as an input source for power
electronic converters [1,2]. These sources are usually referred to as rigid sources,
since the load has limited influence on their operating voltage. Both awareness on
the depletion of fossil fuel reserves and their impact on the observed climate
changes have accelerated the utilization of renewable energy sources, for example,
wind and solar [3]. Effective large-scale utilization of these energy sources
requires the use of grid-interfaced power electronic converters [4,5]. It has
been recently concluded [6,7] that the power electronic converters used in the
photovoltaic (PV) systems are essentially current-sourced converters because of
the current-source properties of PV generator [8,9] forced by the input-side
voltage feedback control [10,11]. At open loop, the static and dynamic properties
of the integrating converter are determined by the operating region of the PV
generator. The same also applies for the converters in wind energy systems.
Another example of a perfect current source is superconducting magnetic energy
storage (SMES) system, where a very large inductor serves as the energy storage
element [12,13]. Even though the properties of the mentioned sources are already
well known [14,15], they are still typically considered as voltage sources when
designing the interfacing converter power stages [16,17] or analyzing their
underlying dynamics [18–21] despite their current-type properties. The analysis
method is usually justified by Norton/Thevenin transformation [20].

The existence of two different input source types implies that two different
families of power electronic converters shall also exist, where the converters shall
be referred to as voltage-fed (VF) (Figure 1.1) and current-fed (CF) (Figure 1.2)
converters, possessing different steady-state and dynamic properties even though
the power stage can be the same in both of the cases [7,22]. The term current
source has already been widely used, for example, in Ref. [23–28], denoting a
voltage-fed converter, where an inductor is placed on the input-side current path
such as a boost-type converter [29] or two-inductor (super)buck converter [30].
Fuel cells as renewable energy sources [31] are such an input source, which can be
considered to be either voltage or current sources due to their rather constant

Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications,
First Edition. Teuvo Suntio, Tuomas Messo, and Joonas Puukko.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 VF converter. (a) VO
mode. (b) CO mode. Source: Suntio
2014. Reproduced with
permission of IEEE.

output impedance [32] and operation at the voltages less than the maximum
power point [33]. Therefore, the elimination of the harmful low-frequency ripple
can be performed by using either input current (i.e., voltage source) or input
voltage (i.e., current source) feedback control [34].

On the load side, the output voltage of a converter shall not be taken
automatically as an output variable, since this is true only when the converter
serves as a typical power supply, regulating its output voltage. In case, the
converter is used, for example, as a battery charger or grid-connected inverter,
the output voltage is determined by the load-side source and hence output
current shall be treated as an output variable. Therefore, the static input-to
output ratio M�D�, where D denotes the steady-state duty cycle, shall be actually
determined as the ratio of the input-terminal variable characterizing the input
source and the same variable at the output terminal, that is, the voltage ratio in a
VF converter and the current ratio in a CF converter. According to Figures 1.1 and
1.2, the converter may serve either as a VF or as a CF converter with voltage (VO)
or current (CO) as its main output variable, depending on the application. In all
the cases, the terminal constraints in terms of voltage and current levels remain
unchanged. Reference [22] shows explicitly in theory and by experimental
measurements that the dynamic behavior changes significantly application by
application as demonstrated in Figure 1.3, where the measured frequency
responses of the control-to-output transfer functions with different terminal
source configurations are shown. Therefore, it is very important to identify the
correct nature of the terminal sources when analyzing the dynamics of the

Figure 1.2 CF converter. (a) CO
mode. (b) VO mode. Source: Suntio
2014. Reproduced with permission
of IEEE.
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Figure 1.3 The frequency responses of a buck power stage converterwhen the terminal sources
are varied (i.e., voltage-fed converters at voltage (vf/vo) and current (vf/co) output modes and
current-fed converters at current (cf/co) and voltage (cf/vo) modes).

converter, for example, for control design purposes, which is obvious when
studying the frequency responses in Figure 1.3.

Every power electronic converter has unique internal dynamics, which will
determine the obtainable transient dynamics and robustness of stability as well as
its sensitivity to the external source and load impedances [35–37]. The internal
dynamics can be represented by a certain set or sets of transfer functions, which
are classified in circuit theory according to the network parameters [38] known as
G (Figure 1.1a), Y (Figure 1.1b), H (Figure 1.2a), and Z (Figure 1.2b), respectively.
The specific transfer functions can be directly modeled and measured as
frequency responses only when the used terminal sources correspond to the
ideal terminal sources given for each of the sets in Figures 1.1 and 1.2. Even if the
concept of internal dynamics is basically well known (i.e., all effects from the
source and load impedances are removed) [7,35], the tendency is still to use a
resistor as a load [39] yielding load-affected models or measured frequency
responses. A power stage fed by a certain input source under direct duty ratio
(DDR) control tends to maintain the output mode the same as the input source
(i.e., VF converters are inherently voltage sources at their output, and CF
converters are current sources at their output). As a consequence, the internal
transfer functions of such converters can be measured directly at open loop. The
other possible output mode does not work at open loop due to violation of
Kirchhoff’s voltage or current law. The same also applies for the current-mode
control, which changes the converter to be a current-output converter [40]. In
such a case, the use of resistive load is well justified, but the internal transfer
functions have to be computed from the load-affected transfer functions for being
useful [7].

A large number of excellent power electronics textbooks are available, such as
Refs [5,7,25,39,41–47], which are dedicated to the converters providing either
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DC–DC or DC–AC (AC–DC) conversion, or even both. None of these textbooks
presents topics that treat the CF converters even if they exist or may even
dominate within the specific application area covered in the specific books. The
inclusion of the effect of source and load impedances on the converter dynamics is
also usually left out by the topics covered in the books even if they are considered
very important in practical applications.

The main goal of this book is to provide the missing information in order to
complement the other textbooks as well as to present the base for the dynamic
analysis of the converters in a general form, which can be utilized with both
analytically derived transfer functions and the experimentally measured transfer
functions. As a consequence, the potentials of the theoretical work are extended
into practice and for the usage of practicing engineers.

The topics covered in the book are briefly discussed and clarified in the
subsequent sections in order to familiarize the reader with the secrets of dynamic
modeling, analysis, and control designs in both DC-voltage/current source and
AC-voltage/current source domains. The mastering of these items requires quite
consistent thinking ability as well as flexibility to change from one set of dynamic
descriptions to another while moving on.

1.2 Implementation of Current-Fed Converters

There are actually three different methods to implement CF converters: (i)
applying capacitive switching cells to construct CF converters [48] similarly as
the inductive switching cells are applied, for example, in Refs [1,2], (ii) applying
duality transformation methods [49–53], and (iii) adding a capacitor to the input
terminal of a VF converter [54] to satisfy the terminal constraints imposed by the
input current source [55]. The duality transformation yields CF converters, which
retain the main static and dynamic properties characterizing the original VF
converter [52]. The adding of a capacitor at the input terminal of a VF converter
yields a CF converter having static and dynamic properties resembling the dual of
the original converter, that is, a VF buck converter will have characteristics
resembling a boost converter and vice versa [54].

As an example, the power stage of a VF buck converter and its dual, that is, the
corresponding power stage of a CF buck converter, are given in Figures 1.4 and 1.5.
In the original buck converter, the high-side switch SHS conducts during the

Figure 1.4 VF buck converter.
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Figure 1.5 CF buck converter.

on-time and the low-side switch SLS during the off-time. In the CF buck converter,
the low-side switch SD

LSHS conducts during the on-time and the high-side switch SD

during the off-time. As both of the converters are buck-type converters, the ideal
input-to-output relation or modulo M�D� � D.

It has been observed earlier that the VF-converter power stages used in the
interfacing of PV generators exhibit peculiar properties, such as appearing of
right-half-plane (RHP) zero in the control dynamics of buck power stage
converter [56], unstable operation when the output voltage or current is tightly
controlled [57], necessity to reduce the pulsewidth for increasing the output
variables [58,59], and appearing of RHP pole when peak-current-mode (PCM)
control is applied in a buck power-stage converter [60,61], and even the
impedance-based stability assessment has to be performed differently compared
to the VF converters [62]. The observed phenomena are good evidence for the
necessity to fully take into account the used terminal sources as discussed in
Ref. [22].

1.3 Dynamic Modeling of Power Electronic Converters

The methods to develop the required small-signal or dynamic models for the
power electronic converters date back to the early 1970s [63] when the foundation
for the state space averaging (SSA) method was laid down [64] and later modified
to correctly capture the dynamics associated with the discontinuous conduction
mode (DCM) of operation [65,66] as well as with the variable frequency opera
tion [67,68]. The same methods also apply equally to modeling the dynamics of
three-phase grid-connected power converters [69]. The SSA method is observed
to produce accurate models up to half the switching frequency.

One of the most fundamental issues in performing the modeling in addition to
the recognition of the correct input and output variables is that the state variables
are to be considered as the time-varying average values within one switching cycle
of the corresponding instantaneous values [66]. In continuous conduction mode
(CCM), this is also true in the instantaneous state variables and, therefore, the
averaged state space can be constructed by computing the required items directly
by applying circuit theory. The continuity is also reflected as the known length of
the on-time and off-time. In DCM, the instantaneous variables are not anymore
necessarily continuous signals but rather pulsating signals, which is also reflected
as the unknown length of off-time. Therefore, their time-varying average values
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have to be computed based on the wave shapes of their instantaneous values and
used for computing the length of the unknown off-time. A number of variants are
available for the basic SSA method in continuous time as well as in discrete time,
which can also be used for obtaining the dynamic models but they do not offer
usually such benefits, which would justify their usage in practical applications.

The original SSA method can be applied as such only to the converters, which
operate in CCM under DDR control, which is also known as voltage-mode (VM)
control [39]. The last term is not recommended, however, to be used, because it
will mean in the future the internal control methods in a CF converter, where the
feedback is taken from the capacitor voltage (i.e., peak voltage mode (PVM) or
average voltage mode (AVM)) similarly as the current-mode controls (i.e., peak
current (PCM) or average current (ACM)) in a VF converter. The dynamic
models (i.e., the small-signal state space) induced by the DDR control will serve as
the base for the modeling of the converters, where the internal feedback loops are
used to affect the duty ratio generation, that is, the dynamics associated with the
duty ratio. The modeling of those converters can be simply done by developing
proper duty-ratio constraints, where the perturbed duty ratio is expressed as a
function of the state and input variables of the converter [7]. In case of variable-
frequency operation, the duty ratio is nonlinear and, therefore, the on-time of the
switches has to be used as the control variable instead of duty ratio [7,68].

1.4 Linear Equivalent Circuits

As an outcome of the SSA modeling method [64], the dynamics of the associated
converter was represented by means of the canonical equivalent circuit given in
Figure 1.6, which is valid for a second-order or two-memory-element converter
operating in CCM under DDR control. The structure and the circuit elements of
the equivalent circuit can be found from the corresponding small-signal state
space. Similar equivalent circuit can also be constructed for the higher order
converters as well as for CF converters (see Figure 1.7) applying the same
methodology. Figures 1.6 and 1.7 provide clear physical insight into the dynamic
processes inside the converters as well as clearly indicate the differences the

Figure 1.6 Canonical equivalent circuit for a second-order VF/VO converter.
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Figure 1.7 Canonical equivalent circuit for a second-order CF/CO converter.

duality transformation produces in the converter. As being a linear representation
of the converter, the effect of the source and load impedances can be computed by
applying circuit theory, which is very important for understanding the dynamic
behavior of the practical systems.

Similar equivalent circuits as in Figures 1.6 and 1.7 cannot be, however,
constructed for the converters operating in DCM or containing internal feedbacks,
for example, PCM control. More general equivalent circuit can be constructed
based on the set of transfer functions comprising the network parameters G, Y, H,
and Z, which can be utilized similarly as the canonical equivalent circuits in
Figures 1.6 and 1.7 to assess the effect of nonideal source and load [7,70]. Figures 1.8
and 1.9 show such a generic equivalent circuit representing the dynamics of VF/VO
DC–DC and a VF/CO DC–DC converters, respectively. On comparing the
equivalent circuits in Figures 1.6 and 1.7 with the equivalent circuits in Figures 1.8
and 1.9, the main difference found between them is that the latter equivalent circuits
present explicitly the main terminal characteristics of a converter. This information
is actually very important for being able to fulfill the terminal constraints stipulated
by the different input and output sources.

Similar equivalent circuits as in Figures 1.6 and 1.7 can also be constructed for
the three-phase grid-connected converters by means of their small-signal state
space given in the synchronous reference frame applying power invariant
transformation (i.e., power-invariant d–q state space), as shown in Figures 1.10
and 1.11 [71,72]. The corresponding physical schematics are given in Figures 1.12

Figure 1.8 Generic equivalent circuit for a VF/VO converter.
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Figure 1.9 Generic equivalent circuit for a CF/CO converter.

Figure 1.10 Canonical equivalent circuit for a three-phase AC–DC converter.

Figure 1.11 Canonical equivalent circuit for a current-fed three-phase DC–AC converter.
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Figure 1.12 Three-phase grid-connected rectifier.

and 1.13, respectively. According to Figures 1.12 and 1.13, the converters can be
constructed from each other by changing the direction of power flow. This
similarity is also visible in the corresponding equivalent circuits. These equivalent
circuits would give the same physical insight as the corresponding DC–DC
equivalent circuits.

Similar equivalent circuits as in Figures 1.10 and 1.11 cannot be, however,
constructed for the converters operating in DCM or containing internal feed
backs. Similarly, as in the case of DC–DC converters, the more general equivalent
circuits can be constructed based on the set of transfer functions comprising the
network parameters G, Y, H, and Z, which can be utilized similarly as the
canonical equivalent circuits in Figures 1.10 and 1.11 to assess the effect of
nonideal source and load [7,73]. Figure 1.14 shows such a generic equivalent
circuit representing the dynamics of a three-phase grid-connected AC–DC
converter, and Figure 1.15 shows a generic equivalent circuit representing the
dynamics of a three-phase grid-connected current-fed inverter. On comparing
the equivalent circuits in Figures 1.10 and 1.11 with the equivalent circuits in
Figures 1.14 and 1.15, the main difference found between them is that the latter
equivalent circuits present explicitly the main terminal characteristics of a
converter. This information is actually very important for being able to fulfill
the terminal constraints stipulated by the different input and output sources.

The variables of the equivalent circuits with a superscript s denote the three-
phase variables transformed into the synchronous reference frame (SRF) composed
of direct (d) and quadrature (q) components of the variables, respectively. The

Figure 1.13 Three-phase grid-connected current-fed inverter.
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Figure 1.14 Generic equivalent circuit for a three-phase grid-connected VF/VO converter.

Figure 1.15 Generic equivalent circuit for a three-phase grid-connected CF/CO converter.

transfer functions represented with boldface letters denote a transfer function
matrix composed of two or four discrete transfer functions. The computation of the
effect of nonideal source and load has to be performed by applying matrix
manipulation techniques instead of circuit theoretical methods [73].

The generic equivalent circuits are very flexible tools for solving the dynamic
problems associated with the impedance-based interactions [37,71,74] as well as
for assessing the stability in the practical interconnected systems [75,76]. The
dynamic equivalent circuits as well as the corresponding matrix-form represen
tations can be equally utilized by means of the model-based analytic transfer
functions and the corresponding measured frequency responses or even by their
combination.

1.5 Impedance-Based Stability Assessment

Stability assessment of a system composed of interconnected power electronic
converters as well as passive impedance-like elements can be effectively per
formed at any interface within the system by means of the ratio of upstream and
downstream impedances measured or predicted at the interface [7,22,63,75–84].


